用户名: 密码: 验证码:
电液流量、方向连续控制新原理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液控制技术在航空、航天,海洋工程、冶金,矿山、重型机械等体现一个国家综合国力和国防现代化的许多工业领域,起着非常关键的作用。这一技术的核心是控制执行器工作速度、方向、位置和输出力的流量、方向连续控制元件,目前主要有比例方向阀和伺服比例阀。这一领域,我国虽然在系统集成技术方面已取得了许多成就,但在核心元件技术方面同国外发达国家仍有较大差距,制约了我国装备制造业的发展,许多国家需求的重大装备,如全断面掘进机、板坯连铸连扎设备、大型成型设备等,所用电液控制元件,特别是高性能比例方向阀、伺服比例阀只能高价从国外进口,造成国外在技术和价格上对我国的垄断。国家也充分认识到这一问题的严重性,2009年5月国务院出台的装备制造业调整和振兴规划,在原有振兴装备制造业16个优先发展重大专项基础上,补充了基础部件,这其中就包含电液伺服和比例元件。在我国制定的国家中长期科学和技术发展规划纲要(2006—2020年),优先主题第26项之基础件和通用部件:“重点研究开发重大装备所需的关键基础件和通用部件的设计、制造和批量生产的关键技术”,更是将电液控制技术所需的核心元器件列为重点研发内容。正是在这样的背景下,在国家自然科学基金“有源、流量闭环先导级为驱动的电液流量控制理论与方法、51175362”和国家2011年重大科技成果转化项目“高响应、大流量伺服比例阀关键技术、系列产品开发及应用”的资助下,提出本课题的研究内容,通过对新的电液流量控制方法相关基础问题的研究,为我国自主研发高精度、高动态响应、模块化、易集成的比例流量控制元件提供理论和试验依据。
     首先,对国内外的相关研究工作作了较为详细的分析和论证,找出了现有技术存在的不足,提出解决问题的创新思想,研究工作对发展具有我国自主知识产权的低能耗电液流量控制元件,突破国外在这一领域对我国技术和经济上的垄断及制约,带动我国液压工业发展,推动相关主机行业的技术进步具有重要的理论和现实意义。
     对影响电液伺服比例阀特性的关键技术和基础理论开展了研究,采用流体动力学仿真方法CFD,对影响阀特性的动静态液动力及其补偿方法作了研究,给出了新的减小液压动力影响的补偿方法;对制约阀动态响应快速性的电机械转换器及其控制方法作了研究,提出采用动圈式电机械转换器做驱动的改进思路。
     提出创新的比例方向阀控制方案,对新型比例方向阀的工作机理进行阐述,对关键的结构参数进行设计、计算,应用AutoCAD软件和Pro/E软件详细建立了阀的二维工程图和三维实体模型,验证了结构参数的合理性,为后续仿真优化设计、工作特性分析以及生产物理样机奠定了基础。
     根据新型比例方向阀的结构及工作原理,建立阀的完整数学模型。根据线性化理论,对阀的动静态特性进行理论计算和分析,对影响稳态控制特性及零位阀系数的主要几何参数展开讨论;根据合理假设,进一步将阀的非线性状态空间模型简化,推导出系统方框图和传递函数,并对系统稳定性进行分析,得出了新型比例方向阀的系统稳定性条件。研究结果表明,阀的动态特性为一阶滞后环节,其转折频率随节流槽面积梯度的增大而增大,随阀芯面积比的增大而减小。为保证阀的稳定性,节流槽应留有一定的预开口量。
     将阀的CAD实体导入SimulationX仿真平台,创建出新型比例方向阀的多学科仿真模型,分别在时域和频域中对阀的稳态特性和动态特性进行仿真研究,讨论了将先导阀回油直接引油箱以及节流槽面积梯度的改变对阀的动态性能影响。研究结果表明,新型比例方向阀的稳态特性和等位移特性良好,主阀芯位移控制曲线的线性度也较好,但有一定的中位控制死区。阀的动态阶跃响应时间较长,阀芯位移的响应速度与系统压力和给定信号有关。阀的工作频宽约7Hz,频响曲线没有出现谐振峰值,具有典型一阶滞后环节的特征,仿真结果验证了理论分析的正确性。
     为进一步提高阀的控制精度和动态性能,提出采用主阀芯位移-电闭环、先导阀芯位移-电闭环和双电闭环三种控制方案,分析了三种阀的结构特点及工作机理,分别对其进行多领域建模和仿真研究。结果表明,主阀芯位移-电闭环控制阀能够明显抑制液动力、摩擦力等干扰,提高了阀的稳态控制精度和动态响应速度,将阀的频带拓宽到18Hz,阀的综合性能获得大幅度提升;采用先导阀芯位移-电闭环控制,由于系统闭环包括的范围太小,无法消除功率级干扰,因此对阀的性能影响不大;加入双电闭环控制则可以结合前两种电闭环控制的优势,合理调节控制器参数,就可使阀获得最佳的工作特性。引入电闭环控制方案,不仅改善了阀的动静态性能,也使阀具有了在闭环控制通道发生故障的情况下,仍可开环工作的容错控制功能。
Proportional directional valve of high performance with servo function is the key element of electro-hydraulic control technology. Because of the long-term gap in these key components, the technology of equipment manufacturing industry in our country falls behind that of developed countries, and the development of many important technical equipments for national demands is restricted. Therefore, developing the proportional control elements of low cost, high performance and high reliability is of great significance for promoting the international competitiveness of proportional valve products in China and driving the technological progress of the hydraulic industry and related host industry in our country. As a part of the research content of National Natural Science Foundation "Theories and Methods of Electro-hydraulic Flow Rate Control With Active, Flow Closed-loop and Pilot-Operated"(51175362), this thesis focuses on the comprehensive discussion, analysis and simulation research of the novel electro-hydraulic proportional direction valve based on displacement-flow feedback control principle.
     First of all, it is stated the work principle of the new kind of three-position four-way proportional direction valve by adopting the hydraulic transistor technology theory. According to the proposal of the innovative structure scheme by the research group, the structure of the core components is designed and the geometric parameters of the key parts are calculated. With the detailed establishment of the valve's2D engineering drawings and3D entity models by using AutoCAD and Pro/E software, the rationality of the structure parameters is verified, laying a foundation for the subsequent simulation optimization design、performance analysis and physical prototype production.
     The mathematic model is set up based on the structure and working principle of the novel proportional direction valve. The theoretical calculation and analysis on the static properties and dynamic properties of the new valve are conducted with the help of linearization theory. Main geometric parameters that affect the steady state control characteristics and neutral position valve coefficients are discussed. Based on reasonable hypothesis, the nonlinear state space model of the valve is simplified further, and the systematic block diagram and transfer function are derived. Then with analysis of the system stability, the stability criterion of the new type of proportional direction valve is obtained. The research shows that the dynamic characteristics of the valve is of a first-order lag link whose break frequency increases with the throttle slot area gradient and decreases with the spool area ratio. To guarantee the stability of the valve, the throttle slot always has to maintain a certain underlap.
     By importing the CAD entities of the valve into simulation platform ——SimulationX, the multi-domain model of new type of proportional direction valve is created. Thus the simulation research on the valve's steady state and dynamic performances is carried out separately in time domain and frequency domain. This thesis also includes a further discussion about the influence on valve's dynamic characteristics by sending the pilot flow directly to the tank, or changing the throttle slot area gradient. The results show that the new type of proportional direction valve is of good steady state control characteristics and equal displacement characteristics. The linearity of the control curve of the main spool displacement is well. However, there exists a certain neutral position control dead zone. The dynamic step response time of the valve is comparatively long. The response speed of the spool displacement is related to the system pressure and given signals. The valve's working bandwidth is about7Hz, and its frequency response curve doesn't appear resonance peak and has the feature of a typical first-order lag link. The simulation results prove the validity of the theoretical analysis.
     In order to improve the valve's control accuracy and dynamic property, the thesis presents three control schemes:main spool displacement-electronic closed-loop control, pilot spool displacement-electronic closed-loop control and double electronic closed-loop control. The structure features and working principles of the three valves are introduced and the multi-domain modeling and simulation research are included respectively at last. Results show that the valve under the main spool displacement-electronic closed-loop control can effectively restrain the interference of the flow force and viscous force. Accordingly it can improve both the steady state control accuracy and dynamic response speed of the valve with broadening the bandwidth of the valve to18Hz. As a result, the overall performance of the valve is promoted by a large margin. The adoption of pilot spool displacement-electronic closed-loop control cannot remove the interference from the power stage because the system closed-loop range is too limited. Therefore there is little influence on the valve's performance. Relatively, the valve under double electronic closed-loop control can combine the advantages of the former two valves, and by adjusting the control parameter reasonably, the valve will obtain optimal working characteristics. In addition, after introducing the electronic closed-loop control strategy, it can not only improve the dynamic and static properties of the valve but also make the valve possess the ability of fault tolerance by means of working in open-loop control once the closed-loop channel is in trouble.
引文
[1]路甬祥,胡大纮,电液比例控制技术[M].北京:机械工业出版社,1988.
    [2]W. Backe, Y X Lu, Proportional-Drosselventil in 2-Wege-Einbauventilbauart[J], O+P, 1981, Vol.25 (1)
    [3]Sooyong Jung, Hardware-in-the-loop simulation for control development in EHPV applications[C], ASME International Mechanical Engineering Congress, Washington, DC, US 2003:157-163
    [4]Yang. X, Pilot solenoid control valve with pressure responsive diaphragm[P]. U.S Patent No.6,149,124,2000
    [5]Yang. X, Stephenson, D. B., and Paik, M. J., Bidirectional pilot operated control valve[P], U.S. Patent No.6,328,275,2001
    [6]Yang. X, Pfaff. J. L, and Paik. M. J, Pilot operated control valve having a poppet with integral pressure compensating mechanism[P], U.S. Patent No.6,745,992,2004
    [7]D.B.史蒂芬森,带有压力平衡式提升阀的先导操作阀[P],胡斯可国际有限公司,CN 101387311.A2009-03-18
    [8]O. Patrick, Modeling and control of an electro-hydraulic poppet valve[C], ASME International Mechanical Engineering Congress and Exposition, Anaheim, California US 2004:103-110
    [9]FU Linjian, WEI Jianhua, QIU Minxiu, Dynamic characteristics of large flow rating electro-hydraulic proportional cartridge valve[J], Chinese Journal of Mechanical Engineering,2008, Vol.21 (6):57-62
    [10]凌俊杰,翁振涛,方荣华,比例压力流量复合阀新结构及性能分析与研究[J],液压气动与密封,2002年6月:24-25
    [11]DP Smith,具有集成的流量控制的电动液压计量阀[P],新卡特彼勒三菱有限公司,2008-08-30,公开号:CN 101233465A
    [12]A埃盖利亚,独立计量阀控制的系统和方法[P],2008-08-27,新卡特彼勒三菱有限公司,公开号:CN101253314A
    [13]Pengfei Ma, Naperville IL, Bidirectional force feedback poppet valve[P], Caterpillar, US Dec.20,2007,0290153 A1,
    [14]Pengfei Ma, Naperville IL, Poppet valve[P], Caterpiliar, US Dec.20,2007,0290152 A1,
    [15]C. Harvey O. Cline, Roger Fales, Solenoid damping of the pilot poppet in a force-feedback metering poppet valve[C], ASME International Mechanical Engineering Congress and Exposition November 11-15,2007, Seattle, Washington, USA: 10416-10421
    [16]Matthew T Muller, Roger C Fales, Design and analysis of a two stage poppet valve for flow control[J], International Journal of Fluid Power,2008, Vol.9(1):17-25
    [17]冯天麟,唐晓群,先导型力反馈电液比例流量阀的设计[J],液压与气动2005年第6期:72-73
    [18]邱敏秀刘湘琪黄永才等,力反馈型电液比例压力流量复合控制阀的分析[J],液压与气动,2003年第8期:1-3
    [19]R. Bartholomaeus, N. Kreth, Elektrisch geregelte 2_Wege-Einbauventile[J], O+P, 1981, Vol.25(8):617-624
    [20]M.冯德威尔,伺服控制的计量提升阀[P],2008-09-10,公开号:CN101263307A,
    [21]Andersson. B, On the Valvistor a proportionally controlled seat valve[D], Linkoeping Studies in Science and Technology, Dissertation, No.1085.
    [22]Andersson. B, Entwicklung eines Lastdruck kompensierter Load Sensing Wegeventiles mit stetig wirkerden 2-wege-Einbauventilen[C],6th ifk Int. Conference,1984, Aachen, Germany
    [23]Wu Pingdong, Ato Kitagawa, A study on the poppet valve with series restriction chokes[J],1st Report,2nd Report,3rd Report, Trans, of Japan Society of Mechanical Engineers, Vol.53 (1987), No.490, Vol.54 (1988), No.493
    [24]Wu Pingdong, Hitoshi Maekawa, Kazushi Sanada, A new compensation method for improving static characteristics of a proportional poppet valve[C],1st JHPS Int. Symposium on Fluid Power, Tokyo, March 1989:367-373
    [25]Yasukazu Sato, Hirohisa Tanaka, Switching valve operated proportional seat valve with momentum flow meter[C],2nd JHPS Int. Symposium on Fluid Power, Tokyo, Sep. 1993
    [26]Ato Kitagawa, Wu Pingdong, Kazushi Sanada, A study on characteristics of flow control and pressure control of a PWM controlled logic valve[C],2nd JHPS Int. Symposium on Fluid Power, Tokyo, Sep.1993
    [27]M.K. Luomaranta, M.j. Vilenius, Valvistor based modern servo package [C],1st JHPS Int. Symposium on Fluid Power, Tokyo, March 1989:557-565
    [28]Henrik Pettersson Jan-Ove Palmberg, High bandwidth flow amplifier a design and concept study[C], The 6th Scandinavian International Conference on Fluid Power, SICFP'99, May 26-28,1999, Tampere, Finland:321-337
    [29]R. I. Gault; D. J. Thornhill; R. Fleck; Analysis of the steady flow characteristics through a poppet valve[C],2004 SAE World Congress, Detroit, Michigan, USA,2004-01-16: 1-16
    [30]P Opdenbosch, N Spadegh, W Book, Modeling an electro-hydraulic poppet valve[J], International Journal of Fluid Power, Vol.10(1):7-15
    [31]B Nielsen, T O Andersen, Design and optimization and control of pilot operated seat valve,4th ifk, Dresden, Germany,2004, Vol.3:47-59
    [32]Roger Fales, Stability and performance analysis of a metering poppet valve[J], International Journal of Fluid Power,2006, Vol.7(2):11-17
    [33]Eko Prasetiawan, Rong Zhang, Andrew Alleyne, Fundamental performance limitations for a class of electronic two stage proportional valves[C], Proceeding of the American Control Conference, Arlington, VA June 25-27,2001:3955-3960
    [34]冯天麟,唐晓群,先导式流量反馈电液比例流量阀[J],阀门,2005年第3期:3-4
    [35]冯天麟,唐晓群,液压机用流量反馈型电液比例流量阀的研制[J],2008,Vol.33(3):94-96
    [36]Eriksson B. Control strategy for energy efficient fluid power actuators:utilizing individual meterering[D]. Sweden:Linkoeping University,2007.
    [37]Eriksson B. Mobile fluid power systems design with a focus on energy efficiency [D]. Sweden:Linkoeping University,2010.
    [38]Eriksson B, Larsson J, Palmberg J O. A novel valve concept including the valvistor poppet valve[C]//Proceedings of the 10th Scandinavian International Conference on Fluid Power, SICFP'07, Tampere University of Technology, Tampere, Finland, May 21-23,2007:355-364.
    [39]Eriksson B. Fluid valve arrangement[P]:Germany Patent, DE112007003560.2007-07-02.
    [40]Eriksson B, Andersson B R, Palmberg J O. The dynamic properties of a poppet type hydraulic flow amplifier[C]//Proceedings of the 10th Scandinavian International Conference on Fluid Power, SICFP'07, Tampere University of Technology, Tampere, Finland, May 21-23,2007:161-178.
    [41]Eriksson B, Palmberg J O. Individual metering fluid power systems:challenges and opportunities[C]//Proceedings of the Institution of Mechanical Engineers, Part I Journal of Systems and Control Engineering, Linkoeping, Sweden, March 1,2011,225(02): 196-211.
    [42]Heybroek K. Saving energy in construction machinery using displacement control hydraulics:Concept Realization and Validation[D]. Sweden:Linkoeping University, 2008.
    [43]Heybroek K, Larsson J, Palmberg J O. Mode switching and energy recuperation in open-circuit pump control [C]//Proceedings of the 10th Scandinavian International Conference on Fluid power, Tampere, Finland. May 2007:197-210.
    [44]Pettersson H, Krus P, Jansson A, etc. The design of pressure compensators for load sensing hydraulic systems[C]//Proceedings of UKACC International Conference on Control'96, IET427, University of Exeter, UK,1996,2:1456-1461.
    [45]Pettersson H, Palmberg J O. High bandwidth flow amplifier a design and concept study [C]//Proceedings of the 6th Scandinavian International Conference on Fluid Power, Tampere, Finland, May 26-28,1999:321-337.
    [46]Pettersson H. On valve controlled fluid power systems flow amplifier and percussive rock drilling[D]. Sweden:Linkoeping University,2002.
    [47]Prasetiawan E A, Zhang R, Alleyne A G. Fundamental performance limitations for a class of electronic two-stage proportional flow valves[C]//Proceedings of the American Control Conference, Arlington, Virginia, June 25-27,2001:3955-3960.
    [48]Zhang R, Alleyne A G, Prasetiawan E A. Performance limitations of a class of two-stage electro-hydraulic flow valves[J]. International Journal of Fluid Power,2002, 3(01):47-53.
    [49]Opdenbosch P, Sadegh N, Book W J. Modeling and control of an electro-hydraulic poppet valve[C]//Proceedings of ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, November,2004:103-110.
    [50]太原理工大学.数字控制的先导型比例流量阀:中国,CN201110087073.5[P],2011-8-17.
    [51]李强,徐宝云,王文瑞等.电磁比例节流阀稳态特性仿真分析[J].计算机仿真,2005,22(10):232-234,272.
    [52]Lu Yong-xiang, W. Backe, Betriebeverhalter Vorgesteuerter 2-Wege-Stromregelventile unterschiedlicher Bauform, O+P,1981, Vol.25(9):703-708
    [53]Wu Duqiang, Richard Burton, Greg Schoenau, Analysis and optimization design of pressure compensated flow control valves,2003 ASME International Mechanical Engineering Congress, Washindon D.C., November 15-21,2003:19-27
    [54]W. Backe, Design systematic and performance of cartridge valve controls, Proceeding of the Int. Conference on Fluid Power, March 24-261987, Tamper, Finland
    [55]Lu Yong-xiang, New development of proportional cartridge valve technique in recent years,1st JHPS Int. Symposium on Fluid Power, Tokyo, March 1989:xxv-xxxv
    [56]H. Deppner, B. Homburg, Proportional Volumenstrom-steuerung und -regelung im Bereich 2-2000 L/min,6 ifk Int.Conference,1984, Aachen, Germany 281-302
    [57]朱建安,郭培红,二通插装型电反馈比例流量阀特性研究,焦作工学院学报,1998,Vol.17(1):57-61
    [58]Zahe, B.; Schmitz, R.; Eschweiler, M, Elektrohydraulisches Load-Sensing, O+P,1990, Vol.34(4):548-553
    [59]Backe, W.; Feigel, H.-J, Neue moglichkeiten beim elektrohydraulischen Load-Sensing, O+P,1990, Vol.34 (2):106-114
    [60]Hlemut Fischer, Load-Sensing-System fuer mobil Arbeitsmaschinen, O+P,1995,39(4): 298-303
    [61]Quan Long, Ma Jian, Wang yongjin, Research on the performance of the new type of proportional pressure and flow control valve, Chinese Journal of Mechanical Engineering,2003,16(3):281-284
    [62]权龙等,电液比例减压调速复合控制阀,国家发明专利,89109714.6,89109716.3,
    [63]权龙等,用单片机和比例溢流阀实现负载感应控制,液压与气动,1993,No.3
    [64]权龙等,电液比例控制系统负载敏感新方法,工程机械,1993,No.5
    [65]王庆丰,顾临怡,路甬祥,基于压差传感的电液进、出口节流独立调节原理及控制特性研究,机械工程学报,2001,Vol.37(4):21-24
    [66]Patrick O, Auto-calibration and control applied to electro-hydraulic valve[D] George. Woodruff School of Mechanical Engineering Georgia Institute of Technology, December 2007
    [67]Opdenbosch, P. and Sadegh, N., Control electro-hydraulic poppet valves via online learning and estimation, in Proceedings of IMECE 2005, (Orlando, FL), November 2005:57-62,
    [68]Opdenbosch, P., Sadegh, N., and Book, W., Modeling and control of an electro-hydraulic poppet valve, in Proceedings of IMECE 2004, (Anaheim, CA), November 2004:103-110
    [69]Song Liu, Bin Yao, Automated onboard modeling of cartridge valve flow mapping, IEEE/ASME Transactions on Mechatronics,2006, Vol.11(4):381-388
    [70]Song Liu, Bin Yao, Robust control of programmable valves with manufacturer supplied flow mapping only,43rd IEEE Conference on Decision and Control, December 14-17, 2004:1117-1122, Atlantis, Paradise, Island, Bahamas vol.1
    [71]Stephenson, D. B, Auto-calibration of a solenoid operated valve, U.S. Patent, No. 6,397,655, June 2002.
    [72]EC休斯,用于标定独立计量阀的方法,2009-08-26,公开号:CN101517245A.
    [73]力士乐公司样本,二位二通阀和三通比例插装阀, RC 29135/01.03
    [74]Moog Catalogue, Moog Hydrolux, DSHR 2/2-Way Servo cartridge valve,18(2xD661) 32 (2xD661)
    [75]孔晓武,基于并联型先导控制的大流量伺服阀设计及控制理论研究,国家自然科 学基金编号:50805127
    [76]Gerd scheffel, Energieeffizienz in der Hydraulik-Sparpotenzial bei ventilgesteuerten Linearantrieben, O+P,2009, Vol.53 (4):122-125
    [77]Alfred Feuser, Neuartige, Kostenguenstige Antriebe fuer Proportionalventil in der Fluidtechnik, O+P Olhydraulik und Pneumatik, Vol.43(1999), Nr.4
    [78]Hagemeister, W, Piezoelectrically pilot operated 3/3 directional servovalve, O+P Olhydraulik und Pneumatik 43(1999) Nr.1
    [79]Roland Bublitz, Geraeteprofil Hydraulik-Ein Kommunikationsprofil fuer Intelligente Antriebe, Hydropump und Stetigventile,2th ifk. Conference,17-17 march 2000, Dresden, Germany
    [80]Hubertus Murrenhoff, Trends in Valve Development, O+P, Olhydraulik und Pneumatik,46 (2003) Nr.4:1-8
    [81]Moog Product Catalogue. D633/D634 series valves [EB/OL], http://www.moog.com.
    [82]许小庆.新型电液伺服比例阀用电—机械转换器的理论分析和试验研究[D].太原:太原理工大学,2010.
    [83]Parker Product Catalogue.3290uk.pdf[EB/OL]. http://www.parker.com.
    [84]Rexroth Product Catalogue. Re 29061_2005-01. pdf [EB/OL]. http://www. rexroth.com.
    [85]Atos Product Catalogue. F180-17/C.pdf[EB/OL]. http://www.atos.com.
    [86]Peter W, Tappe, Konzepte fuer schaltmagnetbetaetigate Proportionalventile, Dissertation, RWTH Aachen,1999
    [87]Branz, Harald:Hydraulische Antriebe und Steuerungen fur Werkzeugmaschinen. O+P,Olhydraulik und Pneumatik,45 (2001) Nr.9.
    [88]Hagemeister, Wilhelm:Auslegung von hochdynamischen servohydraulischen Antrieben fur eine aktive Frasspindellagerung, Dissertation, RWTH Aachen,1999.
    [89]Linden, Dirk:Entwicklung eines piezobetatigten Servoventils fur die hydraulische Werkstuckpriifung, Dissertation, RWTH Aachen,2001.
    [90]H.Kolvenbach, W.Krips, Revolution in Dynamik und Kraft:Neue Antriebstechnologie fuer Stetigventile,4th IFK Int. Conf. march 2004, Dresden, Germany:317-328
    [91]Fees, Gerald:Statische und dynamische Eigenschaften eines hochdynamischen ER-Servoantriebes. O+P,Olhydraulik und Pneumatik,45(2001) Nr.1.
    [92]Kipping, M., "Experimental Investigation and Numerical Calculation of Internal Flow in a Hydraulic Slide Valve," Dissertation, Darmstadt University of Technology,1997
    [93]Mirjana Ristic, Dreidimensionale Stroemungsberechnungen zur Optimierung von Hydraulikventilen bezueglich der stationaeren Stroemungskraefte, Dissertation, RWTH-Aachen,2000
    [94]Yasuhiro Kondoh; Daisuke Kozuma; Analysis of flow forces acting on a spool valve (3rd report, influence of valve dimensions on lateral flow force),日本机械学会论文集.B编,vol.68,2002,no.675 p.2951-2959
    [95]Linda Tweedy Till; Glenn Wendel, Application of Computational Fluid Dynamics Analysis in Improving valve Design,49th National Conference on Fluid Power, Mar 19-21,2002, Las Vegas, Nevada USA, p.329-333
    [96]V JOUPPILA; J KUUSISTO; A model-based method for condition monitoring of a proportional valve, Bath Workshop on Power Transmission and Motion Control(PTMC 2004); 20040901-20040903; Bath; GB, P.309-317
    [97]Greg Schoenau; Rich Burton; Parameter estimation in a solenoid proportional valve using OLS and MLH techniques,5th International Conference on Fluid Power Transmission and Control (ICFP2001), Zhejiang University, China,2001, p.124-129
    [98]王庆丰,带新型压力补偿器的电反馈比例方向流量阀研究,浙江大学硕士研究生学位论文,1988年5月
    [99]倪文波,唐中一等,P W M比例多路阀的开发和研究,机械,1998年第2期,第25卷:11-13
    [100]李世伟,位移-电反馈电液比例方向节流阀开发研究,太原理工大学硕士研究生学位论文,1990年5月
    [101]Sauer-danfoss PVG 120 Proportional Valve Technical Information, www.sauer-danfoss.com
    [102]Linden, Dirk:Entwicklung eines piezobetatigten Servoventils fur die hydraulische Werkstuckprufung. Dissertation, RWTH Aachen,2001.
    [103]Becker, Manfred:Schrittmotor als Aktuator fur Hydraulik-Wegventile. O+P, Olhydraulik und Pneumatik,44 (2000) Nr.4.
    [104]阮健,电液直接数字控制技术的颤振基础研究,50075082,国家自然科学基金
    [105]阮健,电液数字阀分级控制的非线性及其应用研究,国家自然科学基金
    [106]Lin S C J, Akers A. Modeling and analysis of the dynamics of a flow control servo valve that uses a two-spool configuration[C]//Proceedings of the ASME Winter Annual Meeting, New York, America,1990, vol.WA90/FPST-3.
    [107]Shin Y C. Static and dynamic characteristics of a two stage pilot relief valve[J]. Journal of Dynamic Systems, Measurement and Control,1991,113(02):280-288.
    [108]Khoshzaban Zavarehi M, Lawrence P D, Sassani F. Nonlinear modeling and validation of solenoid-controlled pilot-operated servovalves[J]. IEEE/ASME Transactions on Mechatronics, Septemble,1999,4(03):324-334.
    [109]Yuan Q H, Lew J Y. Modeling and control of two stage twin spool servo-valve for energy-saving[C]//Proceedings of the 2005 American Control Conference, June 8-10, 2005, Portland,2005:4363-4368.
    [110]Li Perry Y. Dynamic redesign of a flow control servo valve using a pressure control pilot[J]. Journal of Dynamic Systems, Measurement and Control,2002,124:28-434.
    [111]Anderson Randall T, Li Perry Y. Mathematical modeling of a two spool flow control servo valve[C]//ASME Symposium on Modeling and Control Electro-hydraulic Systems, November,2002, Orlando, Florida,2002,69(01):321-328.
    [112]Dasgupta K, Watton J. Dynamic analysis of proportional solenoid controlled piloted relief valve by bond graph[J]. Simulation Modeling Practice and theory,2005,13(01): 21-38,
    [113]Eryilmaz B, Wilson B H. Unified modeling and analysis of a proportional valve [J]. Journal of the Franklin Institute,2006,343(01):48-68.
    [114]Fales R. Stability and performance analysis of a metering poppet valve[J]. International Journal of Fluid Power,2006,1:11-17.
    [115]Muller M T, Fales R. Design and analysis of a two stage poppet valve for flow control [J]. International Journal of Fluid Power,2008,9(01):17-26.
    [116]Vaughan N D, Gamble J B. The modeling and simulation of a proportional solenoid valve[J]. Journal of Dynamic Systems Measurement and Control,1996,118(01): 120-125.
    [117]Feigel, H.-J, Stromungskraftkompensation in direktgesteuerten elektrohydraulischen Stetigventile[D], Doctor Dissertation, RWTH Aachen,1992
    [118]Latour, Ch., Stromungskraftkompensation in hydraulischen Sitzventilen[D], Doctor Dissertation, RWTH Aachen,1996
    [119]Dietze, M, Measurement and Calculation of the Internal Flow in Hydraulic Seat Valves[D], Doctor Dissertation, Darmstadt University of Technology,1996
    [120]Kipping, M., Experimental Investigation and Numerical Calculation of Internal Flow in a Hydraulic Slide Valve[D], Dissertation, Doctor Darmstadt University of Technology, 1997
    [121]Mirjana Ristic, Dreidimensionale Stroemungsberechnungen zur Optimierung von Hydraulikvebtilen bezueglich der stationaeren Stroemungskraefte[D], Doctor Dissertation, RWTH-Aachen,2000
    [122]Yasuhiro Kondoh; Daisuke Kozuma; Analysis of flow forces acting on a spool valve [J] (3rd report, influence of valve dimensions on lateral flow force),日本机械学会论文集.B编,vol.68,2002,no.675 p.2951-2959
    [123]Yasuhiro Kondoh; Analysis of flow forces acting on a spool valve[J] (2nd report, lateral flowforce caused by main flow),日本机械学会论文集.B编,2002,vol.68,no.667,p.680-688
    [125]Roger Yang, CFD Simulations of Oil Flow and Flow Induced Forces Inside Hydraulic valves[C],49th National Conference on Fluid Power, Mar 19-21,2002, Las Vegas, Nevada USA, p:201-207
    [126]Qinghui Yuan; Perry Y. Li, MODELING AND EXPERIMENTAL STUDY OF FLOW FORCES FOR UNSTABLE valve DESIGN[C], ASME International Mechanical Engineering Congress:Fluid Power Systems and Technology; 2003.11.15-2003.11.21, P.29-38
    [127]Weongyu Shin; Hyunyoung Choi; DEVELOPMENT OF A DIRECT DRIVE servo valve WITH FLOW FORCE COMPENSATED SPOOL[C],4th ASME/JSME Joint Fluids Engineering Conference; Jul 6-10,2003; p.633-63
    [128]E. Urata; C. Yamashina, Influence of flow force on the flapper of a water hydraulic servo valve[J], JSME International Journal. Series B,1998, vol.41, no.2,p.278-285
    [129]M. Borghi; M. Milani; Transient flow force estimation on the pilot stage of a hydraulic valve[C], The ASME International Mechanical Engineering Congress and Exposition, California, USA, November 15-20,1998, p.157-162
    [130]Ji Hong; Fu Xin; Yang Huayong, STUDY ON STEADY FLOW FORCE OF NON-CIRCULAR OPENING SPOOL valve[C], Proceedings of the Fourth International Symposium on Fluid Power Transmission and Control (ISFP'2003), p:560-564
    [131]Linxiang Wang; Ying Chen; Numerical study on the axial flow force of a spool valve[C], The ASME International Mechanical Engineering Congress and Exposition, California, USA, November 15-20,1998, p.177-183
    [132]曹秉刚,史维祥,中野和夫,内流式锥阀液动力的理论探讨[J],西安交通大学学报,1995.7,No.7,Vol.29:2-6
    [133]曹秉刚,史维祥,中野和夫,内流式锥阀液动力及阀芯锥面压强分布的实验研究[J],西安交通大学学报,1995.7,No.7,Vol.29:7-13
    [134]汤志勇,曹炳刚,史维祥,液压控制阀稳态波动力补偿方法的探讨——阀套运动法[J],机床与液压,1995,No.2,p:91-96
    [135]冀宏,付新,杨华勇,非全周开口滑阀稳态液动力研究[J],机械工程学报,2003.6,Vol 39 No.6:13-17
    [136]付永领 裴忠才 宋国彪 王占林,新型直接驱动伺服阀的瞬态液动力分析[J],《机床与液压》,1999,No.1,23-24
    [137]王林翔,章明川,方志宏,阀内流道布置对液动力的影响[J],《机床与液压》2000,No.6:27-28
    [138]王庆丰,吴根茂,路甬祥,节流控制的压力补偿特性优化和测压点补偿研究[J],机床与液压,1994,No.4,p:210-213-
    [139]Verringerung der Kavitationsneigung bei hydraulischen Ventilschiebern[J], O+P "Olhydraulik und Pneumatik" 48 (2004) Nr.9
    [140]Leino, T., Koskinen, K.T., and Vilennius, M., CFD-Modeling of a Water Hydraulic Poppet Valve-Comparison of Different Modeling Parameters[C], The Eighth Scandinavian International Conference on Fluid Power, Tampere, Finland,Vol.1 (2), pp.277-286.2003
    [141]Timo KOIVULA, ON CAVITATION IN FLUID POWER[C], Proc. of 1st FPNI-PhD Symp. Hamburg 2000, pp.371-382
    [142]Gao, H., Fu, X., Yang, H. and Tsukiji, T.,2002, Numerical and Experimental Investigation of Cavitating Flow within Hydraulic Poppet Valve[C], Proc.,3rd International Fluid Power Conference, Aachen, Germany, Vol.1, pp.331-339
    [143]Shigeru Oshima; Timo Leino;..., Experimental study on cavitation in water hydraulic poppet valve[J], 油压と空气压,2002, vol.33, no.2, p:29-35
    [144]Priyatosh Barman, Computational fluid dynamics (CFD) analysis to predict and control the cavitation erosion in a hydraulic control valve[C], SAE 2002 World Congress, Detroit, Michigan, USA,
    [145]GAO Hong; FU Xin; Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system[J], Journal of Zhejiang University,2002, vol.3, no.4, p.395-400
    [146]高红,傅新.锥阀阀口气穴流场的数值模拟与试验研究[J].机械工程学报,2002(8):27-30
    [147]Linda Tweedy Till; Glenn Wendel, Application of Computational Fluid Dynamics Analysis in Improving valve Design[C],49th National Conference on Fluid Power, Mar 19-21,2002, Las Vegas, Nevada USA, p.329-333
    [148]Ronald H. Miller; Gary S. Strumolo, A Design of Experiment Using Computation Fluid Dynamics for Spool-Type Hydraulic valves[C], Proceedings of the ASME/Fluids Engineering Division-2000, Orlando, Florida, November 5-10,2000, p.325-334
    [149]Priyatosh Barman, Computational fluid dynamics (CFD) analysis to study the effect of spool slot configuration on spool and valve body erosion of hydraulic valve[C], The 2001 ASME Fluids Engineering Division Summer Meeting, vol.1-Forums, New Orleans, Louisiana, USA, May 29-June 1,2001, p.833-838
    [150]高殿荣,王益群.液压控制锥阀内流场的数值模拟与试验可视化研究[J].机械工程学报,2002(4):66-70
    [151]王林翔,陈鹰,路甬祥.液压阀道内的三维流体流动的数值分析[J].中国机械工程1999.Vol.10(2):127-129
    [152]Hisanori U, Atsushi OKAJCMA, et al, Noise measurement and numerical simulation of oil flow in pressure control valve[J], JSME International journal, series B,1994, 37(2):336-341
    [153]F. Rudiger, Untersuchungen zur Schallabstrahlung olhydraulischer Ventile[J], O+P "Olhydraulik und Pneumatik" 48 (2004), Nr.4, Nr.5
    [154]Helduser S.; Rudiger, F.:Untersuchungen zur Gerauschabstrahlung von Hydraulik-ventilen mit Hilfe der numerischen Stromungsberechnung[C].5. Deutsch-Polnisches Seminar, Warschau,18.-19.09.2003
    [155]冀宏,付新,杨华勇,内流道形状对溢流阀气穴噪声影响的研究[J],机械工程学报,2002(8):19-32
    [156]王勇亮,卢颖,赵振鹏等.液压仿真软件的现状及发展趋势[J].液压与气动,2012,(08):1-4.
    [157]孙成通,陈国华,蒋学华等.液压系统仿真技术与仿真软件研究[J].机床与液压,2008,(10):140-143.
    [158]武鹏飞,颜凌云,包宗贤.浅析液压系统仿真技术现状及发展趋势[J].机床与液压,2011,(08):133-134.
    [159]李成功,和彦淼.液压系统建模与仿真分析[M].北京:航空工业出版社,2008.
    [160]刘国昌,赵红波,曾庆良等.基于HOPSAN的液压系统仿真与应用[J].机床与液压,2006,(11):198-200.
    [161]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [162]邓习树,李自光.当前液压系统仿真技术发展现状及趋势[J].机床与液压,2003,(01):20-22.
    [163]暴风创新科技.Pro/ENGINEER野火版4.0从入门到精通[M].北京:人民邮电出版社,2008.
    [164]ITI有限公司.Library Manual SimulationX(?)[M]. Dresden:ITI CO., LTD,2010.
    [165]刘艳芳.SimulationX精解与实例多学科领域系统动力学建模与仿真[M].北京:机械工业出版社,2010.
    [166]Vickers Product Catalogue. EPV16 series proportional flow controls technical infor-mation[EB/OL]. http://www.eaton-vickers.com.cn,1994.
    [167]日本油研公司.油研液压产品99年中文版工程信息目录[M].Japan:YUKEN KOGYO CO., LTD,1999.
    [168]冯庆熙,刘志刚.一种新型实用封堵技术在液压阀块中的应用(上)[J].液压气动与密封,2012,(10):45-47.
    [169]何存兴.液压元件[M].北京:机械工业出版社,1982.
    [170]杨征瑞,花克勤,徐轶.电液比例与伺服控制[M].北京:冶金工业出版社,2009.
    [171]成大先.机械设计手册单行本弹簧[M].北京:化学工业出版社,2004.
    [172]宋鸿尧.液压阀设计与计算[M].北京:机械工业出版社,1982.
    [173]田波,阴正锡.极薄煤层采煤机液压锁的研制及实验分析[J].重庆大学学报(自然科学版),1990,(06):86-92.
    [174]林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988.
    [175]Jelali M, Kroll A. Hydraulic servo-system:modeling, identification and control [M]. UK:Springer Verlag,2003.
    [176]王春行.液压控制系统[M].北京:机械工业出版社,1999.
    [177]杨位钦,谢锡祺.自动控制理论基础(上)[M].北京:北京理工大学出版社,1991.
    [178]Borutzky W. Bond graphs:A methodology for modeling multidisciplinary dynamic [M]. Erlangen:SCS Publishing House,2004.
    [179]李如平.射流管式水压电液伺服阀研制及特性研究[D].华中科技大学,2011.
    [180]世冠科技(北京)有限公司.多学科领域建模仿真平台SimulationX[J]. CAD/CAM与制造业信息化,2011,(01):24-30.
    [181]Liu Y F, Dai Z K, Xu X Y, etc. Multi-domain modeling and simulation of proportional solenoid valve[J]. Journal of Central South University of Technology,2011,18(05): 1589-1594.
    [182]Tang P X, Wang S H, Xu X Y, etc. Design of system pressure valve of 8-speed automatic transmission[C]//Computer Application and System Modeling (ICCASM), 2010 International Conference on. IEEE,2010,4:443-447.
    [183]Rydberg K E. Hydraulic servo systems[J]. TMHP51 Fluid and Mechanical Engin-eering Systems, Linkoeping University,2008:1-45.
    [184]Doyle J C, Francis B A, Tannenbaum A. Feedback control theory[M]. New York: Macmillan Publishing Company,1992.
    [185]Franklin G F, Powell J D, Emami-Naeini A. Feedback control of dynamic systems [M]. New York:Addison Wesley, third edition,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700