用户名: 密码: 验证码:
氮杂芴类有机/聚合物的设计、合成及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1987年,邓青云等首次报道了有机发光二极管器件,此后,因有机发光二极管具有重量轻、视角广、大面积柔性显示、响应速度快等优点,在平板显示和固体照明领域有机发光二极管备受瞩目。目前,主要有两种方式调控有机发光材料性能:一种是通过结构调控,结构调控是我们课题组1998年在美国化学会志上提出的p-n嵌段理论,即通过替换不同结构的化合物来调整其光电性能,这是目前主流的调控方法;第二种就是通过超分子弱作用,如氢键、π-π堆积作用、配位作用等来调节化合物的光电性能。我们尝试将这两种调控方式有机结合起来,以期获得性能更为优异的有机/聚合物材料。在本论文中,我们设计并合成了一系列基于氮杂芴类的有机小分子和聚合物,并通过超分子作用实现了对其光电性能的调控。
     1.发现一种简便合成氮杂芴中间体的方法,构筑了一系列D-A型氮杂芴酮半导体,同时研究它们的单分子自组装行为
     我们发现一种简便、快捷合成2,7-二溴-4,5-氮杂芴酮的方法,并对其机理进行初步研究。在此基础上,我们通过Stille偶联反应制备得到一系列D-A氮杂芴类衍生物,这些D-A氮杂芴类衍生物均表现出溶剂依赖荧光的特性。通过对这些化合物单分子自组装行为的研究,发现烷基链在构建有序结构中起着至关重要的作用,化合物6具有两个烷基链,这些烷基链相互穿插构筑了高度有序的结构。我们选择化合物6尝试制备了OFET器件。
     2.通过超分子作用调控氮杂芴类聚合物的光电性能
     芴基团上的两个碳原子被氮原子取代后形成了氮杂芴基团,因此氮杂芴基团和芴的空间拓扑结构极为相似。将氮杂芴引入到聚芴体系中可以形成一种极佳的模板去研究超分子共轭聚合物的构-效关系。基于此理念,我们合成一系列氮杂芴基的寡聚物和聚合物。这些氮杂芴基的寡聚物和聚合物都具有较高的热稳定性,氮杂芴寡聚物具有溶剂依赖荧光特性;氮杂芴基聚合物对质子酸具有极强的响应能力,其吸收光谱可红移40-60nm,并且氮杂芴基聚合物的光电性能还可以通过与金属离子的相互作用来调控。氮杂芴类聚合物是一类潜在的可应用于薄膜器件的超分子聚合物材料。
     3.氮杂芴类聚合物的自组装和通过超分子作用实现白光器件
     为了系统研究超分子自组装性能,我们将氮杂芴引入聚芴体系中形成氮杂芴聚合物。研究发现,由于氮杂芴聚合物中存在C-H…N超分子作用,在光谱、聚合物凝胶、水分散的纳米颗粒等方面与聚芴的性能差异很大。氮杂芴聚合物纳米颗粒在水溶液对质子酸具有很强的响应能力,说明它可能用于检测生物体内的pH值变化。由于存在着很强的氢键诱导的能量转移,氮杂芴聚合物作为发光层制备的OLED(?)件呈现出白光。
     4.利用超分子作用实现溶液加工的白光器件
     本部分设计、合成了两种结构相近的咔唑基氮杂芴衍生物(2a和2b),并以其为模板系统研究了超分子作用对于光电性能的调控。以2a作为发光层制备得到一种具有纯正白光的OLED器件,并在不同的驱动电压下色纯度基本保持不变。通过光谱的系统研究,我们认为白光是化合物2a自身的蓝光发射和其excimer黄光发射共同作用的结果。
Organic light-emitting diodes (OLEDs) have attracted increasing attentions for their application as flat-panel displays and solid-state lighting technology since the original works first reported by Tang and co-workers, due to their light weights, wide-viewing angles, high contrast, wide and cheap raw material source, self-emission properties, flexible large-area, fast response times, and so on. Many phosphorescent and fluorescent emitters based devices have been developed to meet the demands of full-color displays. The main approaches to adjust the photoelectric properties are classified into two general categories:one method to adjust the optoelectric properties is based on the modulation of different chemical structures, which was first reported by our group. The other promising approach that tunes the above properties is using supramolecular interactions, such as hydrogen bonding, π-π stacking interactions, coordination role. We try to combine these two different methods, in order to obtain more excellent performance of Organic/Polymeric Materials. In this paper, we designed and synthesized a series of diazafluorene-based organic molecules and polymers, and tuned their optoelectric properties by using supramolecular interactions.
     1. The synthesis, properties and self-assembly of diazafluorene-based organic semiconductors
     A mild and effective method to prepare2,7-dibromo-4,5-diazafluoren-9-one (3) has been described involving tandem oxidation and rearrangement reactions. Diazafluorenone-based donor-acceptor molecules via stille coupling reactions exhibit solvent-dependent fluorescence and excellent selfassembly behaviors at the solideliquid interface according to the characterization of scanning tunneling microscopy (STM). The monolayer of compounds6is a large uniform and highly ordered assembly structure. The van der Waals forces play a significant role in the formation of the molecular monolayers. Based on that, a simple OFET device was fabricated.
     2. Synthesis and Characterization of Diazafluorene-based Oligofluorenes and Polyfluorenes
     4,5-Diazafluorene (DAF) has the similar configuration with fluorene unit except for the replaction of two carbon atoms with nitrogen atoms, offering an ideal model of supramolecular conjugated polymers to investigate the structure-property relationship. Herein, a series of DAF-based oligofluorenes and polyfluorenes, including NFF, NF2F, F2NF, PFO-NO, PFO-N5, PFO-N15and PFO-N50, have been synthesized by Suzuki and/or Yamamato polymerization. The DAF can cause to reduce lowest unoccupied molecular orbital (LUMO) levels with the increasement content. All dioctyldiazafluorene-based copolymers show a improved solubility, high quantum yields, and good thermal stability. The diazafluorenone (DAFone)-based oligomers exhibit solvent-dependent fluorescence and DAF-based copolymers show optical response with a large red-shift (ca.40-60nm) of the absorption peakwhen they were protonated with trifluoroacetic acid. Their photoluminescent properties couldalso obviously changed with the introduction of metal ions. DAF are useful building blocks for suprmaolecular polymer semiconductors and thin films.
     3. A Diazafluorene-containing Polyfluorene:Synthesis, Supramolecular Assembly and Their Optoelectronic Properties
     Nitrogen heteroatomic fluorenes, diazafluorenes (DAFs), was incorporated into poly (9,9-dioctylfluorene)(PF8) to systematically investigate the effect of nitrogen heteroatomic substitution on supramolecular self-assembly property. As a result, the optical property of typical self-assembled aggregates, conjugated polymer gels (CPGs) and water-dispersible nanoparticles (CPNs), were significantly different to PF8for the C-H…N supramolecular interactions. Optical response of water-dispersible CPNs to proton acid provided new platform to explore theses nitrogen heterocyclic CPs in water or bio-system. Finally, for the stronger hydrogen-bonded-assisted energy transfer, the first DAF-containing polymer white light-emitting diode (WPLED) with CIE (0.26,0.30) was fabricated.
     4. Solution-processible Diazafluorene-based Oligomers as a single emitting-component for white electroluminescence
     A pure white organic light-emitting diode (WOLED) with a simple device architecture of indium tin oxide (ITO)/poly-(3,4-ethylenedioxythiophene):poly-(styrenesuphonic acid)(PEDOT:PSS)/compound2a/1,3,5-tri(N-phenylbenzimidazol-2-yl)benzene (TPBI)/LiF/Al was realized by using a single small molecule, compound2a as the light-emitting material. The device emits almost pure white light with stable CIE coordinates under different driving voltages. The white emission comes from the combination of the blue emission originating from compound2a and the long-wavelength orange emission originating from the excimer of compound2a.
引文
[1]INGLETT G E, SMITH G F. The formation of a new nitrogen heterocyclic ring sys'em by the loss of carbon monoxide from 1,10-phenanthroline-5,6-quinonel [J]. Journal of the American Chemical Society,1950,72 (2):842-844.
    [2]ECKHARD I, SUMMERS L.4,5-diazafluoren-9-one from the oxidation of 1,10-phenanthroline by permanganate [J]. Australian Journal of Chemistry,1973,26 (12): 2727-2728.
    [3]PLATER M J, KEMP S, LATTMANN E. Heterocyclic free radicals. Part 1.4,5-diazafluorene derivatives of koelsch's free radical:An epr and metal-ion complexation study [J]. Journal of the Chemical Society-Perkin Transactions 1,2000, (6):971-979.
    [4]THUMMEL R P, LEFOULON F. Polyaza cavity shaped molecules.2. Annelated derivatives of 2,2'-biquino'.ine and the corresponding n-oxides [J]. The Journal of Organic Chemistry,1985,50 (5): 666-670.
    [5]SYKORA M, KINCAID J R. Synthetic manipulation of excited-state decay pathways in a series of ruthenium(ii) complexes containing bipyrazine and substituted bipyridine ligands [J]. Inorganic Chemistry,1995,34 (23):5852-5856.
    [6]WEI J, WANG K Z, HUANG C H et al. Strongly fluorescent lb film of a ternary europium complex [J]. Journal of Rare Earths,1995,13 (4):241-245.
    [7]BERNHARD S, BELSER P. Synthesis of new rigid, bridging ligands for the study of energy and electron-transfer reactions [J]. Synthesis-Stuttgart,1996, (2):192-195.
    [8]BERNHARD S, BELSER P. Preparation of 1,1,3,3-tetramethylcyclobutane-bridged ligands for the study of energy-and electron-transfer reactions [J]. Synthetic Communications,1996,26 (19): 3559-3563.
    [9]TANG R K, QIAN X P, TAI Z H et al. Crystal suracture of 9-(hexadecyl)imino-4,5-diazafluorene [J]. Chemistry Letters,1996, (5):353-354.
    [10]TANG R K, TAI Z H, CHAO Y Q. Selective crystallization between cuso4 center dot 5h(2)o and Na2SO4 center dot 7H2O under a monolayer [J]. Journal of the Chemical Society-Dalton Transactions,1996, (23):4439-4441.
    [11]TANG R K, TAI Z H, CHAO Y Q. A selective crystal growth under a monolayer [J]. Chemistry Letters,1996,(7):535-536.
    [12]WANG K Z, GAO L H, HUANG C H et al. Langmuir-blodgett films of a series of new fluorescent ternary europium(ⅲ) complexes [J]. Solid State Communications,1996,98 (12): 1075-1079.
    [13]WARRENER R N, FERREIRA A B B, SCHULTZ A C et al. Space-separatee 1,10-phenan thro line,4,5-diazafluorene, or 3,6-di(2-pyridyl)pyridazine units as ligands in diruthenium complexes:Preliminary studies of metal-metal interactions [J]. Angewandte Chemie-International Edition in English,1996,35 (21):2485-2487.
    [14]WARRENER R N, FERREIRA A B B, TIEKINK E R T. The preparation of rigidly-linked 4,5-diazafluorenes:New molrac bidentate ligand systems [J]. Tetrahedron Letters,1996,37 (13): 2161-2164.
    [15]ONO K, YANASE T, OHKITA M et al. Synthesis and properties of 9,9'-diaryl-4,5-diazafluorenes. A new type of electron-transporting and hole-blocking material in el device [J]. Chemistry Letters,2004,33 (3):276-277.
    [16]LIU Z, WEN F S, LI W L. Synthesis and electroluminescence properties of europium(ⅲ) complexes with new second ligands [J]. Thin Solid Films,2005,478 (1-2):265-270.
    [17]WONG K T, CHEN R T, FANG F C et al.4,5-diazatluorene-incorporated ter(9,9-diarylfluorene):A novel molecular doping strategy for improving the electron injection property of a highly efficient oled blue emitter [J]. Organic Letters,2005,7(10):1979-1982.
    [18]DIETRICK-BUCHECKER C O, MARN OT P A, SAUVAGE J P. Direct synthesis of disubstituted aromatic polyimine chelates [Jj. Tetrahedron Letters,1982,23 (50):5291-5294.
    [19]ONO K, NAGANO K, SUTO M et al. Synthesis and electron-transporting ability of 3,6-diaryl-4,5-diazafluorenes modified using direct arylation [J]. HETEROCYCLES,2007,71 (4): 799-804.
    [20]RIKLIN M, VON ZELEWSKY A, BASHALL A et al. Synthesis, structure and chemistry of a twisted olefinic bis-didentate proligand:5,5'-bi-5h-cyclopenta 2,1 b:3,4-b'dipyridinylidenc [J]. Helvetica Chimica Acta,1999,82 (10):1666-1680.
    [21]MLOCHOWSKI J, SZULC Z. Electrophilic substitution in the azafluorenone systems-bromination of azafluorenones [J]. Journal Fur Praktische Chemie,1980,322 (6):971-980.
    [22]ZHAO J F, CHEN L, SUN P J et al. One-pot synthesis of 2-bromo-4,5-diazafluoren-9-one via a tandem oxidation bromination-rearrangement of phenanthrolinc and its hammer-shaped donor-acceptor organic semiconductors [J]. Tetrahedron,2011, 67(10):1977-1982.
    [23]LI W-J, WU H-M, LI Y-B et al. Facile synthesis and self-assembly of diazafluorenone-based p-n (donor-acceptor) organic semiconductors [J]. Tetrahedron,2012,68 (39):8216-8221.
    [24]BALDO M A, LAMANSKY S, BURROWS P E et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Applied Physics Letters,1999,75 (1): 4-6.
    [25]WONG K-T, CHIEN Y-Y, CHEN R-T et al. Ter(9,9-diarylfluorene)s:Highly efficient blue emitter with promising electrochemical and thermal stability [J]. Journal of the American Chemical Society,2002,124(39):11576-11577.
    [26]WONG K-T, HWU T-Y, BALAIAH A et al. Modulation of physical properties of ter(9,9-ditolylfluorene) by backbone-embedded heteroarenes [J]. Organic Letters,2006,8 (7): 1415-1413.
    [27]CHI C-C, CHIANG C-L, LIU S-W et al. Achieving high-efficiency non-doped blue organic light-emitting diodes:Charge-balance control of bipolar blue fluorescent materials with reduced hole-mobility [J]. Journal of Materials Chemistry,2009,19 (31):5561.
    [28]HUNG W Y, WANG T C, CHIU H C et al. A spiro-configured ambipolar host material for impressively efficient single-layer green electrophosphorescent devices [J]. Phys Chem Chem Phys, 2010,72(36):10685-7.
    [29]CHEN H-F, WONG K-T, LIU Y-H et al. Bis(diphenylamino)-9,9'-spirobifluorene functionalized ir(iii) complex:A conceptual design en route to a three-in-one system possessing emitting core and electron and hole transport peripherals [J]. Journal of Materials Chemistry,2011, 21 (3):768.
    [30]CHEN H-F, WANG T-C, HUNG W-Y et al. Spiro-configured bipolar hosts incorporating 4,5-diazafluroene as the electron transport moiety for highly efficient red and green phosphorescent oleds [J]. Journal of Materials Chemistry,2012,22 (19):9658-9664.
    [31]ZHENG C-J, Y E J, LO M-F et al. New ambipolar hosts based on carbazole and 4,5-diazafluorene units for highly efficient blue phosphorescent oleds with low efficiency roll-off [J]. Chemistry of Materials,2012,24 (4):643-650.
    [32]WONG K-T, CHEN H-F, FANG F-C. Novel spiro-configured pet chromophores incorporating 4,5-diazafluorene moiety as an electron acceptor [J]. Organic Letters,2006,8 (16):3501-3504.
    [33]OREGAN B, GRATZEL M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal tio2 films [J]. Nature,1991,353 (6346):737-740.
    [34]NAZEERUDDIN M K, DE ANGELIS F, FANTACCI S et al. Combined experimental and dft-tddft computational study of photoelectrochemical cell ruthenium sensitizers [J]. Journal of the American Chemical Society,2005,127(48):16835-16847.
    [35]ONO K, TANAKA H, SHIOZAWA M et al. A dye-sensitized solar cell using a red ruthenium(ii) complex with 9,9-bis(4-methoxyphenyl)-4,5-diazafluorene [J]. Chemistry Letters,2007,36 (7): 892-893.
    [36]J. EPPLEY H, M. LATO S, M. ZALESKI J et al. Transition metal kinamycin model as a DNA photocleaver for hypoxic environments:Bis(9-diazo-4,5-diazafluorene)copper(ii) nitrate[dagger] [J]. Chemical Communications,1999, (23):2405-2406.
    [37]LIU H-B, LI B-L, WANG H-Q et al. Crystal structure and luminescence of [eu(tta)3-daf]·0.5c7h8 complex excited by visible light [J]. Chinese Journal of Chemistry,2001,19 (8):766-771.
    [38]HENDERSON L I, FRONCZEK F R, CHERRY W R. Selective perturbation of ligand field excited states in polypyridine ruthenium(ii) complexes [J]. Journal of the American Chemical Society,1984,106(20):5876-5879.
    [39]WANG Y, PEREZ W J, ZHENG G Y et al. Preparation, purification, and characterization of binuclear ruthenium(ii) complexes:Bridging ligands based on diazafluorenes [J]. Inorganic Chemistry,1998,37 (9):2227-2234.
    [40]HOU Y, LONG G, SUI D et al. Different donor-acceptor structures of dithiafulvalene-fused semiconducting polymers with different band gaps [J]. Chemical Communications,2011,47 (37): 10401-10403.
    [41]LI W-J, LIU B, QIAN Y et al. Synthesis and characterization of diazafluorene-based oligofluorenes and polyfluorene [J]. Polymer Chemistry,2013,4 (6):1796-1802.
    [1]YU W L, MENG H, PEI J et al. Tuning redox behavior and emissive wavelength of conjugated polymers by p-n diblock structures [J]. Journal of the American Chemical Society,1998,120 (45): 11808-11809.
    [2]MATIVETSKY J M, KASTLER M, SAVAGE R C et al. Self-assembly of a donor-acceptor dyad across multiple length scales:Functional architectures for organic electronics [J]. Advanced Functional Materials,2009,19 (15):2486-2494.
    [3]HUANG W, MENG H, YU W-L et al. A new blue light-emitting polymer containing substituted thiophene and an arylene-1,3,4-oxadiazole moiety [J]. Advanced Materials,1998,10 (8):593-596.
    [4]WALKER B, KIM C, NGUYEN T-Q. Small molecule solution-processed bulk heterojunction solar cells [J]. Chemistry of Materials,2010,23 (3):470-482.
    [5]KIVALA M, DIEDERICH F O. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores [J]. Accounts of Chemical Research,2008,42 (2):235-248.
    [6]SUN Y, WELCH G C, LEONG W L et al. Solution-processed small-molecule solar cells with 6.7%efficiency [J]. Nat Mater,2012,11(1):44-48.
    [7]KIM D H, PARK Y D, JANG Y et al. Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors [J]. Advanced Functional Materials,2005,15 (1):77-82.
    [8]HOOFMAN R J O M D H, M P.; SIEBBELES, L D. A.; WARMAN,J M.;. Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene) [J]. Nature,1998,392 (6671):54-56.
    [9]BUMM L A, ARNOLD J J, CYGAN M T et al. Are single molecular wires conducting? [J]. Science,1996,271(5256):1705-1707.
    [10]ZHAO J F, CHEN L, SUN P J et al. One-pot synthesis of 2-bromo-4,5-diazafluoren-9-one via a tandem oxidation bromination-rearrangement of phenanthroline and iis hammer-shaped donor-acceptor organic semiconductors [J]. Tetrahedron,2011,67 (10):1977-1982.
    [11]DIETRICH-BUCHECKER C, JIMENEZ M C, SAUVAGE J P. Selective and efficient synthesis of di-, tri-and tetrasubstituted 1,10-phenanthrolines [J]. Tetrahedron Letters,1999,40 (17): 3395-3396.
    [12]MLOCHOWSKI J, SZULC Z. Electrophilic substitution in the azafluorenone systems- bromination of azafluorenones [J]. Journal Fur Praktische Chemie,1980,322 (6):971-980.
    [13]TAMAYO A B, WALKER B, NGUYEN* T-Q. A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells [J]. The Journal of Physical Chemistry C,2008,112 (30):11545-11551.
    [14]GYARFAS B J, WIGGINS B, ZOSEL M et al. Supramolecular structures of coronene and alkane acids at the au(111)-solution interface:A scanning tunneling microscopy study [J]. Langmuir,2004,21 (3):919-923.
    [15]LAZZARONI R. Electronic structure of molecular van der waals complexes with benzene: Implications for the contrast in scanning tunneling microscopy of molecular adsorbates on graphite [J]. J. Chem. Phys.,1997,107(1):99-105.
    [16]KIKKAWA Y, KOYAMA E, TSUZUKI S et al. Odd-even effect and metal induced structural convergence in self-assembled monolayers of bipyridine derivatives [J]. Chemical Communications, 2007, (13):1343-1345.
    [17]PORZIO W, DESTRI S, GIOVANELLA U et al. Fluorenone-thiophene derivative for organic field effect transistors:A combined structural, morphological and electrical study [J]. Thin Solid Films,2005,492 (1-2):212-220.
    [18]LINARES M, SCIFO L, DEMADRILLE R et al. Two-dimensional self-assemblies of thiophene-fluorenone conjugated oligomers on graphite:A joint stm and molecular modeling study [J]. The Journal of Physical Chemistry C,2008,112 (17):6850-6859.
    [1]BURROUGHES J, BRADLEY D, BROWN A et al. Light-emitting diodes based on conjugated polymers [J]. Nature,1990,347 (6293):539-541.
    [2]FRIEND R, GYMER R, HOLMES A et al. Electroluminescence in conjugated polymers [J]. Nature,1999,397 (6715):121-128.
    [3]GRIMSDALE A C, LEOK CHAN K, MARTIN R E et al. Synthesis of light-emitting conjugated-pelymers-for-applications in electroluminescent devices [J]. Chemical Reviews,2009, 109 (3):897-1091.
    [4]DAI L, WINKLER B, DONG L et al. Conjugated polymers for light-emitting applications [J]. Advanced Materials,2001,13 (12-13):915-925.
    [5]SCHERF U. LIST E J W. Semiconducting polyfluorenes—towards reliable structure-property relationships [J]. Advanced Materials,2002,14 (7):477-487.
    [6]PEREPICHKA I F, PEREPICHKA D F, MENG H et al. Light-emitting polythiophenes [J]. Advanced Materials,2005,17(19):2281-2305.
    [7]HU B, WU Y. Tuning magnetoresistance between positive and negative values in organic semiconductors [J]. Nature Materials,2007,6 (12):985-991.
    [8]AKCELRUD L. Electroluminescent polymers [J]. Progress in Polymer Science,2003,28 (6): 875-962.
    [9]XIE L-H, YIN C-R, LAI W-Y et al. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics [J]. Progress in Polymer Science,2012,37 (9): 1192-1264.
    [10]YASUDA T, YAMAMOTO T. Synthesis and characterization of new luminescent 1,10-phenanthroline-and pyridine-containing π-conjugated polymers. Their optical response to protic acid, mn+, and solvents [J]. Macromolecules,2003,36 (20):7513-7519.
    [11]WANG B, WASIELEWSKI M R. Design and synthesis of metal ion-recognition-induced conjugated polymers:An approach to metal ion sensory materials [J]. Journal of the American Chemical Society,1997,119(1):12-21.
    [12]KIMURA M, HORAI T, HANABUSA K et al. Fluorescence chemosensor for metal ions using conjugated polymers [J]. Advanced Materials,1998,10 (6):459-462.
    [13]LIU B, YU W-L, PEI J et al. Design and synthesis of bipyridyl-containing conjugated polymers: Effects of polymer rigidity on metal ion sensing [J]. Macromolecules,2001,34 (23):7932-7940.
    [14]WONG K T, CHEN R T, FANG F C et al.4,5-diazafluorene-incorporated ter(9,9-diarylfluorene):A novel molecular doping strategy for improving the electron injection property of a highly efficient oled blue emitter, (vol 7, pg 1982,2005) [J]. Organic Letters,2005,7 (26):5925-5925.
    [15]WONG K-T, CHEN H-F, FANG F-C. Novel spiro-configured pet chromophores incorporating 4,5-diazafluorene moiety as an electron acceptor [J]. Organic Letters,2006,8 (16):3501-3504.
    [16]SONAR P, SINGH S P, LECLERE P et al. Synthesis, characterization and comparative study of thiophene-benzothiadiazole based donor-acceptor-donor (d-a-d) materials [J]. Journal of Materials Chemistry,2009,19 (20):3228-3237.
    [17]WANG Q, YUEN M C-W, LU G-L et al. Synthesis of 9,9-dialkyl-4,5-diazafluorene derivatives and their structure-activity relationships toward human carcinoma cell lines [J]. ChemMedChem, 2010,5 (4):559-566.
    [18]HOU Y, LONG G, SUI D et al. Different donor-acceptor structures of dithiafulvalene-fused semiconducting polymers with different band gaps [J]. Chemical Communications,2011,47 (37): 10401-10403.
    [19]ZHAO J F, CHEN L, SUN P J et al. One-pot synthesis of 2-bromo-4,5-diazafluoren-9-one via a tandem oxidation bromination-rearrangement of phenanthroline and its hammer-shaped donor-acceptor organic semiconductors [J]. Tetrahedron,2011,67 (10):1977-1982.
    [20]LI W-J, WU H-M, LI Y-B et al. Facile synthesis and self-assembly of diazafluorenone-based p-n (donor-acceptor) organic semiconductors [J]. Tetrahedron,2012,68 (39):8216-8221.
    [21]JANIETZ S, BRADLEY D D C, GRELL M et al. Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene) [J]. Applied Physics Letters, 1998,73 (17):2453-2455.
    [22]TAMAYO A B, WALKER B, NGUYEN* T-Q. A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells [J]. The Journal of Physical Chemistry C,2008,112 (30):11545-11551.
    [23]CHEN Y, LI F, BO Z. Facile synthesis of 3,8-dibromo-substituted phenanthridine derivatives and their conjugated polymers [J]. Macromolecules,2010,43 (3):1349-1355.
    [1]LIU B, YU W-L, LAI Y-H et al. Blue-light-emitting fluorene-based polymers with tunable electronic properties [J]. Chemistry of Materials,2001,13 (6):1984-1991.
    [2]LIU B, YU W-L, PEI J et al. Design and synthesis of bipyridyl-containing conjugated polymers: Effects of polymer rigidity on metal ion sensing [J]. Macromolecules,2001,34 (23):7932-7940.
    [3]HANCOCK J M, JENEKHE S A. Unusual protonation-induced continuous tunability of optical properties and electroluminescence of a π-conjugated heterocyclic oligomer [J]. Macromolecules, 2008,41(19):6864-6867.
    [4]CHEN Y, LI F, BO Z. Facile synthesis of 3,8-dibromo-substituted phenanthridine derivatives and their conjugated polymers [J]. Macromolecules,2010,43 (3):1349-1355.
    [5]WELCH G C, COFFIN R, PEET J et al. Band gap control in conjugated oligomers via lewis acids [J]. Journal of the American Chemical Society,2009,131 (31):10802-10803.
    [6]WELCH G C, BAZAN G C. Lewis acid adducts of narrow band gap conjugated polymers [J]. Journal of the American Chemical Society,2011,133 (12):4632-4644.
    [7]HAYASHI S, ASANO A, KOIZUMI T. Modification of pyridine-based conjugated polymer films via lewis acid:Halochromism, characterization and macroscopic gradation patterning [J]. Polymer Chemistry,2011,2 (12):2764-2766.
    [8]ZALAR P, HENSON Z B, WELCH G C et al. Color tuning in polymer light-emitting diodes with lewis acids [J]. Angewandte Chemie,2012,124 (30):7613-7616.
    [9]HAYASHI S, ASANO A, KOIZUMI T. Trifluoroborate-modification of both pyridine and n-alkyldiarylamine-based [small pi]-conjugated polymer films:Tuning the electronic communication and the mean conjugated length based on two types of nitrogen in the conjugated main segments [J]. RSC Advances,2013.
    [10]TSIERKEZOS N G, DIEFENBACH M, ROITHOV J et al. Competitive complexation of gaseous mnii by 1,10-phenanthroline,2,2'-bipyridine, and 4,5-diazafluorene [J]. Inorganic Chemistry,2005,44 (14):4969-4978.
    [11]WANG Y, PEREZ W J, ZHENG G Y et al. Preparation, purification, and characterization of binuclear ruthenium(ii) complexes:Bridging ligands based on diazafluorenes [J]. Inorganic Chemistry,1998,37(9):2227-2234.
    [12]LI W-J, LIU B, QIAN Y et al. Synthesis and characterization of diazafluorene-based oligofluorenes and polyfluorene [J]. Polymer Chemistry,2013,4 (6):1796-1802.
    [13]LIN Z-Q, SHI N-E, LI Y-B et al. Preparation and characterization of polyfluorene-based supramolecular π-conjugated polymer gels [J]. The Journal of Physical Chemistry C,2011,115 (11): 4418-4424.
    [14]GRELL M, BRADLEY D D, INBASEKARAN M et al. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications [J]. Advanced Materials, 1997,9 (10):798-802.
    [15]KULKARNI A P, ZHU Y, JENEKHE S A. Quinoxaline-containing polyfluorenes:Synthesis, photophysics, and stable blue electroluminescence [J]. Macromolecules,2005,38 (5):1553-1563.
    [16]WHITEHEAD K, GRELL M, BRADLEY D et al. Highly polarized blue electroluminescence from homogeneously aligned films of poly (9,9-dioctylfluorene) [J]. Applied Physics Letters,2000, 76 (20):2946-2948.
    [17]ZHANG Q T, TOUR J M. Imine-bridged planar poly(phenylenethiophene)s and polythiophenes [J]. Journal of the American Chemical Society,1997,119 (41):9624-9631.
    [18]YASUDA T, YAMAMOTO T. Synthesis and characterization of new luminescent 1,10-phenanthroline-and pyridine-containing π-conjugated polymers. Their optical response to protic acid, mn+, and solvents [J]. Macromolecules,2003,36(20):7513-7519.
    [19]THOMAS S W, JOLY G D, SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers [J]. Chemical Reviews,2007,107(4):1339-1386.
    [20]LI W-J, WU H-M, LI Y-B et al. Facile synthesis and self-assembly of diazafluorenone-based p-n (donor-acceptor) organic semiconductors [J]. Tetrahedron,2012,68 (39):8216-8221.
    [21]WONG K-T, CHEN H-F, FANG F-C. Novel spiro-configured pet chromophores incorporating 4,5-diazafluorene moiety as an electron acceptor [J]. Organic Letters,2006,8(16):3501-3504.
    [22]WU C, MCNEILL J. Swelling-controlled polymer phase and fluorescence properties of polyfluorene nanoparticles [J]. Langmuir,2008,24 (11):5855-5861.
    [23]TEETSOV J, FOX M A. Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes [J]. Journal of Materials Chemistry,1999,9 (9):2117-2122.
    [24]PEI J, LIU X-L, CHEN Z-K et al. First hydrogen-bonding-induced self-assembled aggregates of a polyfluorene derivative [J]. Macromolecules,2002,36 (2):323-327.
    [1]D'ANDRADE B W, FORREST S R. White organic light-emitting devices for solid-state lighting [J]. Advanced Materials,2004,16 (18):1585-1595.
    [2]KIDO J, KIMURA M, NAGAI K. Multilayer white light-emitting organic electroluminescent device [J]. Science,1995,267(5202):1332-1334.
    [3]WANG Q, DING J, MA D et al. Harvesting excitons via two parallel channels for efficient white organic leds with nearly 100% internal quantum efficiency:Fabrication and emission-mechanism analysis [J]. Advanced Functional Materials,2009,19 (1):84-95.
    [4]KANNO H, SUN Y, FORREST S R. High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices [J]. Applied Physics Letters,2005,86 (26):263502-263502-3.
    [5]GATHER M C, K HNEN A, MEERHOLZ K. White organic light-emitting diodes [J]. Advanced Materials,2011,23 (2):233-248.
    [6]FARINOLA G M, RAGNI R. Electroluminescent materials for white organic light emitting diodes [J]. Chemical Society Reviews,2011,40 (7):3467-3482.
    [7]ZHANG B, TAN G, LAM C S et al. High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex [J]. Advanced Materials,2012,24 (14):1873-1877.
    [8]D'ANDRADE B W, THOMPSON M E, FORREST S R. Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices [J]. Advanced Materials,2002,14 (2):147-151.
    [9]D'ANDRADE B W, HOLMES R J, FORREST S R. Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J]. Advanced Materials,2004,16 (7): 624-628.
    [10]COCCHI M, KALINOWSKI J, VIRGILI D et al. Single-dopant organic white electrophosphorescent diodes with very high efficiency and its reduced current density roll-off [J]. Applied Physics Letters,2007,90 (16):163508-163508-3.
    [11]WILLIAMS E L, HAAVISTO K, LI J et al. Excimer-based white phosphorescent organic light-emitting diodes with nearly 100% internal quantum efficiency [J]. Advanced Materials,2007, 19(2):197-202.
    [12]CF KUI S, CHOW P K, TONG G S M et al. Robust phosphorescent platinum (ii) complexes containing tetradentate o^ n^ c^ n ligands:Excimeric excited state and application in organic white-light-emitting diodes [J]. Chemistry-A European Journal,2013, 19(1):69-73.
    [13]LIU J, ZHOU Q G, CHENG Y X et al. White electroluminescence from a single-polymer system with simultaneous two-color emission:Polyfluorene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant [J]. Advanced Functional Materials,2006, 16(7):957-965.
    [14]TU G L, MEI C Y, ZHOU Q G et al. Highly efficient pure-white-light-emitting diodes from a single polymer:Polyfluorene with naphthalimide moieties [J]. Advanced Functional Materials, 2006,16(1):101-106.
    [15]CHIEN C-H, LIAO S-F, WU C-H et al. Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone [J]. Advanced Functional Materials,2008,18 (9): 1430-1439.
    [16]POULSEN D A, KIM B J, MA B et al. Site isolation in phosphorescent bichromophoric block copolymers designed for white electroluminescence [J]. Advanced Materials,2010,22 (1):77-82.
    [17]LIN Z, LIN Y-D, WU C-Y et al. White light-emitting devices based on star-shape polymers with a bisindolylmaleimide core [J]. Macromolecules,2010,43 (14):5925-5931.
    [18]ABBEL R, GRENIER C, POUDEROIJEN M J et al. White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers [J]. Journal of the American Chemical Society,2008,131 (2):833-843.
    [19]LIU Y, NISHIURA M, WANG Y et al.π-conjugated aromatic enynes as a single-emitting component for white electroluminescence [J]. Journal of the American Chemical Society,2006,128 (17):5592-5593.
    [20]GATHER M C, K HNEN A, MEERHOLZ K. White organic light-emitting diodes [J]. Advanced Materials,2011,23 (2):233-248.
    [21]TAO S, ZHOU Y, LEE C-S et al. A tnphenylamine derivative as a single-emitting component for highly-efficient white electroluminescent devices [J]. Journal of Materials Chemistry,2008,18 (33):3981-3984.
    [22]ADHIKARI R M, DUAN L, HOU L et al. Ethynylphenyl-linked carbazoles as a single-emitting component for white organic light-emitting diodes [J]. Chemistry of Materials,2009, 21 (19):4638-4644.
    [23]ZHAO Z, XU B, YANG Z et al. White light from excimer and electromer in single-emitting-component electroluminescent diodes [J], The Journal of Physical Chemistry C, 2008,112 (23):8511-8515.
    [24]LIU L, CHEN F, XU B et al. Solution-processed white organic light-emitting diode based on a single-emitting small molecule [J]. Synthetic Metals,2010,160(17):1968-1972.
    [25]WANG H, CHEN G, LIU Y et al. The synthesis and characterization of novel dipolar fluorescent materials based on a quinoxaline core [J]. Dyes and Pigments,2009,83 (3):269-275.
    [26]ADHIKARI R M, MONDAL R, SHAH B K et al. Synthesis and photophysical properties of carbazole-based blue light-emitting dendrimers [J]. The Journal of Organic Chemistry,2007,72 (13):4727-4732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700