用户名: 密码: 验证码:
几种金属氧化物材料的非线性光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因为具有良好的光学、电学以及磁学性能,金属氧化物材料得到了广泛的关注。金属氧化物物理性能的多样性使得它们具有广阔的器件应用前景。但金属氧化物具有复杂的结构,比金属或者半导体更难制备。氧化物中的杂质和缺陷严重影响了材料本身的性质。本论文针对几种典型金属的氧化物以生长技术和缺陷调控入手,提高材料的品质,优化其物理性能。
     第一章,我们简介了几种典型氧化物材料的基本性质,并且对论文中应用的材料制备方法进行了简要的介绍。
     第二章,我们制备了掺锆铌酸锂晶体,该晶体在可见光波段具有良好的抗光损伤性能。我们通过对其紫外波段的抗光损伤性能研究发现,当Zr掺入晶体以后,紫外光折变得到了很好的抑制。掺杂锆2mol%的铌酸锂晶体的衍射效率仅为0.1%,相应光致折射率变化比名义纯晶体低一个量级,抗紫外光损伤的光强阈值可以达到10~5W/cm~2。该晶体是目前仅有的具有抗紫外光损伤性能的铌酸锂晶体。通过对擦除曲线进行拟合分析,我们发现存在两个紫外光折变中心,根据实验结果我们提出了紫外光照射下载流子输运的模型,合理解释了掺杂铌酸锂晶体的紫外光折变性能。
     第三章,我们通过缺陷能级设计,生长了LiNbO_3:Zr,Fe,Mn和LiNbO_3:Zr,Cu,Ce晶体,对它们的非挥发性全息存储性能进行了研究。掺入锆元素之后,LiNbO_3:Zr,Fe,Mn晶体的响应时间得到了极大的缩短,降到了1秒以下,光折变灵敏度为1.31cm/J,比双掺LiNbO_3:Fe,Mn晶体提高了十几倍,LiNbO_3:Zr,Cu,Ce晶体的光折变灵敏度也得到了提高,达到0.099cm/J,与近化比的LiNbO_3:Cu,Ce晶体的灵敏度相当。而后分别对两种三掺晶体的光致散射进行了研究。我们的实验结果结果表明三掺晶体是实现非挥发性全息存储实际应用的优良材料。
     第四章,我们利用脉冲激光沉积法生长了CuScO_2薄膜,其禁带宽度为4.35eV,激子结合能达到了0.4eV。通过利用泵浦探测技术研究发现,其透射率变化ΔT/T非常小,时间演变曲线包括一个延迟的增长以及指数弛豫部分,激子的热化以及复合时间分别为10ps以及0.75ns。我们利用修正的多体Elliott模型对这些结果进行了合理的解释。
     第五章,我们利用脉冲激光沉积法在YAlO_3衬底上生长了EuO的薄膜,对其光学以及磁学性能进行了研究。发现飞秒脉冲激发之后,薄膜内的磁化先增强,接着出现退磁化现象。通过对不同温度下的磁动力学进行研究,我们认为光激发导致的Eu原子内f-d电子交换相互作用的增强,使得薄膜的磁化增加,而光激发造成的温度增加又使得EuO出现退磁化,两种作用相互竞争。而后我们在EuO薄膜中观察到磁进动现象以及反法拉第效应,实现了薄膜磁性的超快调控。
     第六章,我们对整篇论文进行了总结,并展望了上述金属氧化物材料的研究和应用前景。
Metal oxide materials have received a lot of attention because of their uniqueoptical, electric, and magnetic properties. It is very promsing for using oxidematerials in device applications in the future. But oxides often have complex crystalstructures, they are more difficult to fabricate than metals and semiconductors. Theimpurities and defects inside the materials obstruct wide-spread applications of metaloxide. In this thesis we optimized the growth conditions and defects of several metaloxides, improved the material quality and modified the physical properties.
     In Chapter1, we briefly introduced several metal oxides and the growthprocesses adopted in this thesis.
     In Chapter2, LiNbO_3:Zr crystals were grown and investigated. LiNbO_3:Zr wasknown to be one of the best photo damage resistant crystals in the visible region. Bystudying the ultraviolet (UV) photorefractive properties, we found that the ultravioletphotorefraction was restricted effectively. The diffraction efficiency of2mol%Zrdoped lithium niobate was only0.1%. The corresponding refractive index changewas one order of magnetitude smaller that that of normally pure lithium niobate, theintensity threshold of resistance to UV optical damage was10~5W/cm~2. Zr dopedcrystals was the first reported UV photo damage resistant crystal. Through analyzingthe erasing curve, we found that there were two kinds of UV photorefractive centers,one model of light induced charge transport was proposed under ultraviolet lightillumination.
     In Chapter3, we designed and grew triply doped LiNbO_3:Zr,Fe,Mn andLiNbO_3:Zr,Cu,Ce crystals, and investigated the nonvolatile holographic storageproperties. By doping Zr elements into doubly doped lithium niobate crystals, theresponse time of LiNbO_3:Zr,Fe,Mn was shortened very much, being less than onesecond; The sensitivity was1.31cm/J,which was tens of times larger than that ofLiNbO_3:Fe,Mn. The sensitivity of LiNbO_3:Zr,Cu,Ce crystal was also improved toabout0.099cm/J, equivalent to that of near stiochrometric LiNbO_3:Cu,Ce crystal.The ligh induced scattering were also studied for these two kinds of triply doped crystals, our experimental results indicated that triply doped lithium niobate crystalswere the promising candidate for nonvolatile holographic data storage.
     In Chapter4, we grew CuScO_2thin films using plused laser deposition (PLD)method. CuScO_2is an excellent wide band gap semiconductor, the band gap ofwhich is4.35eV,the binding energy of exciton is about0.4eV. The transmissionchange was investigated under exciaton of4.6eV photons, the time race included adelayed raise-up and exponential decay component, the thermalization andrecombination time were10ps and0.75ns, respectively. These features could bedescribed within the framework of generalized many-body Elliott model.
     In chapter5, The EuO thin films were grown on YAlO_3substrate by PLDmethod. The optical and magnetic properties were investigated. We found that afterfemtosecond laser pulse exciation, the magnetization was first enhanced and thenbecame demagnetized. Throug studying the magnetization dyanmcis under differenttemperatures, we thought that the magnetization enhancement was due to f-dexchange interaction via free electrons generated by optical pulses, thedemagnetization was related to the thermal effect of laser exciation, these two effectswere competing with each other. We also found precession dynamics and inverseFaraday effect in EuO, achieving non-thermal control of magnetization.
     In Chapter6, we summarized the work of this thesis, and prospected the futurefor the research and device applicaton of metal oxide.
引文
[1] Rao C N R, and Raveau B. Transition Metal Oxides.2nd ed. New York: Wiley-VCH,1998
    [2] Tsuda N, Nasu K, Yanase A, et al. Electronic Conduction in Oxides. Berlin: Springer-Verlag,1991
    [3] Cox P A. Transition Metal Oxide. Oxford: Oxford University Press,1992
    [4] Henrich V E, Cox P A. The Surface Science of Metal Oxide. Cambridge: CambridgeUniversity Press,1994
    [5] Noguera C. Physics and Chemistry of Transition Metal Oxides. Cambridge: CambridgeUniversity Press,1996
    [6] Fukuyama H, and Nagaosa N. Physics and Chemistry of Transition Metal Oxides. Berlin:Springer,1999
    [7] Norton D P. Synthesis and properties of epitaxial electronic oxide thin film materials. Mater.Sci. Eng. R2004,43:139~247
    [8] Schlom D G, Chen L Q, Pan X Q, et al. A Thin Film Approach to Engineering Functionalityinto Oxides. J. Am. Ceram. Soc.2008,91:2429~2454
    [9] Martin L W, Chu Y H, and Ramesh R. Advances in the growth and characterization ofmagnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R2010,68:89~133
    [10] Ogale S B. Thin films and Heterostructures for Oxide Electronics. Berlin: Springer,1999
    [11] Ramesh R, and Spaldin N A. Multiferroics: progress and prospects in thin films. Nat.Mater.2007,6:21~29
    [12] zgür ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J.Appl. Phys.2005,98:041301
    [13]孔勇发,许京军,张光寅等.多功能光电材料-铌酸锂晶体。北京:科学出版社,2005
    [14] Broderick N. November2002: Lithium niobate. Nature Materials Update.2002
    [15] Abrahams S C, Levinstein H J, Reddy J M. Ferroelectric lithium niobate.5. Polycrystalx-ray diffraction study between24℃和1200℃. J. Phys. Chem. Solids1966,27:1019~1026
    [16] Lerner P, Legras C, Dumas J P.Stoechiométrie des monocristaux de métaniobate de lithium.J Crystal Growth1968,3/4:231~235
    [17] Wilkinson A P, Cheetham A K, Jarman R H. The defect structure of congruently meltinglithium niobate. J ApplPhys1993,74:3080~3083
    [18] Zotov N, Boysen H, Frey F, et al. Cation substitution models of congruent LiNbO3investigated by X-ray and neutron powder diffraction. J PhysChem Solids1994,55:145~152
    [19] Blumel J, Born E, Metzger T, et al. Solid state NMR study supporting the lithium vacancydefect model in congruent lithium niobate. J PhysChem Solids1994,55:589~593
    [20] Kojima S. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals.Japan J ApplPhys1993,32:4373~4376
    [21] Volk T, Walecke M. Lithium niobate: defects, photorefraction and ferroelectric switching.Berlin: Springer-Veriag,2008
    [22] Kawazoe H, Yasukawa M, Hyodo H, et al. P-type electrical conduction in transparent thinfilms of CuAlO2. Nature1997,389:939~942
    [23] Yanagi H, Inoue S, Ueda K, et al. Electronic structure and optoelectric properties oftransparent p-type conducting CuAlO2. J. Appl. Phys.2000,88:4159~4163
    [24] Yanagi H, Hase T, Ibuki S, et al. Bipolarity in electrical conduction of transparent oxidesemiconductor CuInO2with delafossite structure. Appl. Phys. Lett.2001,78:1583~1585
    [25] Ueda K, Hase T, Yanagi H, et al. Epitaxial growth of transparent p-type conductiongCuGaO2thin films on sapphire (001) substrates by pulsed laser depositon. J. Appl. Phys.2001,89:1790~1793
    [26] Gilliland S, Sanchez-Royo J F, Pellicer-Porres J, et al. Electronic structure of p-typeultraviolet-transparent conducting CuScO2films. Thin Solid Films,2008,516:1431-1433
    [27] Kakehi Y, Satoh K, Yotsuya T, et al. Epitaxial growth of CuScO2thin films on sapphire-plane substrates by pulsed laser deposition. J. Appl. Phys.2005,97:083535
    [28] Duan N, Sleight A W, Jayaraj M K, et al. Transparent p-type conducting CuScO2+xflimsAppl. Phys. Lett.2000,77:1325~1326
    [29] Li J, Yokochi F T, Sleight A W. Oxygen intercalation of two polymorphs of CuScO2. Sol.Stat. Sci.2004,6:831~839
    [30] Kimura T, Lashley J C, and Ramirez A P. Inversion-symmetry breaking in the noncollinearmagnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B,2006,73:220401
    [31] Singh D J. Electronic and thermoelectric properties of CuCoO2: Density functionalcalculations. Phys. Rev. B,2007,76:085110
    [32] Hiraga H, Fukumura T, Ohtomo A, et al. Optical and magnetic properties of CuMnO2epitaxial thin films with a delafossite-derivative structure. Appl. Phys. Lett.2009,95:032109
    [33] Huda M N, Yan Y, Walsh A, et al. Group-IIIA versus IIIB delafossite: Electronic structurestudy. Phys. Rev. B,2009,80:035205
    [34] Mauger A, and Godart C. The magnetic, optical, and transport properties of representativesof a class of magnetic semiconductors: The Europium Chalcogenides. Phys. Rep.1986,141:51~176
    [35] Steeneken P G, Tjeng L H, Elfimov I, et al. Exchange splitting and charge carrier spinplarization in EuO. Phys. Rev. Lett.,2002,88:047201(2002)
    [36] Santos T S, Moodera J S, Raman K V, et al. Determining exchange splitting in a magneticsemiconductor by spin-filter tunneling. Phys. Rev. Lett.2008,101:147201
    [37] Mairoser T, Schmehl A, Melville A, et al. Is There an Intrinsic Limit to theCharge-Carrier-Induced Increase of the Curie Temperature of EuO? Phys. Rev. Lett.2010,105:257206
    [38] Shapira Y, Foner S, Aggarwal R L, et al. EuO. II. Dependence of the Insulator-MetalTransition on Magnetic Order. Phys. Rev. B1973,8:2316
    [39] Barbagallo M, Hine N D M, Cooper J F K, et al. Experimental and theoretical analysis ofmagnetic moment enhancement in oxygen-deficient EuO. Phys. Rev. B2010,81:235216
    [40] Yamasaki Y, Ueno K, Tsukazaki A, et al. Observation of anomalous Hall effect in EuOepitaxial thin films grown by a pulse laser deposition. Appl. Phys. Lett.2011,98:082116
    [41] Altendorf S G, Efimenko A, Oliana V, et al. Oxygen off-stoichiometry and phase separationin EuO thin films. Phys. Rev. B2011,84:155442
    [42] Ott H, Heise S J, Sutarto R, et al. Soft x-ray magnetic circular dichroism study onGd-doped EuO thin films. Phys. Rev. B2006,73:094407
    [43] Miyazaki H, Im H J, Terashima K, et al. La-doped EuO: A rare earth ferromagneticsemiconductor with the highest Curie temperature. Appl. Phys. Lett.2010,96:232503
    [44] Sutarto R, Altendorf S G, Coloru B, et al. Epitaxy, stoichiometry, and magnetic propertiesof Gd-doped EuO films on YSZ (001). Phys. Rev. B2009,80:085308
    [45] Matsumoto T, Yamaguchi K, Yuri M, et al. Preparation of Gd-doped EuO1-x thin films andthe magetic and magneto-transport properties. J. Phys.: Condens. Matter2004,16:6017~6028
    [46] Arnold M, Kroha J. Simultaneous Ferromagnetic Metal-Semiconductor Transition inElectron-Doped EuO. Phys. Rev. Lett.2008,100:046404
    [47] Oliver M R, Dimmock J O, Mcwhorter A L, et al. Conductivity studies in Europium oxide.Phys. Rev. B,1972,5:1078~1098
    [48] Ahn K Y, Member S, and Suits J C. Preparation and properties of EuO films. IEEE Trans.Mag.1967, Mag-3:453~455
    [49] Chambers S A. Epitaxial growth and properties of thin flm oxides. Surf. Sci. Rep.2000,39:105~180
    [50] Schlom D G, Haeni J H, Lettieri J, et al. Oxide nano-engineering using MBE. Mater. Sci.Eng. B2001,87:282~29
    [51]闵乃本.晶体生长的物理基础.上海:上海科学技术出版社,1982
    [52]张玉龙,唐磊.人工晶体生长技术、性能与应用.北京:化学工艺出版社,2005
    [53]介万奇.晶体生长原料与技术-Principle and technology of crystal growth。北京:科学出版社,2010
    [54] Herman M A, and Sitter H. Molecular Beam epitaxy: Fundamentals and Current status.2nd Ed. Berlin: Springer-Verlag,1996
    [55] Yoshida S. Reactive Molecular Beam Epitaxy. In Critical Reviews in solid state andmaterials science, Boca Raton: CRC Press,1984
    [56] Eason R. Pulsed laser deposition of thin films. Hoboken, New Jersey: John Wiley&sons,Inc.,2007
    [57] Ramesh R, Luther K, Wilkens B, et al. Epitaxial growth of ferroelectric bismuth titanatethin films by pulsed laser deposition. Appl. Phys. Lett.1990,50:1505~1507
    [58] Poppe U, Schubert J, Arons R R, et al. Direct Production of Crystalline SuperconductingThin Films of YBa2Cu3O7by High-Pressure Oxygen Sputtering. Solid State Commun.1988,66:661~665
    [59] Pachaly B, Bruchhaus R, Pitzer D, et al. Pyroelectric Properties of Lead Titanate ThinFilms deposited on Pt-Coated Si Wafers by Multi-Target Sputtering. Integr. Ferroelectrics,1994,5:333~338
    [60] Bai G R, Chang H L M, Kim H K, et al. Epitaxy-Induced Phase of Near-StoichiometryPbTiO3Films Prepared by Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett.1992,61:408~410
    [61] Roeder J F, Baum T H, Bilodeau S M, et al. Liquid-Delivery MOCVD: Chemical andProcess Perspectives on Ferroelectric Thin Film Growth. Adv. Mater. Opt. Electron.2000,10:145~154
    [62] Scheel H J. The Development of crystal growth technology: Crystal growth technology.New York: John Wiley&Sons, Ltd.2003
    [63] Brandle C D. Czochralski growth of oxides. J. Cryt. Growth2004,264:593~604
    [64] Dijkkamp D, Venkatesan T, Wu X D, et al. Preparation of Y-Ba-Cu oxide superconductorthin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett.1987,51:619~621
    [65] Kitamura K, Furukawa Y, Ji Y, et al. Photorefractive effect in LiNbO3crystals enhanced bystoichiometry control. J Appl Phys1997,82:1006-1009
    [66] Bordui P F, Norwood R G, Jundt D H, et al. Preparation and characterization ofoff-congruent lithium niobate crystals. J Appl Phys1992,71:875-879
    [1] Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive indexinhomogeneities in LiNbO3and LiTaO3. Appl. Phys. Lett.1996,9:72~74
    [2] Chen F S, Lamacchia J T, and Fraser D B. Holographic storage in lithium niobate. Appl.Phys. Lett.1968,13:223~225
    [3] Kukhtarev N V, Markov V B, Odoulov S G, et al. Holographic storage in electroopticcrystals I Steady state. Ferroelectrics1979,22:949~960
    [4] Amodei J J. Analysis of transport processes during holographic recording in insulators.RCA Rev.1971,32:185~198
    [5] Valley G C. Erase rates in photorefractive materials with two photoactive species. Appl. Opt.1983,22:3160~3164
    [6] Schwartz R N, Wechsler B A, Electron-paramagnetic-resonance study oftransition-metal-doped BaTiO3: Effect of material processing on Fermi-level position. Phys.Rev. B1993,48:7057
    [7] Buse K and Kr tzig E. Three-valence charge-transport model for explanation of thephotorefractive effect. Appl. Phys. B1995,61:27~32
    [8]刘思敏,郭儒,许京军等.光折变非线性光学及其应用.北京:科学出版社,2004
    [9]杨春晖,孙亮,冷雪峰等.光折变非线性光学材料:铌酸锂晶体.北京:科学出版社,2009
    [10] Gunter P, Huignard J P. Photorefractive Materials and Their Applications. Berlin:Springer-Veriag,1987
    [11] Petrov M P, Stepanov S I, Vkhomenko A. Photorefractive Crystals in Coherent OpticalSystems. Berlin: Spring-Veriag,1991
    [12] Saleh B E A, Teich M C. Fundamentals of Photonics, New York: John Wiley Sons. Inc.1991
    [13] Staebler D L, and Amodei J J. Coupled‐Wave Analysis of Holographic Storage in LiNbO3.J. Appl. Phys.1972,43:1042~4049
    [14] Glass A M, von der Linde D, and Negran T J. High‐voltage bulk photovoltaic effect andthe photorefractive process in LiNbO3. J. Appl. Phys.1974,25:233
    [15] Bai Y S, and Kachru R. Nonvolatile Holographic Storage with Two-Step Recording inLithium Niobate using cw Lasers. Phys. Rev. Lett.1997,78:2944~2947
    [16] Hesselink L, SOrlov S S, Liu A, et al. Photorefractive Materials for Nonvolatile VolumeHolographic Data Storage. Science1998,282:1089~1094
    [17] Zhong G G, Jian J, and Wu Z K. Measurements of Optically Induced Refractive-IndexDamage of Lithium Niobate Doped with Different concentration of MgO. In Proceeding of11th International Qiantum Electronics Conference. Washington D.C.: Optical Society ofAmerica,1980,631
    [18] Bryan D A, Gerson R, and Tomaschke H E. Increased optical damage resistance in lithiumniobate. Appl. Phys. Lett.1984,44:847-849
    [19] Volk T R, Pryalkin V I, and Rubinina N M. Optical-damage-resisitant LiNbO3:Zn crystal.Opt. Lett.1990,15:996~998
    [20] Kong Y, Wen J, and Wang H. New doped lithium niobate crystal with high resistance tophotorefraction-LiNbO3:In. Appl. Phys. Lett.1995,66:280~282
    [21] Yamamoto J K, Kitamura K Iyi N, et al. Increased optical damage resistance inSc2O3-doped LiNbO3. Appl. Phys. Lett.1992,61:2156-2158
    [22] Volk T R, Ivanov M A, Pryalkin VI, et al. Photorefractive and nonlinear-optical propertiesof optical damage resistant LiNbO3:Zn crystals. Ferroelectrics,1992,136:57~62
    [23] Lerner P, Legras C, Dumas J P. Stoechiométrie des monocristaux de métaniobate de lithium.J Crystal Growth1968,3/4:231~235
    [24] Liu J, Wang W, and Zhang G. Microscopic mechanism of suppressing photorefraction inLiNbO3:Mn,Fe. Solid State Commun.1996,98:523~526
    [25] Orlowski R, and Kraetzig E. Holographic method for the determination of photo-inducedelectron and hole transport in electro-optic crystals. Solid State Commun.1978,27:1351~1354
    [26] Jungen R, Angelow G, Laeri F, et al. Efficient Ultraviolet Photorefraction in LiNbO3. Appl.Phys. A1992,55:101~103
    [27] Laeri F, Jungen R, Angelow G,et al. Photorefraction in the ultraviolet: Materials and effects.Appl. Phys. B1995,61:351~360
    [28] Xu J, Zhang G, Li F, et al. Enhancement of ultraviolet photorefraction in hightlymagnesium-doped lithium niobate crystals. Opt. Lett.2000,25:129~131
    [29] Qiao H, Xu J, Zhang G et al. Ultraviolet photorefractivity features in doped lithium niobatecrystals. Phys. Rev. B,2004,70:094101
    [30] Kokanyan E P, Razzari L, Cristiani I, et al. Reduced photorefraction in hafnium-dopedsingle-domain and periodically poled lithium niobate crystals. Appl. Phys. Lett.2004,84:1880~1882
    [31] Kong Y, Liu S, Zhao Y, et al. Highly optical damage resistant crystal:Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett.2007,91:081908
    [32] Wang L, Liu S, Kong Y, et al. Increased optical-damage resistance in tin-doped lithiumniobate. Opt. Lett.2010,35:883~885
    [33] Külich H C. A new approach to read volume holograms at different wavelengths. Opt.Commun.1987,64:407-411
    [34] Schirmer O F, and von der Linde. Two-photon-and x-ray-induced Nb4+and O-smallpolarons in LiNbO3. Appl. Phys. Lett.1978,33:35~37
    [35] Herth P, Granzow T, Schamiel D, et al. Evidence for light-induced hole polarons in LiNbO3.Phys. Rev. Lett.2005,95:067404
    [36] Zaritskii I, Rakitina L, Corradi G, et al. A new trapped-hole radiation defect in heavilyMg-doped LiNbO3. J. Phys.: Condens. Matter.1991,3:8457~8465
    [37] Qiao H, and Tomita Y. Ultraviolet-light-induced absorption changes in highly Zn-dopedLiNbO3.Opt. Express,2006,14:773~5778
    [38] Yan W, Kong Y, Shi L, et al. Investigations of centers formed in UV-lightinduced absorptionfor LiNbO3highly doped with Mg and Hf. Opt. Express,2006,14:10898~10906
    [1] Hellemans A. Holograms Can Store Terabytes, But Where? Science1999,286:1502~1504
    [2] Dhar L, Curtis K, and Facke T. Holographic data storage: Coming of age. Nat. Photonics2008,2:403~405
    [3] Haw M. Holographic data storage: The light fantastic. Nature2003,422:556~558
    [4] Heanue J F, Bashaw M C, and Hesselink L. Volume holographic storage and retrieval ofdigital data. Science1994,265:749~752
    [5] Burr G W, Jefferson C M, Coufal H, et al. Volume holographic data storage at areal densityof250gigapixels/in.2Opt. Lett.2001,26:444~446
    [6] Amodei J J, Staebler D L. Holographic pattern fixing in electro-optic crystals. Appl. Phys.Lett,1971,18:540~542
    [7] Micheron F, Bismuth G. Electrical control of fixation and erasure of holographic patterns inferroelectric materials, Appl. Phys. Lett,1972,20:79~81
    [8] Von der Linde D, Glass A M, Rodgers K F. Multiphoton photorefractive processes foroptical storage in LiNbO3. Appl. Phys. Lett,1974,25:155~157
    [9] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithiumniobate crystals. Nature,1998,393:665-668
    [10] Zhang G, Xu X, Liu S,et al. Study of resistance against photorefractive light-inducedscattering in LiNbO3:Fe,Mg crystals. Proc. SPIE2529,14~17(1995).
    [11] Kong Y, Wu S, Liu S, et al. Fast photorefractive response and high sensitivity of Zr and Fecodoped LiNbO3crystals Appl. Phys. Lett.2008,92:251107
    [12] Mok F, Burr G, and Psaltis D. System metric for holographic memory systems. Opt.Lett.1996,21:896~898
    [13] Hesselink L, Orlov S S, Liu A et al. Photorefractive Materials for Nonvolatile VolumeHolographic Data Storage. Science,1998,282:1089~1094
    [14] Liu Y, Liu L, Xu L, et al. Experimental study of non-volatile holographic storage in doublyand triply-doped lithium niobate crystals. Opt. Commun.2000,181:47~52
    [15] Segev M, Kewitsch A, Yariv A, et al. Self-enhanced diffraction from fixed photorefractivegratings during coherent reconstruction. Appl. Phys. Lett,1993,62:907-909
    [16] Adibi A, Buse K, and Psaltis D, Effect of annealing in two-center holographic recording.Appl. Phys. Lett.74,3767-3769(1999)
    [17] Momtahan O, and Adibi A. Global optimization of sensitivity and dynamic range fortwo-center holographic recording. J. Opt. Soc. Am. B,2003,20:449~461
    [18] Gunter P, and Huignard J P. eds. Photorefractive Materials and Their Applications I, Vol.61of Topics in Applied Physics. Berlin:Springer-Verlag,1987
    [19] Momtahan O, Cadena G H, and Adibi A. Sensitivity variation in two center holographicrecording. Opt. Lett.2005,30:2709~2711
    [20] Liu Y W, Liu L R, Zhou C H, et al. Nonvolatile photorefractive holograms inLiNbO3:Cu:Ce crystals. Opt. Lett,2000,25:908~910
    [21] Dishler B, Herrington J R, R uber A, Correlation of the photorefractive sensitivity in dopedLiNbO3with chemically induced changes in the optical absorption spectra. Solid StateComm,1974,14:1233-1236
    [22] Li X, Kong Y, An Y, et al. Nonvolatile holographic storage of near-stoichiometricLiNbO3:Cu:Ce with green light. Appl. Opt.2007,46:7620~7624
    [23] Dong Q, Liu L, Liu D, et al. Effect of dopant composition ratio on nonvolatile holographicrecording in LiNbO3:Cu:Ce crystals. Appl. Opt.2004,43:5016~5022
    [24] Goulkov M, Odoulov S, Woike T, et al. Holographic light scattering in photorefractivecrystals with local response. Phys. Rev. B2002,65:195111
    [25] Liu D, Liu L, Zhou C, et al. Nonvolatile holograms in LiNbO3:Fe:Cu by use of thebleaching effect. Appl. Opt.2002,41,6809~6814
    [26] Zheng W, Gui Q, and Xu Y. Defect structure and optical fixing holographic storage ofMg:Mn:Fe:LiNbO3crystals. Cryst. Res. Technol.2008,43:526~530
    [1] Ginley D S, and Bright C. Transparent Conducting Oxides. Mater. Res. Bull.2000,25:15~18
    [2] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy forp-type doping and light-emitting diode based on ZnO. Nat. Mater.2005,4:42~46
    [3] Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO bymolecular-beam epitaxy. Appl. Phys. Lett.2005,87:152101
    [4] Kakehi Y, Satoh K, Yotsuya T, et al. Epitaxial growth of CuScO2thin films on sapphire-plane substrates by pulsed laser deposition. J. Appl. Phys.2005,97:083535
    [5] Duan N, Sleight A W, Jayaraj M K, et al. Transparent p-type conducting CuScO2+xflimsAppl. Phys. Lett.2000,77:1325~1326
    [6] Gilliland S, Pellicer-Porres J, Segura A, et al. Electric structure of CuAlO2and CuScO2delafossites under pressure. Phys. Stat. Sol. B2007,244:309~314
    [7] Li J, Yokochi F T, Sleight A W. Oxygen intercalation of two polymorphs of CuScO2. Sol.Stat. Sci.2004,6:831~839
    [8] Gilliland S, Sanchez-Royo J F, Pellicer-Porres J, et al. Electronic structure of p-typeultraviolet-transparent conducting CuScO2films. Thin Solid Films,2008,516:1431-1433
    [9] Rashba E I, and Sturge M D. Excitons. Amsterdam: North Holland,1982
    [10] Fox M, Optical properties of Solids.2nd ed. Oxford: Oxford University Press,2010
    [11] Reynolds D C and Collins T C, Excitons: their properties and uses. New York: AcademicPress,1981
    [12] Fehrenbach G W, Schafer W, and Ulbrich R G. Excitonic versus plasma screening in highlyexcited gallium arsenide. J. Lumin.1985,30:154~161
    [13] Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, ThirdEdition, Springer-Verlag, Berlin,2001
    [14] Lyon S A. Spectroscopy of hot carriers in semiconductors. J. Lunm.1986,35:121~154
    [15] Sirgert J. Carrier dynamics in semiconductor quantum dot:[Doctoral hesis]. Sweden:Royal Institutle of Technology,2006
    [16] Elliott R J. Intensity of optical absorption by exciton. Phys. Rev.1957,108:1384~1389
    [17] Toyozawa Y, Interband effect of lattice vibrations in the exciton absorption spectra. J. Phys.Chem. Solids,1964,25:59~71
    [18] Lautenschlager P, Garriga M, Logothetidis S, et al. Interband critical points of GaAs andtheir temperature dependence. Phys. Rev. B,1987,35:9174~9189
    [19] Atoneche F. Laser manipulation of atoms and spins: towards smaller and faster magneticdevices:[Doctoral thesis]. Nijmegne: Radboud University Nijmegen,2011
    [20] Huber R, Satzger H, Zinth W, et al. Noncollinear optical parametric amplifiers with outputparameters improved by the application of a white light continuum generated in CaF2. Opt.Commu.2001,194:4~6
    [21] Ye H. Hot carrier dynamics in GaN:[Doctoral thesis]. New York: University of Rochester,2000
    [22] Tanguy C. Bosonic behavior of excitons and screening: a consistent calculation. Phys. Lett.2002,292:285~288
    [23] Klingshirn C F. Semiconductor Optics. New York: Springer, New York,1990, Chap.20,P.512
    [24] Banyai L, and Koch S W. A simple theory for the effects of plasma screening on the opticalspectra of highly excited semiconductors. Z. Phys. B,1986,63:283~291
    [25] Lee Y H, Chavez-Pirson A, and Koch S W. Room-temperature optical nonlinearities inGaAs. Phys. Rev. Lett.1986,57:2446~2449
    [26] Bennett B R, Soref R A, Del Alamo, et al. Carrier-induced change in refractive-index ofInP, GaAs and InGaAsP. IEEE J. Quantum Electron.1990,26:113~122
    [27] Sun C K, Wallee F, Keller S, et al. Femtosecond studies of carrier dynamics in InGaN.Appl. Phys. Lett.1997,70:2004~2006
    [28] Bauer C, Boschloo G, Mukhtar E, et al. Ultrafast relaxation dynamics of charge carriersrelaxation in ZnO nanocrystalline thin films. Chem. Phys. Lett.2004,387:176~181
    [29] Korona K P, Wysmolek A, Pakula K, et al. Exciton region reflectance of homoepitaxialGaN layers. Appl. Phys. Lett.1996,69:788-790
    [30] Makino T, Chia C H, Tuan N T, et al. Exciton spectra of ZnO epitaxial layers onlattice-matched substrates grown with laser-molecular-beam epitaxy. Appl. Phys. Lett.2000,76:3549~3551
    [31] Pandey A, and Guyot-Sionnest P. Slow electron cooling in colloidal quantum dots. Science,2008,322:929~932
    [1] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronicsvision for the future. Science,2001,294:1488~1495
    [2] Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev. Mod.Phys.2004,76:323~410.
    [3] Bibes M, Barthelemy A. Oxide spintronics. IEEE Trans. Electr. Dev.2007,54:1003~1023
    [4] Fert A. Origin, development, and future of spintronics. Angew. Chem. Int. Ed.2008,47:5956~5967
    [5] Awschalom D D, Flatter M E. Challenges for semiconductor spintronics. Nat. Physics2007,3:153~159
    [6] Ohno H, Shen A, Matsukura F, et al.(Ga,Mn)As: A new diluted magnetic semiconductorbased on GaAs. Appl. Phys. Lett.1996,69:363~365
    [7] Kuroda S, Nishizawa N, Takita K, et al. Origin and control of high-temperatureferromagnetism in semiconductors. Nat. Mater.2007,6:440~446
    [8] Kang J S, Kim G, Wi S C, et al. Spatial chemical inhomogeneity and local electronicstructure of Mn doped Ge ferromagnetic semiconductors. Phys. Rev. Lett.2005,94:147202
    [9] Mauger A, and Godart C. The magnetic, optical, and transport properties of representativesof a class of magnetic semiconductors: The Europium Chalcogenides. Phys. Rep.1986,141:51~176
    [10] Oliver M R, Dimmock J O, Mcwhorter A L, et al. Conductivity studies in Europium oxide.Phys. Rev. B,1972,5:1078~1098
    [11] Steeneken P G, Tjeng L H, Elfimov I, Sawatzky G A, et al. Exchange splitting and chargecarrier spin plarization in EuO. Phys. Rev. Lett.,2002,88:047201(2002)
    [12] Santos T S, Moodera J S, Raman K V, et al. Determining exchange splitting in a magneticsemiconductor by spin-filter tunneling. Phys. Rev. Lett.2008,101:147201
    [13] Schmehl A, Vaithyanathan V, Herrnberger A, Epitaxial integration of the highlyspin-polarized ferromagnetic semiconductor EuO with silicon and GaN. Nat. Mater.2007,6:882~887
    [14] Sugano S, and Kojima N, editors, Magneto-optics (Springer, Berlin,2002)
    [15] Awschalom D D, and Kikkawa J M. Electron spin and optical coherence in semiconductors.Physics Today1999,52:33~38
    [16] Beaureparier E, Merle J C, Daunois A, et al. ultrafast spin dynamics in ferromagneticnickel. Phys. Rev. Lett.1996,76:4250~4253.
    [17] Kimel A, Pisarev R, Hohefeld J, et al. Ultrafast quenching of the antiferromagnetic order inFeBO3: Direct optical probing of the phonon-magnon coupling. Phys. Rev. Lett.2002,89:287401
    [18] Kise T, Ogasawara T, Ashida M, et al. Ultrafast spin dynamics and critical behavior inhalf-metallic ferromagnet: Sr2FeMoO6. Phys. Rev. Lett.2000,85:1986~1989
    [19] Gomez-Abal R, Ney O, Satitkovitchai K, et al. All-optical subpicosecond magneticswitching in NiO(001). Phys. Rev. Lett.2004,92:227402
    [20] Stanciu C D, Hansteen F, Kimel A V, et al. Ultrafast interaction of the angular momentumof photons with spins in the metallic amorphous alloy GdFeCo. Phys. Rev. Lett.2007,98:207401
    [21] Hsia C, Chen T Y, Son D H. Size-dependent ultrafast magnetization dynamics in iron oxide(Fe3O4) nanocrystals. Nano. Lett.2008,8:571~576
    [22] Malinowski G, Longa F D, Rietjens J H H, et al. Control of speed and efficiency ofultrafast demagnetization by direct transfer of spin angular momentum. Nat. Physics2008,4:855~858
    [23] Greilich A, Economou S, Spatzek S, et al. Ultrafast optical rotation of electron spins inquantum dots. Nat. Physics2009,5:262~266
    [24] Zhang G P, Hubner W, Lefkidis G, et al. Paradigm of the time-resolved magneto-opticalKerr effect for femtosecond magnetism. Nat. Physics.2009,5:499~502
    [25] Bjgot J Y, Vomir M, and Beaurepaire E. Coherent ultrafast magnetism induced byfemtosecond laser pulses. Nat. Physics2009,5:515~520
    [26] Kirilyuk A, Kimel A V, Rashing Th. Ultrafast optical manipulation of magnetic order. Rev.Mod. Phys.2010,82:2731~2784
    [27] Hohlfeld J, Matthias E, Knorren R, et al. Nonequilibrium magnetization dynamics ofnickel. Phys. Rev. Lett.1997,78:4861~4864
    [28] Scholl A, Baumgarten L, Jacquemin R, et al. Ultrafast Spin Dynamics of FerromagneticThin Films Observed by fs Spin-Resolved Two-Photon Photoemission. Phys. Rev. Lett.1997,79:5146~5149
    [29] Koopmans B, van Kampen M, Kohlhepp J T, et al. Ultrafast Magneto-Optics in Nickel:Magnetism or Optics? Phys. Rev. Lett.2000,85:844~847
    [30] Thiele J U, Buess M, and Back C H. Spin dynamics of theantiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond timescale. Appl. Phys. Lett.2004,85:2857~2859
    [31] Ju G, Hohlfeld J, Rene B B, et al. Ultrafast Generation of Ferromagnetic Order via aLaser-Induced Phase Transformation in FeRh Thin Films. Phys. Rev. Lett.2004,93:197403
    [32] Astakhov G V, Kimel A V, Schott G M, et al. Magnetization manipulation in (Ga,Mn)Asby subpiconsecond optical exciation. Appl. Phys. Lett.2005,86:152506
    [33] Kimel A V, Kirilyuk A, Tsvetkov A, et al. Laser-induced ultrafast spin reorientation in theantiferromagnet TmFeO3. Nature,2004,429:850~853
    [34] Matsubara M, Okimoto Y, Ogasawara T, et al. Ultrafast PhotoinducedInsulator-Ferromagnet Transition in the Perovskite Manganite Gd0.55Sr0.45MnO3. Phys. Rev.Lett.2007,99:2070401
    [35] Matsubara M, Okimoto Y, Ogasawara T, et al. Ultrafast photoinduced ferromagnetism inthe perovskite manganite Gd0.55Sr0.45MnO3. J. Appl. Phys.2008,103:07B110
    [36] Lotgering F K. Photomagnetic effects and disaccommodation in Co-doped YIG. J. Phys.Chem. Sol.1975,36:1183~1191
    [37] Hansteen F, Kimel A V, Kirilyuk A, et al. Femtosecond Photomagnetic Switching of Spinsin Ferrimagnetic Garnet Films. Phys. Rev. Lett.2005,95:047402
    [38] Qi J, Tolk N H, Liu X, et al. Coherent magnetization precession in GaMnAs induced byultrafast optical excitation Appl. Phys. Lett.2007,91:112506
    [39] Oiwa A, Mitsumori Y, Moriya R, et al. Effect of Optical Spin Injection onFerromagnetically Coupled Mn Spins in the III-V Magnetic Alloy Semiconductor(Ga,Mn)As. Phys. Rev. Lett.2002,88:137202
    [40] Stanciu C D. Laser-induced femtosecond magnetic recording:[Doctoral thesis].Netherlands: Radboud University Nijmegen,2008
    [41] Van Vleck J H. A Survey of the Theory of Ferromagnetism. Rev. Mod. Phys.1945,17:27~47
    [42] Kittel C, Physical Theory of Ferromagnetic Domains. Rev. Mod. Phys.1949,21:541~583.
    [43] Kasuya T. Exchange mechanisms in Europium chalcogenides. IBM J. Res. Develop.1970,14:214~223
    [44] Steeneken P G. New light on EuO thin fims-Preparation, transport, magnetism andspectroscopy of a ferromagnetic semiconductor.[Doctoral thesis]. Netherlands: theUniversity of Groningen,2002
    [45] Mauger A. Indirect exchange in europium chalcogenides. Phys. Stat. Sol. B,1977,84:761~771
    [46] Zvezdin A K, and Kotov V A. Modern magnetooptics and magnetiooptical materials.London: Institute of Physics Publishing,1997
    [47] Faraday M. On a pecular class of acoustical figures; and on certain forms assumed bygroups of particales upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond.1831,121:299~340
    [48] Guyader L L. Ultrafast laser-induced spatially modulated excitations in magnetic systems:[Doctoral thesis]. Netherlands: Radboud University Nijmegen,2008
    [49] Antonov V, Harmon B, and Yaresko A. Electronic structure and magnetooptical propertiesof solids. Dordrecht: Klwer Academic Publishers,2004
    [50] Tsukamoto A, Nakagawa K, Itoh A, et al. Excitation of Coherent Spin Waves at UltrafastThermomagnetic Writing. IEEE Trans. Magn.2004,40:2543
    [51] Ahn K Y, Member S, and Suits J C. Preparation and properties of EuO films. IEEE Trans.Mag.1967, Mag-3:453~455
    [52] Ulbricht R W, Schmehl A, Heeg T, et al. Adsorption-controlled growth of EuO bymolecular-beam epitaxy. Appl. Phys. Lett.2008,93:102105
    [53] Koopmans B, Malinowski G, Dalla Long F, et al. Explaining the paradoxical diversity ofultrafast laser-induced demagnetization. Nat. Mater.2009,9:259~265
    [54] Wang J, Cotoros I, Dani K M, et al. Ultrafast Enhancement of Ferromagnetism viaPhotoexcited Holes in GaMnAs. Phys. Rev. Lett.2007,98:217401
    [55] Ashcroft N W, and Mermin N D. Solid State Physics. Philadelphia: Saunders,1976
    [56] Barbagallo M, Hine N D, Cooper J F K, et al. Experimental and theoretical analysis ofmagnetic moment enhancement in oxygen-deficient EuO. Phys. Rev. B2010,81:235216
    [57] Kimel A V, Kirilyuk A, Usachev P A, et al. Ultrafast non-thermal control of magnetizationby instantaneous photomagnetic pulses. Nature,2005,435:655~657
    [58] Krukin M I, Bakulina N B, Pisarev R V, et al. Transient inverse Faraday effect and ultrafastoptical switching of magnetization. Phys. Rev. B2008,78:134430
    [59] Popova D, Bringer A, Nluegel S, et al. Theory of the inverse Faraday effect in view ofultrafast magnetization experiments. Phys. Rev. B2011,84:214421
    [60] Vahaplar K, Kalashnikova A M, Kimel A V, et al. All-optical magnetization reversal bycircularly polarized laser pulses: Experiment and multiscale modeling. Phys. Rev. B2012,85:104402
    [61] Landau, L. D.&Lifshitz, E. M. Electrodynamics of Continuous Media. Oxford: Pergamon,1984
    [62] Pitaevskii L P. Electric forces in a transparent dispersive medium. Sov. Phys. JETP,1961,12:1008~1013
    [63] van der Ziel, J. P., Pershan, P. S.&Malmstrom, L. D. Optically-induced magnetizationresulting from the inverse Faraday effect. Phys. Rev. Lett.1965,15:190~193
    [64] Pershan, P. S., van der Ziel, J. P. and Malmstrom, L. D. Theoretical discussion of inverseFaraday effect, Raman scattering and related phenomena. Phys. Rev.1966,143:574~583
    [65] Awschalom, D. D., Warnock, J. and von Molnar, S. Low-temperature magneticspectroscopy of a dilute magnetic semiconductor. Phys. Rev. Lett.1987,58:812~815
    [66] Kittel C. On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev.1948,73:155~161
    [67] Mangin S, Henry Y, Ravelosona D, et al. Reducing the critical current for spin-transferswitching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett.2009,94:012502
    [68] Mizukami S, Ando Y, and Miyazaki T. The Study on Ferromagnetic Resonance Linewidthfor NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) Films. Jpn. J. Appl. Phys.2001,40:580~585
    [69] Mo N, Hohlfeld J, Islam M, et al. Origins of the damping in perpendicular media: Threecomponent ferromagnetic resonance linewidth in Co–Cr–Pt alloy films. Appl. Phys. Lett.2008,92:022506
    [70] Bastian D and Biller E, Anisotropy constants and g-factors of Ni-Fe alloys derived fromferromagnetic resonance Phys. Status Solidi A1976,35:465~470
    [71] Schreiber F, Pflaum J, Frait Z, et al. Gilbert damping and g-factor in FexCo1xalloy films.Solid State Commun.1995,93:965~968
    [72] Pelzl J, Meckenstock R, Spoddig D, et al. Spin–orbit-coupling effects on g-value anddamping factor of the ferromagnetic resonance in Co and Fe films. J. Phys. Condens.Matter.2003,15: S451~S463
    [1] Ohtomo A, and Hwang H. A high-mobility electron gas at the LaAlO3/SrTiO3heterointerface. Nature,2004,427:423~426
    [2] Reyren N, Thiel S, Caviglia A D, et al. Superconducting Interfaces Between InsulatingOxides. Science,2007,317:1196~1199
    [3] Breakthrough of the year2007: Beyond silicon? Science2007,318:1846
    [4] Heber J. Enter the oxide. Nature2009,459:28~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700