用户名: 密码: 验证码:
UHMWPE/HA梯度复合髋臼材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE)因为具有良好的耐磨性、机械性能、抗腐蚀性以及生物相容性,而被广泛应用于人工关节材料。但是目前全人工关节置换术的长期追踪研究表明,关节置换术后假体的磨损是影响其使用寿命的主要因素。UHMWPE磨损颗粒引起的局部界面骨溶解,导致假体无菌松动,是造成人工关节置换失败的主要原因。所以,改善UHMWPE人工关节材料的抗磨损性能是至关重要的。
     本文通过用十氢萘和石蜡油作溶剂制备了UHMWPE溶液,通过凝胶化温度测试、小角激光光散射(SALS)、广角X-射线衍射(WAXD),考察了其凝胶化机理。结果表明石蜡油作溶剂时,由于其分子结构与UHMWPE分子链结构类似,有很好的亲和力,可能起到了交联点作用。UHMWPE分子链在106~108℃发生凝胶化,凝胶化与相分离关系不大。UHMWPE溶液的旋节线分离温度为109℃,远高于十氢萘作溶剂的88℃。而十氢萘作溶剂制备的UHMWPE溶液,是通过相分离形成聚合物富集区,导致凝胶化,从而促进了其凝胶结晶的过程。通过正交极化SALS和偏光显微镜(POM)对两种溶剂制备的UHMWPE溶液进行了观察,发现十氢萘作溶剂制备的UHMWPE溶液,在65-75℃淬冷,相分离的初期无散射图形,随着时间延长可以得到清晰的X形散射图形,相应的POM图片出现连续的网络结构。而石蜡油作溶剂制备的UHMWPE溶液,即使在室温下淬冷也只能得到模糊的圆形散射图形,相应的POM图片只显示出不是很清晰的连续结构。小角X-射线散射(SAXS)结果表明,两种溶剂制备的UHMWPE溶液的凝胶结晶机理不同,但得到干凝胶膜中的片晶结构基本相同,拉伸储能模量分别达到195和180GPa。
     以十氢萘和石蜡油作溶剂,通过溶液法制备了UHMWPE/羟基磷灰石(HA)复合溶液,用流变仪测试了复合溶液的粘度,并考察了其凝胶化时间。发现十氢萘的UHMWPE/HA复合溶液的粘度随着HA含量的增加,逐渐减小:而石蜡油作溶剂,则反之。十氢萘作溶剂制备UHMWPE/HA复合溶液的凝胶化时间,随着HA含量的增加逐渐缩短,在83℃,HA含量增加到31.5vo1%时,纯的UHMWPE溶液的凝胶化时间由3250s缩短到2700s。相反,石蜡油作溶剂时,随着HA含量的增加,凝胶化时间逐渐延长。在83℃,HA含量增加到31.5vo1%时,纯的UHMWPE溶液的凝胶化时间由1200s延长到1980s。通过扫描电镜(SEM)观察发现石蜡油作溶剂时,HA在UHMWPE基体中分散的更均匀。
     利用溶液法制备了一种具有梯度结构的UHMWPE/HA复合材料。通过摩擦测试发现,145~153℃下热压制备的UHMWPE/HA梯度复合材料的表面具有很好的抗磨损性。SEM和WAXD结果表明UHMWPE的(110)面平行于膜的表面发生了取向。衰减全反射红外(ATR)结果证明了150℃热压的UHMWPE膜和UHMWPE/HA复合膜,表面层下1.4μm以内无HA,而180℃热压的表面层含有HA,导致150℃热压的表面层比180℃热压的表面层的结晶度高。利用SEM和X-射线能量色散谱(EDS)观察发现UHMWPE/HA复合物在150℃热压时,大部分UHMWPE在HA表面重结晶,而在180℃热压时,大部分UHMWPE从HA表面熔融滑脱,小部分在HA表面重结晶。复合拉伸模量,剪切模量和泊松比受压膜温度的影响不大。随着HA含量的增加,复合泊松比的实部逐渐减小。当HA含量超过23.5vol%时,v’变为负值,表明UHMWPE/HA复合材料中出现了海绵结构。所以,随着HA含量增加,在高负载下,表面摩擦系数减小。摩擦系数、磨损率和弯曲测试性能都表明溶液法制备的UHMWPE/HA复合材料的结果要优于熔融法制备的。一系列的实验结果都证明,利用溶液法同时控制热压成型温度制备的UHMWPE/HA梯度复合材料会是一种很好的髋臼替代材料。
     聚乙烯醇(PVA)水凝胶具有化学性能稳定、生物相容性好、易成型及与自然关节软骨相似的结构和生物摩擦学特性,但是PVA作为髋臼材料的强度不够高,且难固定。基于此,将PVA与UHMWPE结合制备一种既具有低摩擦系数又易固定的梯度髋臼材料。利用合成锂皂石(laponite)作为模板剂能提高HA在水溶液中的分散性。用NaCl作为致孔剂,通过溶液法制备的多孔UHMWPE/HA复合材料孔隙率可达50%以上,孔洞分布均匀,并且内部含具有生物活性的HA颗粒,有利于提高UHMWPE与填充的PVA之间的界面结合强度;模拟人体关节软骨梯度结构制备的LBL复合PVA填充UHMWPE/HA梯度人工关节复合材料,在负载1200N时,摩擦系数可达0.017左右,接近人体关节软骨的摩擦系数,有望得到实际推广应用。
Ultrahigh molecular weight polyethylene (UHMWPE) has been used in orthopedics as a bearing material in artificial joints because of notable properties such as chemical inertness, lubricity, impact resistance, and abrasion resistance. However, wear damages of the UHMWPE have been one of the factors limiting implant longevity. That is, the resultant wear of polyethylene bearing purportedly produces billions of wear particles with submicrometer size that cause adverse pathological reaction in the surrounding tissues leading to osteolysis and joint loosening. Therefore, to improve the wear resistance of the UHMWPE material used for artificial joint is essential.
     UHMWPE solution was prepared by decalin and paraffin. Gelation mechanism was investigated by gelation time, small angle laser light scattering (SALS) and Wide-angle X-ray diffraction (WAXD). When paraffin as the solvent, paraffin maybe becomes the role of crosslinking point for the UHMWPE moleculars. So the gelation temperature (106~108℃) and spinodal temperature (109℃) of UHMWPE solution prepared by paraffin are much higher than prepared by decalian (83℃and88℃). HV SALS and Polarized microscope (POM) were used to observe the structure of the UHMWPE solution. When the UHMWPE solution prepared by decalin quenched at65~75℃, X-type pattern and continuous structure can be seen, but, for paraffin as the solvent, even at room temperature only circle-type pattern and very small continuous structure can be seen. The Small Angle X-ray Scattering (SAXS) from the both films, however, showed the similar profiles indicating assemblies of crystal lamellae assuring ultradrawing.
     UHMWPE/HA composite solution was prepared by decalin and paraffin. Viscosity and gelation time were tested, the results shows that the viscosity and gelation time increase with the content of HA when decalin as the solvent, but in paraffin is inverse. When the content of HA reached31.5vol%at83℃, gelation time of UHMWPE/HA solution prepared by decalin shorten from3250s to2700s. However when paraffin as the solvent, the galation time prolonged from1200s to1980s. Scanning electron microscope (SEM) was used to observe the morphology of UHMWPE/HA composite, which indicates HA can be dispersed more uniform when paraffin as the solvent compared with decalin.
     UHMWPE/Hydroxyapatite (HA) composites which were prepared by the solution method and molded in the narrow temperature range145-153℃. WAXD intensity from UHMWPE film revealed high preferential orientation of the (110) plane with the highest atom density of the PE crystal unit. Attenuated total reflection (ATR) spectra from pristine UHMWPE films and UHMWPE/HA composites revealed that the existing probability of HA agglomerates on the surface layer (at ca.1.4μm depth) of the specimen molded at150℃was much lower than that molded at180℃, and the crystallinity of the thin layer was slightly higher. Furthermore, SEM observation and Energy Dispersive Spectrometer (EDS) spectra revealed that most of the HA agglomerates were covered by UHMWPE in the composites molded at150℃, UHMWPE chains under gelation were crystallized on the surface of HA agglomerates, but the partially flowed off UHMWPE chains from the surface of UHMWPE/HA agglomerates by molding at180℃were not recrystallized on the surface of HA agglomerates. The complex tensile moduli E*, complex shear moduli G*, and complex Poison's ratio v*were hardly affected by the molding temperatures,150or180℃. Poisson's ratio for the individual UHMWPE/HA composite and the gradient composite provided that the value became smaller with increasing HA content and tended to be negative beyond23.5vol%HA content, indicating an increase in voids in the spongy-like texture of the composites. Because of the descent degree of a number of voids in sponge-like tissues, surface fraction was smaller with increasing HA contents under high normal load. Of course, the frictional coefficient, wear rate, and bending properties prepared by solution were much superior to those prepared by a kneading method. A series of results suggested that by controlling molding temperature it turned out that the gradient composite prepared by the solution method provides great merits as an acceptable cup of bearing material in an artificial joint.
     Poly (vinyl alcohol)(PVA) Hydrogels have chemical stability, good biocompatibility, and easy to mold, also with similar structure and tribological properties of biological to natural articular cartilage. However, PVA material has low strength when as the acetabular materials, and difficult to be fixed. Based on this, to prepare a kind of gradient material combining UHMWPE with PVA has low friction coefficient and easy to be fixed.Laponite as a template was used to improve the dispersibility of HA in water. NaCl as the porogen was adopoted to prepare porous UHMWPE/HA composite by the solution method. Its porosity larger than50%and has uniform pore distribution. HA was introduced to reinforce the interfacial bonding effect between the LBL film and the PVA filling porous UHMWPE/HA composite, which has very low friction coefficient (0.017) under1200N near to the friction coefficient of natural articular cartilage. So the results indicated this kind of gradient material has the prospects to be used in for acetabular prosthesis in the future.
引文
[1]Maroudas A, Physiochemical properties of articular cartilage, in Adult Articular Cartilag [M].2nd ed. Kent:Pitman Medical Publishing Co,1979.
    [2]Fithian D C, Kelly M A; Mow V C. Material Properties and Structure-Function Relationships in the Menisci [J]. Clin Orthop ReI Res,1990,252:19-31.
    [3]Kempson G, Mechanical properties of articular cartilage. In Adult Articular Cartilag [M].2nd ed. Kent:Pitman Medical Publishing Co. Ltd.,1979.
    [4]Sokoloff L. Elasticity of aging cartilage [J]. Fed Proc,1966,25:1089-1095.
    [5]Hori R, Mockros L F. Indentation tests of human articular cartilage [J]. J Biomech,1976,9:259-268.
    [6]Hayes W, Mockros L F. Viscoelastic properties of human articular cartilage [J]. J Appl Physiol,1971, 31:562-568.
    [7]Mow V, Gibbs M C, Lai W M. Biphasic indentation of articular cartilage:Part Ⅱ, A numerical algorithm and experimental study [J]. J Biomech,1989,22:853-861.
    [8]Armstrong C, Mow V C. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration and water content [J]. J Bone Joint Surg,1982,64A:88-94.
    [9]Athanasiou K, Rosenwasser M P, Buckwalter J A. Interspecies comparison of in situ intrinsic mechanical properties of distal femoral cartilage [J]. J Orthop Res,1991,9:330-340.
    [10]Ateshian G, Gardner J R, Saed-Nejad F. Material properties and biochemical composition of thumb carpometacarpal joint cartilage [J]. Trans Orthop Res Soc,1993,18:323.
    [11]Akizuki S, Mow V C, Muller F. Tensile properties of human knee joint cartilage:Part Ⅰ, Influence of ionic concentrations, weight bearing and fibrillation on the tensile modulus [J]. J Orthop Res,1986,4: 379-392.
    [12]Zhu W, Lai W M, Mow V C. Intrinsic quasilinear viscoelastic behavior of the extracellular matrix of cartilage [J]. Trans Orthop Res Soc,1986,11:407.
    [13]Oral E, Kurtz S M, Muratoglu O K, et al.,6.603-Ultrahigh Molecular Weight Polyethylene Total Joint Implants [M]. Oxford:Elsevier,2011.
    [14]Wolf C, Maninger J, Lederer K, et al. Stabilisation of crosslinked ultra-high molecular weight . polyethylene (UHMW-PE)-acetabular components with alpha-tocopherol [J]. J Mater Sci-Mater M, 2006,17:1323-1331.
    [15]Oonishi H, Kadoya Y, Masuda S. Gamma-irradiated cross-linked polyethylene in total hip replacements--analysis of retrieved sockets after long-term implantation [J]. J Biomed Mater Res, 2001,58:167-171.
    [16]Oonishi H, Takayama Y, Tsuji E. Improvement of polyethylene by irradiation in artificial joints [J]. Int J Radiat Appl Instrum C Radiat Phys Chem,1992,39:495-504.
    [17]Grobbelaar C J, Plessis T A d, Marais F. The radiation improvement of polyethylene prostheses. A preliminary study [J]. J Bone Joint Surg Br,1978,60-B:370-374.
    [18]Muratoglu O K, Bragdon C R, Oonnor D O, et al. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE) [J]. Biomaterials,1999,20:1463-1470.
    [19]McKellop H, Shen F-w, Lu B, et al. Development of an extremely wear-resistant ultra high molecular weight polythylene for total hip replacements [J]. J Orthop Res,1999,17:157-167.
    [20]Carlsson D J, Chmela S, Lacoste J. On the structures and yields of the first peroxyl radicals in.gamma.-irradiated polyolefins [J]. Macromolecules,1990.23:4934-4938.
    [21]Charlesby A, Libby D, Ormerod M G. Radiation Damage in Polyethylene as Studied by Electron Spin Resonance [J]. Proc R Soc Lond,1961,262:207-218.
    [22]Libby D, Ormerod M G, Charlesby A. Electron spin resonance spectra of some polymers irradiated at 77K [J]. Polymer,1960,1:212-218.
    [23]Ohnishi S-i, Sugimoto S-i, Nitta I. Temperature Dependence of the ESR Spectrum of Irradiated Oriented Polyethylene [J]. J Chem Phys,1962,37:1283-1288.
    [24]Crowninshield R, Muratoglu O. How have new sterilization techniques and new forms of polyethylene influenced wear in total joint replacement? [J]. J Am Acad Orthop Surg,2008,16:80-85.
    [25]Callaghan J J, Cuckler J M, Huddleston J I, et al. How have alternative bearings (such as metal-on-metal, highly cross-linked polyethylene, and ceramic-on-ceramic) affected the prevention and treatment of osteolysis? [J]. J Am Acad Orthop Surg,2008,16:33-38.
    [26]Kurtz S M, Villarraga M L, Herr M P, et al. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements [J]. Biomaterials, 2002,23:3681-3697.
    [27]Parth M, Aust N, Lederer K. Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of alpha-tocopherol with respect to its application in medical implants [J]. J Mater Sci Mater Med,2002,13:917-21.
    [28]Oral E, Greenbaum E S, Malhi A S, et al. Characterization of irradiated blends of alpha-tocopherol and UHMWPE [J]. Biomaterials,2005,26:6657-63.
    [29]Oral E, Godleski Beckos C, Malhi A S, et al. The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahigh molecular weight polyethylene [J]. Biomaterials,2008,29:3557-3560.
    [30]Oral E. Wannomae K K, Hawkins N, et al. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear [J]. Biomaterials,2004,25:5515-5522.
    [31]Oral E, Christensen S D, Malhi A S, et al. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E [J]. J Arthroplasty,2006, 21:580-591.
    [32]Oral E, Wannomae K K, Rowell S L, et al. Diffusion of vitamin E in ultra-high molecular weight polyethylene [J]. Biomaterials,2007,28:5225-5237.
    [33]Muratoglu O K, Merrill E W, Bragdon C R, et al. Effect of radiation, heat, and aging on in vitro wear resistance of polyethylene [J]. Clin Orthop Relat Res,2003,417:253-262.
    [34]Muratoglu O K, Bragdon C R, O'Connor D O, et al. A novel method of cross-linking ulrra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties [J]. J Arthroplasty,2001,16:149-160.
    [35]Digas G, Karrholm J. Thanner J, et al.5-year experience of highly cross-linked polyethylene in cemented and uncemented sockets:two randomized studies using radiostereometric analysis [J]. Acta Orthop,2007,78:746-754.
    [36]Assink R A, Celina M, Dunbar T D, et al. Analysis of Hydroperoxides in Solid Polyethylene by MAS 13C NMR and EPR [J]. Macromolecules,2000,33:4023-4029.
    [37]Wright T M, Astion D J, Bansal M, et al. Failure of carbon fiber-reinforced polyethylene total knee-replacement components. A report of two cases [J]. J Bone Joint Surg Am,1988,70:926-932.
    [38]Farling G Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene.4055862,1977.
    [39]Connelly G M, Rimnac C M, Wright T M, et al. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene [J]. J Orthop Res,1984,2:119-125.
    [40]Peterson C D, Hillberry B M, Heck D A. Component wear of total knee prostheses using Ti-6Al-4V, titanium nitride coated Ti-6A1-4V, and cobalt-chromium-molybdenum femoral components [J]. J Biomed Mater Res,1988,22:887-903.
    [41]Parr J, Personal communication [M]. Memphis:2008.
    [42]Galante J O, Rostoker W. Wear in total hip prostheses:an experimental evaluation of candidate biomaterials [J]. Acta Orthop Scand (Suppl),1973,145:6-46.
    [43]Rostoker W, Galante J O. Indentation creep of polymers for human joint applications [J]. J Biomed Mater Res 1979,13:825-828.
    [44]Wright T M, Fukubayashi T, Burstein A H. The effect of carbon fiber reinforcement on contact area, contact pressure, and time-dependent deformation in polyethylene tibial components [J]. J Biomed Mater Res,1981,15:719-730.
    [45]Groth H. Postmortem analysis of carbon-fiber reinforced UHMWPE and UHMWPE prostheses retrieved from a single subject after a service life of 12 to 15 months [J]. Trans Orthop Res Soc,1978.
    [46]Tetik R D, Galante J O, Rostoker W. A wear resistant material for total joint replacement-tissue biocompatibility of an ultra-high molecular weight (UHMW) polyethylene-graphite composite [J]. J Biomed Mater Res 1974,8:231-250.
    [47]Deng M, Shalaby S W. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites [J]. Biomaterials,1997,18:645-655.
    [48]Suh N P, Mosleh M, Arinez J. Tribology of polyethylene homocomposites [J]. Wear,1998,214: 231-236.
    [49]Deng M, Shalaby S W Self-reinforced ultra-high molecular weight polyethylene composites.1995.
    [50]Deng M, Latour R A, Ogale A A, et al. Study of creep behavior of ultra-high-molecular-weight polyethylene systems [J]. J Biomed Mater Res,1998,40:214-223.
    [51]Hine P J, Ward I M, Olley R H, et al. The hot compaction of high modulus melt-spun polyethylene fibres [J]. J Mater Sci Lett,1993,28:316-324.
    [52]Olley R H, Bassett D C, Hine P J, et al. Morphology of compacted polyethylene fibres [J]. J Mater Sci, 1993,28:1107-1112.
    [53]Myasnikova L, Marikhin V A, Ward I M. New developments in the production of high modulus and high strength flexible polymers [J]. Orientational Phenomena in Polymers,1993,92:103-110.
    [54]Kabeel M A, Bassett D C, Olley R H, et al. Compaction of high-modulus melt-spun polyethylene fibres at temperatures above and below the optimum [J]. J Mater Sci Lett,1994,29:4694-4699.
    [55]Megremis S J, Duray S, Gilbert J L. Self-rei New developments in the production of high nforced composite polyethylene (SCR-PE):a novel material for orthopedic applications].1998 [C]. West Conshohoken.
    [56]Price H C, Lin S T, Hawkins M E, et al. Reinforced polyethylene for articular surfaces.1997.
    [57]Mosleh M. An UHMWPE homocomposite for joint prostheses].1998 [C]. West Conshohoken.
    [58]Chang N, Bellare A, Cohen R E, et al. Wear behavior of bulk oriented and fiber reinforced UHMWPE [J]. Wear,2000,241:109-117.
    [59]Cohen Y, Rein D M, Vaykhansky L. A novel composite based on ultra-high-molecular-weight polyethylene [J]. Compos Sci Technol 1997,57:1149-1154.
    [60]Ramasubramanian N, Krishnamurthy R, Malhotra S K. Tribological characteristics of filled ultrahigh molecular weight high density polyethene [J]. Wear,1993,162(64), Part A:631-635.
    [61]Zhang C, Ma C-A, Wang P, et al. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction [J]. Carbon, 2005,43:2544-2553.
    [62]Bin Y, Xu C, Zhu D, et al. Electrical properties of polyethylene and carbon black particle blends prepared by gelation/crystallization from solution [J]. Carbon,2002,40:195-199.
    [63]Xi Y, Yamanaka A, Bin Y Z, et al. Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites [J]. J Appl Polym Sci 2007,105:2868-2876.
    [64]Puukilainen E, Saarenpaa H. Pakkanen T A. Compression-molded, lubricant-treated UHMWPE composites [J]. J Appl Polym Sci 2007,104:1762-1768.
    [65]Gong G, Yang H, Fu X. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding [J]. Wear,2004,256:88-94.
    [66]Xiong D S, Lin J M, Fan D L. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy [J]. Biomed Mater,2006,1:175-179.
    [67]Xiong D, Lin J, Fan D. et al. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication [J]. J Mater Sci Mater Med,2007,18:2131-2135.
    [68]Ren X, Wang X Q, Sui G, et al. Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin-screw extrusion [J]. J Appl Polym Sci 2008,107:2837-2845.
    [69]Xie X L, Tang C Y, Chan K Y, et al. Wear performance of ultrahigh molecular weight polyethylene/quartz composites [J]. Biomaterials,2003,24:1889-1896.
    [70]Anderson B C, Bloom P D, Baikerikar K G, et al. Al-Cu-Fe quasicrystal/ultra-high molecular weight polyethylene composites as biomaterials for acetabular cup prosthetics [J]. Biomaterials,2002,23: 1761-1768.
    [71]Hofste J M, Schut J A, Pennings A J. The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite [J]. J Mater Sci Mater Med.1998,9:561-566.
    [72]Zhang M, King R, Hanes M, et al. A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. Ⅰ. Synthesis and physical/chemical characterization [J]. J Biomed Mater Res A.2006,78:86-96.
    [73]Zhang M, Pare P, King R, et al. A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. Ⅱ. Mechanical and tribological property evaluation [J]..1 Biomed Mater Res A,2007,82:18-26.
    [74]Zhang M, James S P. Silylation of hyaluronan to improve hydrophobicity and reactivity for improved processing and derivatization [J]. Polymer,2005,46:3639-3648.
    [75]Bonfield W. Composites for bone replacement [J]. J Biomed Eng 1988,10:522-526.
    [76]Wang M, Ladizesky N H, Tanner K E, et al. Hydrostatically extruded HAPEX [J]. J Mater Sci Lett, 2000,35:1023-1030.
    [77]Dalby M J, Bonfield W, Di Silvio L. Enhanced HAPEX topography:comparison of osteoblast response to established cement [J]. J Mater Sci Mater Med,2003,14:693-697.
    [78]Dalby M J, Di Silvio L, Davies G W, et al. Surface topography and HA filler volume effect on primary human osteoblasts in vitro [J]. J Mater Sci Mater Med,2000,11:805-810.
    [79]Dalby M J, Di Silvio L, Gurav N, et al. Optimizing HAPEX topography influences osteoblast response [J]. Tissue Eng,2002,8:453-467.
    [80]Dalby M J, Kayser M V, Bonfield W, et al. Initial attachment of osteoblasts to an optimised HAPEX topography [J]. Biomaterials,2002,23:681-690.
    [81]Di Silvio L, Dalby M, Bonfield W. In vitro response of osteoblasts to hydroxyapatite-reinforced polyethylene composites [J]. J Mater Sci Mater Med,1998,9:845-848.
    [82]Di Silvio L, Dalby M J, Bonfield W. Osteoblast behaviour on HA/PE composite surfaces with different HA volumes [J]. Biomaterials,2002,23:101-107.
    [83]Huang J, Di Silvio L, Wang M, et al. In vitro mechanical and biological assessment of hydroxyapatite-reinforced polyethylene composite [J]. J Mater Sci Mater Med,1997,8:775-779.
    [84]Rea S M, Best S M, Bonfield W. Bioactivity of ceramic-polymer composites with varied composition and surface topography [J]. J Mater Sci Mater Med,2004,15:997-1005.
    [85]Rea S M, Brooks R A, Schneider A, et al. Osteoblast-like cell response to bioactive composites-surface-topography and composition effects [J]. J Biomed Mater Res B Appl Biomater, 2004,70:250-261.
    [86]Fang L, Gao P, Leng Y. High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene [J]. Composites Part B:Engineering,2007,38:345-351.
    [87]Fang L, Leng Y, Gao P. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications [J]. Biomaterials,2005,26:3471-3478.
    [88]Fang L, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites [J]. Biomaterials,2006,27:3701-3707.
    [89]Lester C L, Smith S M, Colson C D, et al. Physical Properties of Hydrogels Synthesized from Lyotropic Liquid Crystalline Templates [J]. Chem Mater,2003,15:3376-3384.
    [90]Ushio K, Oka M, Hyon S H, et al. Partial hemiarthroplasty for the treatment of osteonecrosis of the femoral head. An experimental study in the dog. [J]. J Bone Joint Surg Br,2003,85:922-930.
    [91]Tienen T G, Verdonschot N, Heijkants R G, et al. Prosthetic replacement of the medial meniscus in cadaveric knees:does the prosthesis mimic the functional behavior of the native meniscus? [J]. Am J Sports Med,2004,32:1182-1188.
    [92]Liu K, Ovaert T C, Mason J J. Preparation and mechanical characterization of a PNIPA hydrogel composite [J]. J Mat Sci:Mat in Med,2008,19:1815-1821.
    [93]Oka M, Ushio K, Kumar P, et al. Development of artificial articular cartilage [J]. Proc Inst Mech Eng, 2000,214:59-68.
    [94]Jagur-Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies [J]. Polym Adv Technol,2006,17:395-418.
    [95]DeMerlis C C, Schoneker D R. Review of the oral toxicity of polyvinyl alcohol (PVA) [J]. Food Chem Toxicol,2003,41:319-326.
    [96]Hassan C, Peppas N. Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites [M] Springer Berlin Heidelberg:2000.
    [97]Mansur H S, Sadahira C M, Souza A N, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde [J]. Mater Sci Eng C 2008,28:539-548.
    [98]Wang B, Mukataka S, Kokufuta E, et al. The influence of polymer concentration on the radiation-chemical yield of intermolecular crosslinking of poly(vinyl alcohol) by γ-rays in deoxygenated aqueous solution [J]. Radiat Phys Chem,2000,59:91-95.
    [99]Bodugoz-Senturk H, Choi J, Oral E, et al. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing [J]. Biomaterials,2008,29:141-149.
    [100]Choi J, Bodugoz-Senturk H, Kung H J, et al. Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel [J]. Biomaterials,2007,28:772-780.
    [101]Bodugoz-Senturk H, Macias C E, Kung J H, et al. Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute [J]. Biomaterials,2009,30:589-596.
    [102]Huang H Y, Liu Z H, Tao F. In vivo evaluation of porous Hydroxylapatite ceramic as cervical vertebra substitute [J]. Clin Neurol Neurosurg,1997,99:20-21.
    [103]Ahn E S, Gleason N J, Nakahira A, et al. Nanostructure Processing of Hydroxyapatite-based Bioceramics [J]. Nano Lett,2001,1:149-153.
    [104]Pan Y S, Xiong D S, Chen X L. Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial [J]. Mater Sci,2007,42:5129-5134.
    [105]Pan Y S, Xiong D S. Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage [J]. Wear,2009,266:699-703.
    [106]Seidi A, Ramalingam M, Elloumi-Hannachi I, et al. Gradient biomaterials for soft-to-hard interface tissue engineering [J]. Acta Biomater,7:1441-1451.
    [107]DeLong S A, Moon J J, West J L. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration [J]. Biomaterials.2005,26:3227-3234.
    [108]Murugan R, Molnar P, Rao K P, et al. biomaterial Surface patterning of self assembled monolayers for controlling neuronal cell behavior [J]. Int J Biomed Eng Technol,2009,2:104-134.
    [109]He J, Du Y, Villa-Uribe J L, et al. Rapid Generation of Biologically Relevant Hydrogels Containing Long-Range Chemical Gradients [J]. Adv Funct Mater,2010,20:131-137.
    [110]Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering [J]. Biomaterials, 2007,28:5087-5092.
    [111]Guarnieri D, Borzacchiello A, Capua A D, et al. Engineering of covalently immobilized gradients of RGD peptides on hydrogel scaffolds:effect on cell behaviour [J]. Macromol Symp,2008,266: 36-40.
    [112]Li X, Xie J, Lipner J, et al. Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site [J]. Nano Lett,2009,9:2763-2768.
    [113]Liu C, Han Z, Czernuszka J T. Gradient collagen/nano-hydroxyapatite (HA) composite scaffold: development and characterisations [J]. Acta Biomater,2009,5:661-669.
    [114]Lo C T, Throckmorton D J, Singh A K, et al. Photopolymerized diffusion-defined polyacrylamide gradient gels for on-chip protein sizing [J]. Lab Chip,2008,8:1273-1279
    [115]Lawson A C, Czernuszka J T. Collagen-calcium phosphate composites [J]. Proc Inst Mech Eng H, 1998,212:413-425.
    [116]Kapur T A, Shoichet M S. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth [J]. J Boimed Mater Res A,2004,68A:235-243.
    [117]Ilkhanizadeh S, Teixeira A I, Hermanson O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation [J]. Biomaterials,2007,28:3936-3943.
    [118]Lo C M, Wang H B, Dembo M, et al. Cell movement is guided by the rigidity of the substrate [J]. Biophys J,2000,79:144-152.
    [119]Pompe W, Worch H, Epple M, et al. Functionally graded materials for biomedical applications [J]. Mater Sci Eng A,2003,362:40-60.
    [120]Zhang S, You B, Gu G, et al. A simple approach to fabricate morphological gradient on polymer surfaces [J]. Polymer,2009,50:6235-6244.
    [121]吴刚,聚合物基仿生人工软骨材料的制备与摩擦学性能研究[D].上海:上海交通大学,2007.
    [122]Hedia H S, Shabara M A N, El-Midany T T, et al. A Method of Material Optimization of Cementless Stem Through Functionally Graded Material [J]. Int J Mech Mater Des 2004,1:329-346.
    [123]Hedia H S, Mahmoud N A. Design optimization of functionally graded dental implant [J]. Biomed Mater Eng,2004,14:133-143.
    [124]Smith P, Lemstra P. Ultra-high-strength polyethylene filaments by solution spinning/drawing [J]. J Mater Sci,1980,15:505-514.
    [125]Smith P, Lemstra P J, Pijpers J P L, et al. Ultra-drawing of high molecular weight polyethylene cast from solution [J]. Colloid Polym Sci,1981,259:1070-1080.
    [126]Kanamoto T, Tsuruta A, Tanaka K, et al. On Ultra-High Tensile Modulus by Drawing Single Crystal Mats of High Molecular Weight Polyethylene [J]. Polym J,1983,15:327-329.
    [127]Matsuo M, Manley R S J. Ultradrawing at room temperature of high molecular weight polyethylene [J]. Macromolecules,1982,15:985-987.
    [128]Matsuo M, Yanagida N. Molecular-weight dependence of morphology and mechanical properties of hydroxypropyl cellulose films cast from water [J]. Polymer,1991,32:2561-2576.
    [129]Ogita T, Kawahara Y, Nakamura R, et al. Drawability of ultrahigh molecular weight polyethylene single-crystal mats [J]. Macromolecules,1993,26:4646-4651.
    [130]Matsuo M, Miyoshi S, Azuma M, et al. Phase Separation of Several Kinds of Polyethylene Solution under the Gelation/Crystallization Process [J]. Macromolecules,2005,38:6688-6699.
    [131]Matsuo M, Yamanaka A, Nakano Y. Gelation mechanism of ultra-high-molecular-weight polyethylene (UHMWPE) chains in dispersion solutions containing multiwall carbon nanotubes (MWNTs) analyzed in terms of liquid-liquid phase separation [J]. Pure Appl Chem,2009,81: 513-524.
    [132]Xi Y, Ishikawa H, Bin Y, et al. Positive temperature coefficient effect of LMWPE/HMWPE blends filled with short carbon fibers [J]. Carbon,2004,42; 1699-1706.
    [133]Stein R S, Wilson P R. Scattering of Light by Polymer Films Possessing Correlated Orientation Fluctuations [J]. J Appl Phys,1962,33:1914.
    [134]Matsuo M, Sugiura Y, Takematsu S, et al. Relationship between drawability of poly(vinyl alcohol) films prepared from semi-dilute solutions and phase separation of the solutions studied in terms of stereo-regularity and degree of polymerization [J]. Polymer,1997,38:5953-5967.
    [135]Matsuo M, Hashida T, Tashiro K, et al. Phase Separation of Ultrahigh Molecular Weight Isotactic Polypropylene Solutions in the Gelation Process Estimated in Relation to the Morphology and Mechanical Properties of the Resultant Dry Gel Films [J]. Macromolecules,2002,35:3030-3040.
    [136]Rhodes M B, Stein R S. Scattering of light from assemblies of oriented rods [J]. J Polym Sci Part B: Polym Phys,1969,7:1539-1558.
    [137]Van Aartsen J J. Theoretical observations on spinodal decomposition of polymer solutions [J]. Eur Polym J,1970,6:919-924.
    [138]Matsuo M, Miyoshi S, Azuma M, et al. Polarized small-angle light scattering from gels estimated in terms of a statistical approach [J]. Phys Rev E,2005,72:041403.
    [139]Luo Y L, Kayakabe S, Xi Y, et al. Characteristics of several kinds of polyethylene gel estimated by small-angle light scattering under cross polarization [J]. J Polym Sci Part B:Polym Phys,2010,49: 384-397.
    [140]Matsuo M, Sawatari C, Iida M, et al. Ultradrawing of High Molecular Weight Polyethylene Films Produced by Gelation/Crystallization from Solution:Effect of the Number of Entanglements [J]. Polym J,1985,17:1197-1208.
    [141]Shi X, Bin Y, Hou D, et al. Surface Characterization for Ultrahigh Molecular Weight Polyethylene/Hydroxyapatite Gradient Composites Prepared by the Gelation/Crystallization Method [J]. ACS Appl Mater Interfaces,2013,5:1768-1780.
    [142]Kanaga Karuppiah K S, Bruck A L, Sundararajan S, et al. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity [J]. Acta Biomater,2008,4: 1401-1410.
    [143]Lahiri D, Dua R, Zhang C, et al. Graphene Nanoplatelet-Induced Strengthening of UltraHigh Molecular Weight Polyethylene and Biocompatibility In vitro [J]. ACS Appl Mat Interfaces,2012,4: 2234-2241.
    [144]Lerf R, Zurbriigg D, Delfosse D. Use of vitamin E to protect cross-linked UHMWPE from oxidation [J]. Biomaterials,2010,31:3643-3648.
    [145]Ge S, Wang S, Gitis N, et al. Wear behavior and wear debris distribution of UHMWPE against Si3N4 ball in bi-directional sliding [J]. Wear,2008,264:571-578.
    [146]Saikko V. Wear of polyethylene acetabular cups against zirconia femoral heads studied with a hip joint simulator [J]. Wear,1994,176:207-212.
    [147]Kurtz S M, Mazzucco D, Rimnac C M. et al. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion [J]. Biomaterials, 2006,27:24-34.
    [148]Shibata N, Tomita N. The anti-oxidative properties of a-tocopherol in y-irradiated UHMWPE with respect to fatigue and oxidation resistance [J]. Biomaterials,2005,26:5755-5762.
    []49] Haque S, Rehman I, Darr J A. Synthesis and Characterization of Grafted Nanohydroxyapatites Using Functionalized Surface Agents [J]. Langmuir,2007,23:6671-6676.
    [150]Juhasz J A, Best S M, Brooks R, et al. Mechanical properties of glass-ceramic A-W-polyethylene composites:effect of filler content and particle size [J]. Biomaterials,2004,25:949-955.
    [151]Smolko E, Romero G. Studies on crosslinked hydroxyapatite-polyethylene composite as a bone-analogue material [J]. Radiat Phys Chem,2007,76:1414-1418.
    [152]Xu C Y, A, Yasuyuki, Matsuo M. Mechanical and Electric Properties of Ultra-High-Molecular Weight Polyethylene and Carbon Black Particle Blends [J]. Polym J,1998,30:372-380.
    [153]Bin Y, Kitanaka M, Zhu D, et al. Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gelation/Crystallization from Solutions [J]. Macromolecules,2003,36: 6213-6219.
    [154]Xiong L, Xiong D-s, Jin J-b. Study on Tribological Properties of Irradiated Crosslinking UHMWPE Nano-Composite [J]. J Bionic Eng,2009,6:7-13.
    [155]Al Twal E Q H, Chadwick R G. Fibre reinforcement of two temporary composite bridge materials effect upon flexural properties [J]. J Dent,2012,40:1044-1051.
    [156]Sawatari C, Matsuo M. Crystal lattice modulus of polyethylene calculated as functions of crystallinity and molecular orientation by linear elastic theory [J]. Macromolecules,1986,19: 2726-2732.
    [157]Agosti E, Zerbi G, Ward I M. Structure of the skin and core of ultradrawn polyethylene films by vibrational spectroscopy [J]. Polymer,1992,33:4219-4229.
    [158]Bruni P, Conti C, Corvi A, et al. Damaged polyethylene acetabular cups microscopy FT-IR and mechanical determinations [J]. Vib. Spectrosc.,2002,29:103-107.
    [159]Hagemann H, Snyder R G, Peacock A J, et al. Quantitative infrared methods for the measurement of crystallinity and its temperature dependence:polyethylene [J]. Macromolecules,1989,22: 3600-3606.
    [160]Zerbi G, Gallino G, Del Fanti N, et al. Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy [J]. Polymer,1989,30:2324-2327.
    [161]Chen Q, Bin Y, Matsuo M. Characteristics of Ethylene-methyl Methacrylate Copolymer and Ultrahigh Molecular Weight Polyethylene Composite Filled with Multiwall Carbon Nanotubes Prepared by Gelation/Crystallization from Solutions [J]. Macromolecules,2006,39:6528-6536.
    [162]Bin Y, Yamanaka A, Chen Q, et al. Morphological, Electrical and Mechanical Properties of Ultrahigh Molecular Weight Polyethylene and Multi-wall Carbon Nanotube Composites Prepared in Decalin and Paraffin [J]. Polym J,2007,39:598-609.
    [163]Unsworth A. Tribology of Human and Artificial Joints [J]. Proc Inst Mech Eng H.,1991,205: 163-172.
    [164]Sakai Y, Umetsu K, Miyasaka K. Mechanical properties of biaxially drawn films of ultra-high molecular weight polyethylene dried gels [J]. Polymer,1993,34:318-322.
    [165]Sakai Y, Miyasaka K. Biaxial drawing of dried gels of ultra-high molecular weight polyethylene [J]. Polymer,1988,29:1608-1614.
    [166]Sakurada I, Kaji K. relation between the polymer conformation and the elastic modulus of the crystalline region of polymer [J]. J Polym Sci, Part C:Polym Symp,1970,31:57-76.
    [167]Raff R A V, Encyclopedia of Polymer Science and Technology [M]. New York:Wiley,1967.
    [168]Matsuo M, Sawatari C, Ohhata T. Dynamic mechanical studies on the crystal dispersion using ultradrawn polyethylene films [J]. Macromoleculars,1988,21:1317-1324.
    [169]Matsuo M, Bin Y, Xu C, et al. Relaxation mechanism in several kinds of polyethylene estimated by dynamic mechanical measurements, positron annihilation, X-ray and 13C solid-state NMR [J]. Polymer,2003,44:4325-4340.
    [170]潘玉松.n-HA/PVA凝胶关节软骨修复材料制备与性能研究[D].博士论文,2008.
    [171]Haraguchi K, Li H-J, Matsuda K, et al. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA-clay Nanocomposite Hydrogels [J]. Macromolecules,2005,38:3482-3490.
    [172]刘欣梅,阎子峰,Lu G Q. Laponite层柱粘土对介孔纳米二氧化锆的稳定作用[J].科学通报,2005,50:292-296.
    [173]Podsiadlo P, Kaushik A K, Arruda E M. et al. Ultrastrong and Stiff Layered Polymer Nanocomposites [J]. Science,2007,318:80-83.
    [174]Matsuo M, Kitayama C. Two-Dimensional Mathematical Treatment of Small-Angle X-Ray Scattering from a System of Alternating Lamellar Phases with Orientation Distribution [J]. Polym J, 1985,17:479-497.
    [175]Matsuo M, Sawatari C, Iwai Y, et al. Effect of orientation distribution and crystallinity on the measurement by x-ray diffraction of the crystal lattice moduli of cellulose Ⅰ and Ⅱ [J]. Macromolecules,1990,23:3266-3275.
    [176]Matsuo M. General analysis of the measurement of the crystal lattice modulus of semicrystalline polymers by x-ray diffraction [J]. Macromolecules,1990,23:3261-3266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700