用户名: 密码: 验证码:
粘弹性薄膜吸附的QCM传感器响应模型研究及验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石英晶体微天平(QCM)是一种超灵敏的质量型传感器,可以检测到纳克量级(10-9g)的微质量变化。它具有快速实时、在线跟踪、单次检测成本低廉、可以给出定量分析结果等诸多优点,是实现农产品农药残留、食品安全、重金属污染、大气污染、水质分析、医学诊疗检测等高精密检测分析的新技术、新方向,近几年成为了生化检测分析领域的研究热点。
     在经典的QCM的数据分析响应模型中, Sauerbrey模型只适用于气相刚性膜均匀吸附应用;Kanasawa模型只适用于液相纯粘性液体应用,并且它只能把未知液体的密度和粘度的乘积项当做一个参数来处理。QCM-D响应模型通过QCM的频率变化和能量耗散变化建立方程组来分析粘弹性介质吸附现象。但是,该模型需要已知溶液的密度、粘度等信息,在应用上有一定的局限性。同时,QCM-D响应模型中能量耗散变化的获得是采用瞬时测量法以脉冲激励的方式让QCM传感器振荡,然后测量其衰减时间(一般是在10-6秒量级)计算得到。这种方法容易受到外界的微小干扰而影响分析结果的准确度。
     本文在传输线理论和声波理论的基础上,推导了不同介质吸附下QCM传感器响应模型的显性表示式,揭示了QCM传感器的频率变化以及耗散因子变化与所吸附的介质特性之间的关系。进而通过验证,定量分析和评估了多种材料的特性。本文主要工作和创新点包括:
     1.应用传输线理论以及负载声波阻抗理论,推导了QCM传感器在空载条件下的BVD (Butterworth-Van Dyke)等效电路模型,并与基于经典本构方程得到的等效电路进行了比较,验证了该推导方法的正确性。在此基础上详细推导了气相弹性介质吸附的Sauerbrey模型、液相粘性介质吸附的Kanasawa模型以及Martin模型,进一步验证了该推导方法的有效性。
     2.对于粘弹性介质,目前QCM传感器的数据分析还存在着一定的缺陷和不足,为了解决这一问题,本文采用一种简单的方法准确推导了响应分析模型。同时,本文还结合该模型提出了一种稳态测量方法,从频率测量的角度,应用频率与耗散因子的转换关系,精确得到耗散因子,提高了QCM传感器的数据分析的准确度。
     3.分别从气相和液相的应用角度,推导了单层粘弹性薄膜吸附的QCM传感器响应模型,给出了明确的显性表达式,得到了与QCM-D模型完全一样的结论:气相条件下,粘弹性薄膜的粘弹性模量会引入“额外质量”效应;液相条件下,粘弹性薄膜的粘弹性模量会引入“遗失质量”效应。实验事实证明,本文推导的响应模型对粘弹性薄膜特性分析具有一定指导意义,同时为QCM生化分析领域的深入研究提供了量化的分析方法和科学依据。
     4.深入分析了溶液特性对QCM传感器的影响因素,针对生化溶液特性的分析,尤其是未知密度、粘度的溶液分析,本文推导了一种新的模型,并提出了一种新的检测方法。传统的方法需要同时测量QCM传感器的输出频率和等效电阻等参量,然后建立方程组求解。而本文提出的新方法,只需要测量QCM传感器输出的频率信息便可以直接计算出未知溶液的密度、粘度等相关信息。大大简化了测试过程,提高了测试的精度。
Quartz Crystal Microbalance (QCM) is an ultrasensitive mass sensing device andcan be used to detect tiny mass change at the precision of nanogram(109g). It hasmany advantages, e.g. results can be shown realtime and traced online, cost isinexpensive on average, and quantitative analysis results can be given as well. It alsoholds great potential and can be widely used to high precise measurement and analysisfields, such as the detection or evaluation of agricultural pesticide residues, food safety,heavy metal pollution, air pollution, water quality, medical diagnosis and treatment, etc.and it has been a hotspot in the field of biochemical detection and analysis.
     Among the widely-accepted models of QCM, the Sauerbrey Model can only beapplied to the gas phase, while the Kanasawa Model to the liquid phase. The KanasawaModel multiplies the viscosity and elasticity of the liquid together as one inseparableterm. The QCM-D Model was derived based on fluid mechanics and the theory of theVoigt, in which the quation sets are conducted to explore the viscoelastic mediumadsorption phenomenon. However, the model requires certain information about thesolution, such as the density and the viscosity, which causes certain limitation inapplication. Additionally, to get the energy dissipation change in the Voigt model,instantaneous measurement method are applied, the QCM sensor is excitated tooscillation with an impulse, and then the decay time (usually in10-6seconds) isrecorded. This approach is vulnerable to the tiny perturbation, which affects theaccuracy of analysis results greatly.
     Based on the theory of transmission line and acoustic theory, explicit expressionsof response Models of a QCM sensor with different contacting media are derived.Relations among the frequency shift of the QCM sensor as well as the change ofdissipation factor and the characteristics of thin film adsorption are also revealed in thispaper. Characteristics of several materials are analyzed and evaluated quantitatively byexperiments as well. The innovation works in this paper mainly include:
     1. Based on the transmission theory and load acoustic impedance theory, the BVD(Butterworth-Van Dyke) equivalent circuit of an unloaded QCM sensor is derived. Thecorrectness of the method is verified by making comparison to the classic constitutiveequation. The Sauerbrey Model, the Kanasawa Model and the Martin Model are deduced in detail with the method, which proves the validity of these models.
     2. As for viscoelastic medium, current data analysis method of the QCM sensor hascertain deficiency. To solve the problem, this paper conducted response modelaccurately in a simple way. At the same time, a new method of steady statemeasurement is given based on the model. By applying the transforming relationshipbetween the frequency and the dissipation factor, the new method enables to acquire thedissipation factor accurately, from the perspective of frequency measurement. The newway improved the accuracy of the data analysis of the QCM sensor.
     3. Respectively from the perspective of the gas phase and the liquid phase, thispaper derived the response model of the QCM sensor with single viscoelastic thin filmabsorbed, providing certain explicit expression. The conclusion drawn in this paper isexactly same to the QCM-D Model: in gas phase, the extra mass effect is introduced bythe viscoelastic modulus of viscoelastic thin film, while in liquid phase, missing masseffect is introduced by the viscoelastic modulus of viscoelastic thin film. It is revealedby experiments that the response model conducted in this paper has certain guidingsignificance to the analysis of viscoelastic thin film characteristics. It provides ananalysis method and a scientific basis of QCM for further research in the field ofbiochemistry.
     4. Influencing factors of the QCM sensors caused by the properties of solutions areexplored in depth. A new model and a new detection method are presented to makeanalysis on biochemistry solutions, especially for the solution with its density andviscosity unknown. Common methods work with the output frequency and theequivalent impedance measured simultaneously, establishing equation sets to be solved.Only the information of the QCM frequency is adopted by the method introduced, andthe density and the viscosity can be seperated directly. The process of measurement isgreatly simplified and the accuracy is improved at the same time.
引文
[1] V. M. Mecea. From Quartz Crystal Microbalance to Fundamental Principles of MassMeasurements[J].Analytical Letters,2005,38(5):753–767
    [2] C. Henry. Measuring the masses: Quartz crystal microbalance[J]. Anal. Chem,1996,68(19):625A–628A.
    [3] V. M. Mecea. A new method of measuring the mass sensitive area of quartz crystal resonators[J].J. Phys. E Sci. Instrum,1989,22(1):59–61
    [4] S. K. Vashist, P. Vashist. Recent Advances in Quartz Crystal Microbalance–Based Sensors[J].Journal of Sensors,2011,11(4):1-13
    [5] M. A. Cooper, V. T. Singleton. A survey of the2001to2005quartz crystal microbalancebiosensor literature: applications of acoustic physics to the analysis of biomolecularinteractions[J]. J Mol Recognit,2007,20(3):154-184
    [6] B. Becker, M. A. Cooper. A survey of the2006-2009quartz crystal microbalance biosensorliterature[J]. J Mol Recognit,2011,24(5):754-787
    [7] Speight RE, Cooper MA. A Survey of the2010Quartz Crystal Microbalance Literature[J]. J MolRecognit,2012,25(9):451-473
    [8] Molino PJ, Hodson OM, Quinn JF, et al. The quartz crystal microbalance: a new tool for theinvestigation of the bioadhesion of diatoms to surfaces of differing surface energies[J]. Langmuir,2008,24:6730-6737
    [9] G. Sauerbrey. Verwendung von schwingquarzen zur w gung dünner schichten und zurmikrow gung[J]. Zeitschrift Fuer Physik,1959,155(2):206-222
    [10]陈令新,关亚风,杨丙成.压电晶体传感器的研究进展.化学进展.2002,14(1):68-76
    [11] K. K. Kanazawa. Mechanical behaviour of films on the quartz microbalance[J]. FaradayDiscuss,1997,107:77–90
    [12] K. K. Kanazawa, J. G. Gordon. Frequency of a quartz microbalance in contact with liquid[J].Anal. Chem,1985,57(8):1770–1771
    [13] K. K. Kanazawa, J.G. Gordon. The oscillation frequency of a quartz resonator in contact with aliquid[J].Anal. Chim.Acta,1985,175:99–105
    [14] M. Rodahl, B. Kasemo. On the measurement of thin liquid overlayers with the quartz-crystalmicrobalance[J]. Sensors andActuatorsA: Physical,1996,54(1):448-456.
    [15] M. Rodahl, B. Kasemo. A simple setup to simultaneously measure the resonant frequency andthe absolute dissipation factor of a quartz crystal microbalance[J]. Review of ScientificInstruments.1996,67(9):3238–3241
    [16] M. Rodahl, F. H k, C. Fredriksson, et al. Simultaneous frequency and dissipation factor QCMmeasurements of biomolecular adsorption and cell adhesion[J]. Faraday Discuss,1997,107:229-246
    [17] F. H k, B. Kasemo. The QCM-D technique for probing biomacromolecular recognitionreactions[M]//Piezoelectric Sensors. Springer Berlin Heidelberg,2007:425-447.
    [18] M. V. Voinova, M. Rodahl, et al. Viscoelastic acoustic response of layered polymer films atfluid-solid interfaces: continuum mechanics approach[J], Physica Scripta1999,59(5):391-396
    [19] M. Rodahl, F. Hook, A. Krozer, B. Kasemo, et al. Quartz crystal microbalance setup forfrequency and Q‐factor measurements in gaseous and liquid environments[J]. Review ofScientific Instruments,1995,66(7):3924-3930.
    [20] W. G. Cady. Piezoelectricity: An introduction to the theory and applications ofelectromechanical phenomena in crystals, Dover Publication Inc. New York,2nd.1964
    [21] A. Arnau, T. Sogorb, Y. Jimenez. Circuit for continuous motional series resonant frequency andmotional resistance monitoring of quartz crystal resonators by parallel capacitancecompensation [J], Rev. Sci. Instr.2002,73(7):2724-2737
    [22] D. Johannsmann. Modeling of QCM data[J].Anal. Chem,2008,80:2-58
    [23] V. E. Bottom. Introduction to Quartz Crystal Unit Design. Van Nostrand Reinhold Toronto,1982
    [24]潘景程.石英晶体元件设计导论,宇航出版社,1987
    [25] Bai H, Shi G. Gas sensors based on conducting polymers[J]. Sensors-Basel,2007,7(3):267–307
    [26] M. Mascini, A. Macagnano, D. Monti, et al. Piezoelectric sensors for dioxins: A biomimeticapproach[J]. Biosens Bioelectron,2004,20(6):1203–1210
    [27] P. G.. Mineo, L. Livoti, M. Giannetto, et al. Very fast CO2response and hydrophobic propertiesof novel poly(ionic liquid)s[J]. J Mater Chem,2009,19(46):8861–8870
    [28] Xu XM, Cang HW, Li CZ, et al. Quartz crystal microbalance sensor array for the detection ofvolatile organic compounds[J]. Talanta,2009,78(3):711–716
    [29] C. D. Liang, C. Y. Yuan, R. J. Warmack, et al. Ionic liquids: Anew class of sensing materials fordetection of organic vapors based on the use of a quartz crystal microbalance[J]. Anal Chem,2002,74(9):2172–2176
    [30] Si S H, Fung Y S, Zhu D R. Improvement of piezoelectric crystal sensor for the detection oforganic vapors using nanocrystalline TiO2films[J]. Sensors and Actuators B: Chemical,2005,108(1):165-171.
    [31] Yuan YK, Xiao XL, Wang YS, et al. Quartz crystal microbalance with beta-cyclodextrin/TiO2composite films coupled with chemometrics for the simultaneous determination of urinary1-and2-naphthol[J]. SensorActuat B-Chem,2010,145:348–354
    [32] R. Shinar, G. J. Liu, M. D. Porter. Graphite microparticles as coatings for quartz crystalmicrobalance-based gas sensors[J].Analytical chemistry,2000,72(24):5981-5987.
    [33] Zhou X, Zhang J, Jiang T, et al. Humidity detection by nanostructured ZnO: A wireless quartzcrystal microbalance investigation[J]. Sensors and Actuators A: Physical,2007,135(1):209-214.
    [34] B. Ding, J. H. Kim, Y. Miyazaki, et al. Electrospun nanofibrous membranes coated quartzcrystal microbalance as gas sensor for NH3detection[J]. Sensor Actuat B-Chem,2004,101(3):373–380
    [35] H. P. Hsu, J. S. Shih. Multi-channel surface acoustic wave sensors based on principalcomponent analysis (PCA) and linear discriminate analysis (LDA) for organic vapors[J]. J ChinChem Soc,2006,53(4):815–824
    [36] H. Ogi, H. Nagai, Y. Fukunishi, et al.. Multichannel wireless electrodeless quartz crystalmicrobalance immunosensor[J].Anal Chem,2010,82(9):3957–3962
    [37] Jin XX, Huang Y, A. Mason, et al. Multichannel monolithic quartz crystal microbalance gassensor array[J].Anal Chem,2009,81(2):595–603
    [38] Xu XM, Cang HW, Li CZ, et al. Quartz crystal microbalance sensor array for the detection ofvolatile organic compounds[J]. Talanta,2009,78(3):711–716
    [39]何建安,付龙,黄沫等.石英晶体微天平的新进展.中国科学:化学.2011,41(11):1679-1698
    [40] K. Otto, H. Elwing, M. Hermansson. Effect of Ionic Strength on Initial Interactions ofEscherichia coli with Surfaces, Studied On-Line by a Novel Quartz Crystal MicrobalanceTechnique[J]. J. Bacteriol.1999,181(17):5210-5218
    [41] K. Yun, E. Kobatake, T. Haruyama, et al. Use of Quartz Crystal Microbalance to MonitorImmunoliposome–Antigen Interaction[J].Analytical chemistry,1998,70(2):260-264
    [42] Y. Mao, W. Wie, S. Zhang, G. Zeng. Monitoring, and estimation of kinetic data, by piezoelectricimpedance analysis, of the binding of the anticancer drug mitoxantrone to surface-immobilizedDNA[J].Analytical and bioanalytical chemistry,2002,373(4-5):215-221
    [43] Y. Liu, X. Yu, R. Zhao, D. H. Shangguan, Z. Bo. Real time kinetic analysis of the interactionbetween immunoglobulinG and histidine using quartz crystal microbalance biosensor insolution[J]. Biosens. Bioelectron.2003,18(11):1419-1427
    [44] T. Nornura, M. Iijima. Electrolytic determination of nanomolar concentrations of silver insolution with a piezoelectric quartz crystal[J].Anal ChimActa,1981,131:97-102
    [45] S. Bruckenstein, M. Shay. Experimental aspects of use of the quartz crystal microbalance insolution[J]. ElectrochimicaActa,1985,30(10):1295-1300
    [46] J. Krim, D. H. Solina, R. Chiarello. Nanotribology of a Kr monolayer: A quartz crystalmicrobalance study of atomic-scale friction[J]. Phys Rew Lett,1991,66(2):181-184
    [47] J. Krim, A. Widom. Damping of a crystal oscillator by an adsorbed monolayer and its relation tointerfacial viscosity[J]. Phys Rev B,1988,38(17):12184-12189
    [48] A. Dayo, W. Alnasrallah, J. Krim. Superconductivity dependent sliding friction[J]. Phys RevLett,1998,80(8):1690–1693
    [49] B. L. Mason, S. M. Winder, J. Krim. On the current status of quartz crystal microbalance studiesof superconductivity-dependent sliding friction[J]. Tribol Lett,2001(1-2),10:59–65
    [50] J. Krim. Quartz microbalance studies of superconductivity-dependent sliding friction[J]. ReplyPhys Rev Lett,1999,83(6):1262–1262
    [51] J. Krim. Surface science and the atomic-scale origins of friction: what once was old is newagain[J]. Surf Sci,2002,500(1):741–758
    [52] T. Mori, T. Ohtsuka, Y. Okahata. Kinetic analyses of bindings of Shiga-like toxin to clusteredand dispersed Gb3glyco-arrays on a quartz-crystal microbalance[J]. Langmuir,2010,26(17):14118-14125.
    [53] S. Takahashi, M. Iida, H. Furusawa, et al. Real-time monitoring of cell-free translation on aquartz-crystal microbalance[J]. Journal of the American Chemical Society,2009,131(26):9326-9332.
    [54] H. Furusawa, T. Ozeki, M. Morita, et al. Added mass effect on immobilizations of proteinson a27MHz quartz crystal microbalance in aqueous solution[J]. Analytical chemistry,2009,81(6):2268-2273.
    [55] R. L. Renner, J. E. Rutledge, P. Taborek. Quartz microbalance studies of superconductivitydependent sliding friction[J]. Phys Rev Lett,1999,83(6):1261–1261
    [56] C.A. Keller, B. Kasemo. Surface specific kinetics of lipid vesicle adsorption measured with aquartz crystal microbalance[J]. Biophys J,1998,75:1397-1402
    [57] Ralf Lucklum, Carsten Behling et al. Determination of complex shear modulous with thicknessshear mode resonator [J], JAppl Phys.D,1997,30(3):346-356
    [58] D. Johannsmann. Derivation of the shear compliance of thin films on quartz resonators fromcomparison of the frequency shifts on different harmonics: A perturbation analysis[J], J. applphys,2011,89(11):6356-6364
    [59] J. Lee, J. Jang, D. Akin, C. A. Savran et al. Real-time detection of airborne viruses on amass-sensitive device [J].Applied Physics Letters,2008,93(1):013901-013903
    [60] G. Z. Sauerbrey. Use of quartz vibration for weighing thin films on a microbalance[J], PhysicJournal,1959,155:206–212
    [61] K. K. Kanazawa. Mechanical behaviour of films on the quartz microbalance[J]. FaradayDiscuss,1997,107:77–90
    [62] W. P. Mason. Electromechanical Transducers and Wave Filters, Princeton, NJ, Van Nostrand,1948
    [63] W. P. Mason. Physical acoustics and the properties of solids[J]. The Journal of the AcousticalSociety ofAmerica,1956,28:1197
    [64] R. Krimholtz, D.A. Leedom, G. L. Matthaei. New Equivalent Circuit for ElementaryPiezoelectric Transducer[J]. Electron Letters, Electron Lett.1970,6(13):398-399
    [65] S. Sherrit, S. P. Leary, Y. Bar-Cohen. Comparison of the Mason and KLM Equivalent Circuitsfor Piezoelectric Resonators in the Thickness Mode.[C] Proceedings of the IEEE InternationalUltrasonics Symposium, held in Lake Tahoe, CA,1999,10:17-20
    [66] R.W. Cernosek, S.J. Martin, A.R. Hillman, et al. Comparison of the Lumped-Element andTransmission-Line models for the Thickness-Shear-Mode Quartz Resonator Sensors[J]. IEEETrans. on UF FC,1998,45(5):1399-1407
    [67] A. Ballato. Modeling piezoelectric and piezomagnetic devices and structures via equivalentnetworks[J], IEEE Trans. Ultrason. Ferroelect, Freq. Contr.2001,48(5):1189-1240
    [68] J. L. San Emeterio, A. Ramos, P. T. Sanz, et al. Modelling of multilayer piezoelectrictransducers for echographic applications I. Analysis in the frequency domain[J], MundoElectrónico,1988,186:85-90
    [69] J. L. San Emeterio, A. Ramos, P.T. Sanz, et al. Modelling of multilayer piezoelectric transducersfor echographic applications II. Equivalent circuits[J], Mundo Electrónico,1988,187:159-187
    [70] G. R. Lockwood, F.S. Foster. Modeling and optimization of high frequency ultrasoundtransducers[J], IEEE Trans. Ultrason. Ferroelec. Freq. Contr,1994,41(2):225-230
    [71] J.L. San Emeterio, A. Ramos, P.T. Sanz, et al. Evaluation of impedance matching schemes forpulse-echo ultrasonic piezoelectric transducers[J], Ferroelectrics,2002,273(1):297-302
    [72] J. F. Rosenbaum. Bulk acoustic wave theory and devices[M]. Boston:Artech House,1988
    [73]A.P. Borovikov, Instruments and Experimental Techniques,1976,19,223
    [74] S. J. Martin, V. E. Granstaff, C. F. Gregory. Characterization of a Quartz Crystal Microbalancewith Simultaneous Mass and Liquid Loading[J],Anal. Chem.1091,63(20),2272-2281
    [75] I. Helen. Bandey, S. J. Martin, R.W. Cernosek. Modeling the Responses of TSM Resonatorsunder Various Loading Conditions[J].Anal. Chem.,1999,71(11):2205–2214
    [76] S. J. Martin, K. O. Wessendorf, C. T. Gebert, et al. Measuring liquid properties with smooth-and textured-surface resonators. Proc IEEE Frequency Control Symp.(Salt Lake City, UT)1993,603–608
    [77] E. Victoria, S. J. Martin. Method for simultaneous measurement of mass loading and fluidproperty changes using a quartz crystal microbalance. US patent.1993, No.5201215
    [78] N. Doy, G.McHale, M. I. Newton. Separate Density and Viscosity Determination of RoomTemperature Ionic Liquids using Dual Quartz Crystal Microbalances. Proc IEEE FrequencyControl Symp.(Salt Lake City, UT)2009,287–290
    [79] Atsushi Itoh, Motoko Ichihashi. Separate measurement of the density and viscosity of a liquidusing a quartz crystal microbalance based on admittance analysis (QCM-A)[J]. Meas. Sci.Technol.2011,22(1):015402-015407
    [80] Guang Chen. Prototype micro sensers for the detection of pesticide residues on blueberries.Master thesis.2002
    [81] M. D. Ward, D. A. Buttry. In situ interfacial mass detection with piezoelectric transducers[J].Science,1990,249(4972):1000-1007
    [82] R. Schumacher. The Quartz Microbalance: A Novel Approach to the In-Situ Investigation ofInterfacial Phenomena at the Solid/Liquid Junction[J] Angew. Chem. Int. Ed. Engl.1990,29(4):329-343
    [83] A. R. Hillman, D. C. Loveday. M. J. J. Swam. Neutral species transport in electroactive polymerfilms[J]. Chem. Soc. Faraday Trans.1991,87:2047-2053
    [84] C.E. Reed, K.K. Kanazawa, et al. Physical description of a viscoelastically loaded AT-cut quartzresonator[J], J.Appl. Phys.1990,68(5):1993-2001
    [85] Antonio Arnau Vives(Ed), Piezoelectric and Acoustic Materials for Transducer Applications,Second Edition, springer,2008
    [86] H. F. Tiersten. Linear piezoelectric plate vibrations: Elements of the linear theory ofpiezoelectricity and the vibrations of piezoelectric plates[M]. Plenum Press,1969
    [87] E. K. Sittig. Transmission parameters of thickness-driven piezoelectric transducers arranged inmultilayer configurations[J]. IEEE Trans. Sonics Ultrason,1967,14(4):167-174
    [88] J. F. Rosenbaum. Bulk acoustic wave theory and devices[M]. Boston:Artech House,1988
    [89] A. D. Ballato. Transmission-line Analogs for Stocked Piezoelectric Crystal Devices[J].IEEE-FCS,1972,6:86-91
    [90] R. B.Ash. Complex Variables. NewYork, NY:Academic Press,1971
    [91] M. Rodahl, F. Hook, B. Kasemo. QCM operation in liquids: An explanation of measuredvariations in frequency and Q factor with liquid conductivity[J]. Anal Chem,1996,68[13]:2219–2227
    [92] Fu L, Chen XN, He JN, et al. Study viscoelasticity of ultrathin poly(oligo(ethylene glycol)methacrylate) brushes by a quartz crystal microbalance with dissipation[J]. Langmuir,2008,24[12]:6100–6106
    [93] F. Hook, B. Kasemo. The QCM-D technique for probing biomacromolecular recognitionreactions[M]//Piezoelectric Sensors. Springer Berlin Heidelberg,2007:425-447
    [94] E. J. Calvo, R. Etchenique, P. N. Barlett, K. Singhal, C. Santamaría. Quartz crystal impedancestudies at10MHz of viscoelastic liquids and films[J]. Faraday Discuss.1997,107:141-157
    [95] M. Rodahl, B. Kasemo. Frequency and dissipation-factor responses to localized liquid depositson a QCM electrode[J]. SensorActuat B-Chem,1996,37(1):111-116
    [96] J. Kankare, K. Loikas, M. Salomaki. Method for measuring the losses and loading of a quartzcrystal microbalance[J].Analytical Chemistry,2006,78(6):1875-1882
    [97] M. Rodahl, F. Hook, B. Kasemo. QCM operation in liquids: An explanation of measuredvariations in frequency and Q factor with liquid conductivity[J]. Anal. Chem.1996,68[13]:2219-2227
    [98]Applications of piezoelectric quartz crystal microbalances[M].Access Online via Elsevier,1984
    [99] Ralf Lucklum, Carsten Behling et al. Determination of complex shear modulous with thicknessshear mode resonator [J],JAppl Phys.D,1997,30(3):346-356
    [100] Ralf Lucklum, Peter. Hauptmann. The quartz crystal microbalance: mass sensitivity,viscoelasticity and acoustic amplification [J], Sensors andActuators B,2000,70(13):30-36
    [101] P. Horowitz et al. TheArt of Electronics,2nd. Cambridge University Press, New York,1989
    [102] A. Gupta, D. R. Akin. Single virus particle mass detection using microresonators withnanoscale thickness[J].Applied Physics Letters,2004,84(11):1976-1978
    [103] L. Johnson, A. K. Gupta, A. Ghafoor, D. R. Akin,. Bashir. Characterization of vaccinia virusparticles using microscale silicon cantilever resonators and atomic force microscopy[J],Sens.Actuators B,2006.115(1):189-197
    [104] M. V. Voinova, M.Jonson, B Kasemo.‘Missing mass’ effect in biosensor's QCMapplications[J]. Biosensors and Bioelectronics,2002,17(10):835-841
    [105] Han Zhuang, Heow Pueh Lee, Siak Piang Lim. Dynamic response of quartz crystalmicrobalances in contact with silicone oil droplets[C]//Fourth International Conference onExperimental Mechanics. International Society for Optics and Photonics,2009:75222X-75222X-8
    [106] Antonio Arnau1, Yeison Montagut, Jos′e V Garc′a, et al. A different point of view on thesensitivity of quartz crystal microbalance sensors[J]. Measurement Science and Technology,2009,20(12):124004
    [107] Y. Montagut, J. V. García, Y. Jiménez, et al. Validation of a phase-mass characterizationconcept and interface for acoustic biosensors[J]. Sensors,2011,11(5):4702-4720
    [108] Y. J. Montagut, J. V. García, Y. Jiménez et al. Frequency-shift vs phase-shift characterization ofin-liquid quartz crystal microbalance applications[J]. Review of Scientific Instruments,2011,82(6):064702-064702-14
    [109] C. Glenn. Komplin. Phase-frequency relationships in oscillating quartz microbalanceelectrodes: Determination of an optimal operating frequency for solution-phasemicrogravimetry[J]. Rew. Sci. Instrum,1995,66(2):1131-1135
    [110] K. Saha, F. Bender, A. Rasmusson, et al. Probing the viscoelasticity and mass of asurface-bound protein layer with an acoustic waveguide device[J]. Langmuir,2003,19(4):1304-1311
    [111] D. M. Dress, H. R. Shanks, R. A. Van Deusen, et al. Method and system for detecting materialusing piezoelectric resonators. US Patent1999,5,932-953
    [112]Analog Dialogue Company file,AD8302datasheet
    [113] J. Krim, D. H. Solina and R. Chiarello. Nanotribology of a Kr monolayer: A quartz-crystalmicrobalance study of atomic-scale friction[J]. Physical review letters,1991,66(2):181-184
    [114] J. Krim, E. T. Watts, J. Digel. Slippage of simple liquid films adsorbed on silver and goldsubstrates[J]. Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films,1990,8(4):3417-3420
    [115] E.T. Watts, J. Krim, A Widom. Experimental observation of interfacial slippage at theboundary of molecularly thin films with gold substrates[J]. Physical Review B,1990,41(6):3466-1472
    [116] J. Krim, A. Widom. Damping of a crystal oscillator by an adsorbed monolayer and its relationto interfacial viscosity[J]. Physical Review B,1988,38(17):12184-12189
    [117] J. Krim, R. P. Chiarello. Sliding friction measurements of molecularly thin films[J]. Journal ofVacuum Science&TechnologyA: Vacuum, Surfaces, and Films,1991,9(4):2566-2569
    [118] B. N. J. Persson. Sliding friction: physical principles and applications. Springer, Berlin,Heidelberg, NewYork,2000
    [119] C. Daly, J. Krim. Sliding friction of solid xenon monolayers and bilayers on Ag(111)[J].Phys.Rev.Lett.1996,76(5):803–806
    [120] L. Bruschi, A. Carlin, G. Mistura. Depinning of atomically thin Kr films on gold Depinning ofatomically thin Kr films on gold[J]. Physical review letters,2002,88(4):046105
    [121] M.V. Voinova, M. Jonson, B. Kasemo. On dissipation of quartz crystal microbalance as amechanical spectroscopy tool[J]. Spectroscopy:An International Journal,2004,18(4):537-544
    [122] R. Pit, H. Hervet, L. Leger. Direct experimental evidence of slip in hexadecane: solidinterfaces[J]. Physical Review Letters,2000,85(5):980-983
    [123] N. N. Churaev, V. D.Sobolev, A. N. Somov. Slippage of liquids over lyophobic solidsurfaces[J]. Journal of colloid and interface science,1984,97(2):574-581
    [124] J. Krim. Friction at the atomic scale[J]. ScientificAmerican,1996,275(4):74-80
    [125] C. Cottin-Bizonne, J. L. Barrat, L. Bocquet, E. Charlaix. Low-friction flows of liquid atnanopatterned interfaces [J]. Nature materials,2003,2(4):237-240
    [126] C. Cottin-Bizonne,B. Cross,A. Steinberger, E. Charlaix. Boundary slip on smooth hydrophobicsurfaces: Intrinsic effects and possible artifacts[J]. Physical review letters,2005,94(5):056102-056106
    [127] O. I. Vinogradova,G. E. Yakubov. Lubrication and the atomic force microscope[M]. Langmuir.2003,19:1227-1234
    [128] Zhu YX, Granick S. Rate-dependent slip of Newtonian liquid at smooth surfaces[J]. Physicalreview letters,2001,87(9):096105
    [129] V. S. J. Craig, C. Neto, D. R. M. Williams. Shear-Dependent Boundary Slip in an AqueousNewtonian Liquid [J]. Physical Review Letters,2001,87(5):054504
    [130] Thompson PA, Troian SM. A general boundary condition for liquid flow at solid surfaces[J].Nature,1997,389(6649):360-362
    [131] S. A. Gupta, H. D. Cochran, P. T. Cummings. Shear behavior of squalane and tetracosaneunder extreme confinement[J]. J Chem Phys.1997,107:10316
    [132] Neto C, Evans DR, Bonaccurso E, et al. Boundary slip in Newtonian liquids: A review ofexperimental studies [J]. Reports on Progress in Physics,2005,68(12):2859-2897
    [133] E. Lauga, M. P. Brenner, H. A. Stone, et al. Handbook of experimental fluid dynamics.Springer, Berlin Heidelberg, NewYork,2005
    [134] Ellis JS, Thompson M. Slip and coupling phenomena at the liquid–solid interface[J]. PhysicalChemistry Chemical Physics,2004,6(21):4928-4938
    [135] D. Lumma, A. Best, A. Gansen, et al. Flow profile near a wall measured by double-focusfluorescence crosscorrelation [J]. Physical review E,2003,67(5):056313-056323
    [136] J. L. Barrat, L. Bocquet. Influence of wetting properties on hydrodynamic boundary conditionsat a fluid/solid interface[J]. Faraday Discuss,1999,112:119-128
    [137] M. Urbakh, V. Tsionsky, E. Gileadi, et al. Probing the Solid/Liquid Interface with the QuartzCrystal Microbalance[M]//Piezoelectric Sensors. Springer Berlin Heidelberg,2007:111-149
    [138] M. Urbakh, L. Daikhin. Roughness efFect on the frequency of a quartz-crystal resonator incontact with a liquid[J]. Phys Rev B,1994,49(7):4866-4870
    [139] R. Schumacher, G. Borges, K. K. Kanazawa. The quartz microbalance: a sensitive tool toprobe surface reconstructions on gold electrodes in liquid[J]. Surface science,1985,163(1):L621-L626
    [140] R. Schumacher, J. G. Gordon, O. Melroy. Observation of morphological relaxation of copperand silver electrodes in solution using a quartz microbalance[J]. Journal of electroanalyticalchemistry and interfacial electrochemistry,1987,216(1):127-135
    [141] R. Beck, U. Pittermann, K. G. Weil. Impedance Analysis of Quartz Oscillators Contacted onOne Side With a Liquid[J]. Ber. Bunsenges. Phys. Chem.1988,92:1363-1368
    [142] R. Beck, U. Pittermann. Influence of the surface microstructure on the coupling between aquartz oscillator and a liquid[J]. Journal of the Electrochemical Society,1992,139(2):453-461
    [143] K. Rechendorff, M. B. Hovgaard, M. Foss, et al. Influence of surface roughness on quartzcrystal microbalance measurements in liquids [J]. Journal of applied physics,2007,101(11):114502-114502-7
    [144] M. Müser, M. Urbakh, M. O. Robbins. Statistical mechanics of static and low-velocity kineticfriction[J].Advances in Chemical Physics,2003,126:187-272
    [145] B. Martin, H. Hager. Velocity profile on quartz crystals oscillating in liquids[J]. Journal ofApplied Physics,1989,65(7):2630-2635
    [146] S. Herts, L. Wimmer, E. Benes, J.Acoust. Soc.Am.1985,78:1337
    [147] K. K. Kanazawa. Mechanical behaviour of films on the quartz microbalance[J]. FaradayDiscuss.1997,107:77-90
    [148] A. Ballato. Proceedings of the Acoustical Society of America and the International CongressonAcoustic,1988, Vol. II,735–736
    [149] B. Borovski, B. L. Mason, J. Krim. Scanning tunneling microscope measurements of theamplitude of vibration of a quartz crystal oscillator[J]. Journal of Applied Physics,2000,88(7):4017-4021
    [150] John R. Vig. Quartz Crystal Resonators and Oscillators(For Frequency Control and TimingApplications-ATutorial), January2007
    [151] Erica Pensini, E.Brent, Christopher M. Forces of interactions between iron and aluminumsilicates: Effect of water chemistry and polymer coatings[J].Journal of Colloid and InterfaceScience,2013,411(1):8–15
    [152] Duncan G. G. McMillan, Sophie J. Marritt, et al. Protein–Protein Interaction Regulates theDirection of Catalysis and Electron Transfer in a Redox Enzyme Complex[J]. J. Am. Chem. Soc.,2013,135(28):10550–10556
    [153] Nicoletta Giamblanco,Elena Martines, and Giovanni Marletta. Laminin Adsorption onNanostructures: Switching the Molecular Orientation by Local Curvature Changes[J]. Langmuir,2013,29(26):8335–8342
    [154] Gerald Findenig, Rupert Kargl, Karin Stana-Kleinschek, et al. Interaction and Structure inPolyelectrolyte/Clay Multilayers:AQCM-D Study[J]. Langmuir,2013,29(27):8544–8553
    [155] Stine H. Kristensen, Gitte A. Pedersen, et al. Protein Adsorption at Nanopatterned SurfacesStudied by Quartz Crystal Microbalance with Dissipation and Surface Plasmon Resonance[J]. J.Phys. Chem. B,2013,117(36):10376–10383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700