用户名: 密码: 验证码:
生物医用聚合物材料表面功能化构建及抗蛋白吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物聚合物材料以其良好的机械性能、耐磨性和加工性能而被广泛应用于与体液或血液接触的材料。但与生物环境接触时都是以外源性物质的状态存在,不同程度地引起生物体的不良反应(异物反应)。这些反应都与非特异性蛋白质迅速吸附在无保护的材料表面有关,而非特异性蛋白的吸附又严重影响材料的表面物理化学特性。因此,材料表面的功能化构建及对非特异性蛋白吸附的抑制,是聚合物材料生物相容性的重要研究内容。
     蛋白质主要是靠疏水作用吸附在材料表面。对于生物医用聚合物材料,材料表面亲/疏水性是影响蛋白质吸附的首要因素。同时,由于蛋白质是带有两性电荷的聚电解质,若材料表面也带有两亲性离子结构或亲水基团,通过富集水化层或空间排斥也可以削弱材料与蛋白的相互作用,抑制非特异性蛋白的吸附。因此,针对表面非特异性蛋白吸附引起的异物反应问题,本论文利用氨等离子体表面改性和活性生物分子接枝技术,在聚合物材料表面引入两亲性离子或亲水的功能化基团,研究表面抗非特异性蛋白吸附的机理,为其在后期临床的广泛应用提供重要理论依据。
     采用低温氨等离子体改性技术,将亲水性基团引入疏水性丙烯酸酯和聚甲基丙烯酸甲酯(PMMA)材料表面。表面元素组成及接触角分析表明氨等离子体处理后,材料表面引入含氮的-NH2、-NH3+等极性基团,成功构建了氨基化的材料表面。同时表面也伴随着-COO-的产生,形成两亲性离子结构,亲水性改善。一定程度的等离子体刻蚀对后续研究影响不大,且透光率基本保持不变,优异的光学性能得到保留。但该技术处理的时效性较差。蛋白吸附实验表明,疏水性丙烯酸酯氨基化后的表面蛋白吸附减少,而氨基化的PMMA表面吸附增多,仍需要进一步接枝提高PMMA材料的表面抗蛋白吸附能力。
     为了进一步增强表面抗蛋白吸附能力及长效性,首次利用酰胺键将水蛭素多肽结合在氨基化的丙烯酸酯系材料表面。紫外分光光度分析显示在静态吸附下,氨基化处理后的PMMA浸泡在500μg/ml的水蛭素溶液中4h时,吸光值最高,效果最好;表面形貌为规整有序;水蛭素接枝后表面亲水性单纯氨基化的表面要差,这是水蛭素分子中的负电荷中和了材料表面的正电荷导致的,这个推论也与表面能结果一致;表面-NH3+键含量下降而N-C=O键含量增加,证明水蛭素在材料表面接枝成功,表面也形成两性离子结构。通过石英晶体微天平动态吸附模型测试,接枝水蛭素后Fn的吸附迅速减少,且形成的吸附层最为疏松,容易被洗脱,实现了表面抗蛋白吸附功能,性能稳定。
     为了验证氨基化改善亲水性技术的普适性,采用氨等离子体表面改性处理PET膜,构建亲水性表面。氨基化后表面亲水性大幅改善,并引入较多的含N基团(-NH2/-NH3+)和-COO-官能团,膜表面形貌没有变化。氨基化的PET表面蛋白吸附明显偏少,说明氨基化技术对于表面疏水的聚合物材料具有普遍适用性。通过氨基化构建的机理分析,表面基团的形成也为后续进一步接枝单体奠定基础。
     采用2-甲基丙烯酰氧乙基磷酰胆碱(MPC)在氨基化的PET膜表面构建亲水性生物磷脂层。MPC分子的两亲性离子结构进一步改善了PET表面的亲水性和抗蛋白吸附能力。高分辨XPS图谱和FTIR光谱证明MPC接枝后,亲水性基团如-COOH,-N-C=O、-P-OH及-N+(CH3)3成功接入到材料表面。在接枝10mg/ml MPC时蛋白吸附量最低,表面平整、均一。通过MPC功能化表面作用机理进一步分析,磷脂基团构建的PET表面通过水化层和空间排斥共同作用,减少蛋白质的非特异性吸附。由于MPC接枝稳定,所以MPC构建的PET表面也具有抗非特异性蛋白吸附的长效性。
     根据生物医用聚合物材料与表面抗非特异性蛋白、细胞的吸附关系,构建了功能化表面生成模型。并以上述三种聚合物材料为基底进行细胞相容性和动物体内实验研究。几种功能化的表面均不同程度地促进细胞增殖。水蛭素或MPC接枝的材料表面比单纯氨基化的表面抗细胞黏附能力大大提高。动物体内实验结果显示,接枝水蛭素的人工晶状体能够始终保持很好的透明度。对生物医用聚合物材料表面功能化构建及抗蛋白吸附机理进行研究,表明疏水材料表面亲水性和抗蛋白吸附功能化的构建是由于两亲性离子及水化层的存在,能够对也带两性离子的蛋白质起到排斥作用,从而减少非特异性蛋白吸附引起的不良反应,为今后材料在临床植入领域的更广泛应用奠定理论基础。
The biomedical polymer has been widely used for body fluids and blood materials as itsgood mechanical activity and chemical stability. However, it is still limited by thenon-specific protein absorption on its surface. Therefore, in order to improve the proteinresistance of the polymer surface, we use several methods to activate the polymer surface toprostheses with excellent performance. This research should provide the basis for constructionof tissue-engineering application.
     Protein adsorption on the material surface is mainly due to hydrophobic effect.Hydrophobic and hydrophilic performance is the primary factor affecting the proteinadsorption for biomedical polymer materials. Foreign body reaction can be caused bynon-specific protein adsorption on surfaces. In this paper, ammonia plasma surfacemodification and active biological molecular grafting techniques have been applied to theacrylate and polyester material to introduce hydrophilic groups. The mechanism of proteinresistantance have also been researched for its widely application in clinical implant field.
     In this study, we first use ammonia low-temperature plasma technology to introducehydrophilic groups onto the surface of the hydrophobic acrylic and PMMA surfaces. Theresults showed that the hydrophilicity of the surface was improved most. Surface elementalcomposition analysis showed that the polar groups of-NH2or-NH3+were introduced to thesurfaces, and amination surfaces were constructed. After amination, no obvious surfacescratches and damage were found. The transmittance was not significantly reduced,essentially excellent optical properties were retained. Timeliness results showed that if thehydrophobic recovery would occure. Protein adsorption experiments showed that the proteinadsorption reduced on hydrophobic acrylic surface after amination, but increased on theaminiated PMMA surface. Grafting was further needed on PMMA materials to improveability to resist protein adsorption.
     Recombinant Hirudin (rH) peptide was first applied to modify the aminated PMMAsurfaces. After the integration, the contact angle of the surface increased slightly while thesurface had regular morphology. The-NH3+on the surface decreased with the increase of theN-C=O. The PMMA integrated with the hirudin had negative electricity, and the QCM resultsshowed that compared to the original surface and the plasma-treated surface, the surface withhirudin has better protein-resistant activity.
     After that, in order to test if the technology had widely used area, we use this plasma technology to treat the PET film, which was widely used for blood vessel prostheses. Theresults showed that the treatment could improve the hydrophilicity of the surface with nochange of the morphology. There were-NH2and-COOH on the surface after treatment. Theprotein-resistant activity of the materials could also be improved. Then, we integrate the MPConto the treated surface. The integration of the MPC could improve the hydrophilicity of thesurface by introducing the-COO-,-N-C=O and-P-OH groups. The FITC results also showedthat the MPC was constructed onto the PET surface. The MPC-graft PET surface was coveredwith molecular layer, and it had the lowest protein adsorption with the MPC concentration of10mg/ml.
     According to the relation of nonspecific protein resistantance of biomedical polymermaterials and cell adhesion, the functionalized surface generation model is constructed. Thebiological test results showed that the amino plasma treatment could decrease the adhesion ofthe cells, and the integration of hirudin or MPC could decrease this activity furthermore. Afterimplant into the animal eye, the plasma-treated IOL had fibrosis turbid immediately, while theoriginal IOL and the IOL with hirudin had excellent transparency after1month. Althoughthere was the cell migration to the center on the original IOL, it would not affect thetransparency. The cell experiments results showed that the long chain and the highhydrophilicity or hydrophobic were not benefit for the adhesion of cells.Finally, the surfacefunctionalization mechanism for protein resistance of biomedical polyester materialsconstruction was carried out in-depth analysis. It suggests that hydrophilic surface fornon-specific protein resistance is due to the presence of amphiphilic ion and hydration layer,which rejected the proteins also with zwitterionic electric charges. Thus the reduction ofnon-specific protein absorption caused by adverse reactions.It provides the theoretical basisfor more extensive application of biomedical materials for clinical implantation in the future.
引文
[1] Ratner, B.D., B.J. Tyler, and A. Chilkoti, Analysis of biomedical polymer surfaces:polyurethanes and plasma-deposited thin films. Clinical materials,1993.13(1-4): p.71-84
    [2] Duncan, R. and M.J. Vicent, Polymer therapeutics-prospects for21st century: The endof the beginning. Advanced Drug Delivery Reviews.65(1): p.60-70
    [3] Haugen, H.J., et al., Effect of different gamma-irradiation doses on cytotoxicity andmaterial properties of porous polyether-urethane polymer. Journal of BiomedicalMaterials Research Part B-Applied Biomaterials,2007.80B(2): p.415-423
    [4] Mirzadeh, H., F. Shokrolahi, and M. Daliri, Effect of silicon rubber crosslink densityon fibroblast cell behavior in vitro. Journal of Biomedical Materials Research Part A,2003.67A(3): p.727-732
    [5] Jo, M.Y., et al., Effects of compatibilizers on the mechanical properties of ABS/PLAcomposites. Journal of Applied Polymer Science.125: p. E231-E238
    [6] Abebe, D.G. and T. Fujiwara, Controlled Thermoresponsive Hydrogels byStereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-MixedCopolymers with Different PEG Lengths. Biomacromolecules.13(6): p.1828-1836
    [7] Mehta, R.I., et al., Pathology of explanted polytetrafluoroethylene vascular grafts.Cardiovascular Pathology.20(4): p.213-221
    [8] Brown, E.N., et al., The effect of crystallinity on the fracture ofpolytetrafluoroethylene (PTFE). Materials Science&Engineering C-Biomimetic andSupramolecular Systems,2006.26(8): p.1338-1343
    [9] Petrtyl, M., et al., Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists withthe Creation of New Articular Cartilage. Macromolecular Symposia.294(1): p.120-32
    [10] Di Silvio, L., M.J. Dalby, and W. Bonfield, Osteoblast behaviour on HA/PEcomposite surfaces with different HA volumes. Biomaterials,2002.23(1): p.101-107
    [11] Almeida, R.S., et al., Preparation and Characterization of PVA Hydrogels Nanofibers.Macromolecular Symposia.319(1): p.136-142142
    [12] Park, H.-S., M.-S. Gong, and J.C. Knowles, Synthesis and biocompatibility propertiesof polyester containing various diacid based on isosorbide. Journal of BiomaterialsApplications.27(1): p.99-109
    [13] Gui, Z., et al., Novel polyethylene glycol-based polyester-toughened polylactide.Materials Letters.71: p.63-65
    [14] Seil, J.T. and T.J. Webster, Reduced Staphylococcus aureus proliferation and biofilmformation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomaterialia.7(6): p.2579-2584
    [15] Manfredini, M., L.M. Bodecchi, and A. Marchetti, Thermal stability and chemicaldurability of PVC-based biomedical devices. Journal of Applied Polymer Science,2006.102(6): p.5378-5387
    [16] Kleinhans, C., et al., Ammonia plasma treatment of polystyrene surfaces enhancesproliferation of primary human mesenchymal stem cells and human endothelial cells.Biotechnology journal.8(3): p.327-37
    [17] Bhushan, B. and J. Utter, Nanoscale adhesion, friction and wear of proteins onpolystyrene. Colloids and Surfaces B-Biointerfaces.102: p.484-491
    [18] Ma, C., et al., Cellular responses to electrospun membranes made from blends ofPLLGA with PEG and PLLGA-b-PEG. Journal of Biomedical Materials Research PartA.100A(11): p.2897-2904
    [19] Guebeli, R.J., et al., Synthesis and Characterization of PEG-Based Drug-ResponsiveBiohybrid Hydrogels. Macromolecular Rapid Communications.33(15): p.1280-1285.
    [20] Silva, R.A., P.A. Silva, and M.E. Carvalho, Degradation studies of some polymericbiomaterials: Polypropylene (PP) and polyvinylidene difluoride (PVDF), inTHERMEC2006, Pts1-5, T. Chandra, et al., Editors.2007. p.573-576
    [21] Kiremitci-Gumusderelioglu, M. and A. Pesmen, Microbial adhesion to ionogenicPHEMA, PU and PP implants. Biomaterials,1996.17(4): p.443-9
    [22] Zivic, F., et al., Effect of vacuum-treatment on deformation properties of PMMA bonecement. Journal of the Mechanical Behavior of Biomedical Materials.5(1): p.129-138
    [23] Ai, F., et al., Surface characteristics and blood compatibility of PVDF/PMMAmembranes. Journal of Materials Science.47(12): p.5030-5040
    [24] Ruan, G., S.S. Feng, and Q.T. Li, Effects of material hydrophobicity on physicalproperties of polymeric microspheres formed by double emulsion process. Journal ofControlled Release,2002.84(3): p.151-160
    [25] Carraher, C.E., Jr., et al., Antibacterial, Yeast and Fungal Polymeric MaterialsDerived from Organotin-Containing Materials. Journal of Polymer Materials.28(3): p.303-336
    [26]高长有,马列编著, in医用高分子材料.2006,化学工业出版社:北京. p.50
    [27]曹谊林, ed.材料与宿主的相互作用.组织工程学.2008,科学出版社.41
    [28] Denis F A, H.P., Sutherland D S, et al, Protein adsorption on model surfaces withcontrolled nanotopography and chemistry. Langmuir,2002.18(3): p.9
    [29] A, H.T., ed. ACS Advances in Chemistry Series. Interfacical phenomena andapplications, ed. C.S.a.P. NA. Vol.199.1982, Ameican Chemical Society:Washington DC.233-244
    [30] Bilge, F.H., et al., Surface characterization of the cuticle of Dirofilaria immitis.Journal of Biomedical Materials Research,1989.23(9): p.1027-47
    [31] Horbett, T.A. and K.R. Lew, Residence time effects on monoclonal antibody bindingto adsorbed fibrinogen. Journal of biomaterials science. Polymer edition,1994.6(1): p.15-33
    [32] Rabe, M., D. Verdes, and S. Seeger, Understanding protein adsorption phenomena atsolid surfaces. Advances in Colloid and Interface Science.162(1-2): p.87-106
    [33] Se Heang, O. and L. Jin Ho, Hydrophilization of synthetic biodegradable polymerscaffolds for improved cell/tissue compatibility. Biomedical Materials.8(1): p.014101(16pp.)-014101(16pp.)
    [34] Zheng, J., et al., Protein adsorption and cell adhesion on polyurethane/Pluronic (R)surface with lotus leaf-like topography. Colloids and Surfaces B-Biointerfaces.77(2):p.234-239
    [35]曹谊林, ed.组织工程学.材料与宿主的相互作用.2008,科学出版社:北京.41
    [36] Zhi-Fang, C., et al., Thermosensitive poly(n-isopropylacrylamide) hydrogel forrefolding of recombinant bovine prethrombin-2from E. coli inclusion bodies. Journalof Applied Polymer Science,2005.96(5): p.1734-40
    [37] Jian-Bo, Q., et al., Chemical modification and characterization of gigaporouspolystyrene microspheres as rapid separation of proteins base supports. Journal ofPolymer Science Part A (Polymer Chemistry),2008.46(17): p.5794-58045804
    [38] Tziampazis, E., J. Kohn, and P.V. Moghe, PEG-variant biomaterials as selectivelyadhesive protein templates: model surfaces for controlled cell adhesion and migration.Biomaterials,2000.21(5): p.511-520
    [39] Vogler, E.A., Structure and reactivity of water at biomaterial surfaces. Advances inColloid and Interface Science,1998.74: p.69-117
    [40]王春仁综述,杨.,奚廷斐审校,生物材料表面血浆蛋白的吸附国外医学生物医学工程分册,1995.18(6): p.334-339
    [41] Pitt, W.G. and S.L. Cooper, Albumin adsorption on alkyl chain derivatizedpolyurethanes: I. The effect of C-18alkylation. J Biomed Mater Res,1988.22(5): p.359-82
    [42] Da-Feng, L., et al., Preparation of a hydrophobic polythiophene film to improveprotein adsorption and proliferation of PC12cells. Journal of Physical Chemistry B,2008.112(51): p.16290-9
    [43] Wyrc, R.M. and S. Downes, The role of protein adsorption on chondrocyte adhesionto a heterocyclic methacrylate polymer system. Biomaterials,2002.23(2): p.357-364
    [44] Palacio, M., S. Schricker, and B. Bhushan, Morphology and protein adsorptioncharacteristics of block copolymer surfaces. Journal of Microscopy.240(3): p.239-248
    [45] Nair, A., et al., Novel Polymeric Scaffolds Using Protein Microbubbles as Porogenand Growth Factor Carriers. Tissue Engineering Part C-Methods.16(1): p.23-32
    [46] Cushnie, E.K., Y.M. Khan, and C.T. Laurencin, Tissue-engineered matrices asfunctional delivery systems: Adsorption and release of bioactive proteins fromdegradable composite scaffolds. Journal of Biomedical Materials Research Part A.94A(2): p.568-575
    [47] Linhao, L., et al., The use of hyaluronan to regulate protein adsorption and cellinfiltration in nanofibrous scaffolds. Biomaterials.33(12): p.3428-45
    [48] Urbani, A., et al., Proteomic analysis of protein adsorption capacity of differenthaemodialysis membranes. Molecular Biosystems.8(4): p.1029-1039
    [49] Yoshino, N., T. Tsukagoshi, and Y. Kondo, Preparation of thin polymer films withdrug release and protein adsorption resistance. Colloids and Surfaces B(Biointerfaces),2007.55(1): p.19-25
    [50] Xiao, X.-F., X.-Q. Jiang, and L.-J. Zhou, Surface Modification of Poly EthyleneGlycol to Resist Nonspecific Adsorption of Proteins. Chinese Journal of AnalyticalChemistry.41(3): p.445-453
    [51] Nagasaki, Y., et al., Enhanced immunoresponse of antibody/mixed-PEGco-immobilized surface construction of high-performance immunomagnetic ELISAsystem. Journal of Colloid and Interface Science,2007.309(2): p.524-530
    [52] Shenfu, C., et al., Surface hydration: Principles and applications towardlow-fouling/nonfouling biomaterials. Polymer.51(23): p.5283-93
    [53] Ganesh, S.K., K. Babu, and J. Biswas, Phacoemulsification with intraocular lensimplantation in cases of pars planitis. Journal of Cataract and Refractive Surgery,2004.30(10): p.2072-2076
    [54]牛国光,朱思全,郑欲东,张红斌,宋黎,杨槐,用于治疗白内障的人工晶体材料及表面修饰研究进展.化学通报,2007
    [55] Werner, L., Glistenings and surface light scattering in intraocular lenses. J CataractRefract Surg,2010.36(8): p.1398-420
    [56] Wei, Y., et al., Surface Modification of Hydrophobic PMMA Intraocular Lens by theImmobilization of Hydroxyethyl Methacrylate for Improving Application inOphthalmology. Plasma Chemistry and Plasma Processing,2011.31(6): p.811-825
    [57]曲超,姚克,徐志康,寇瑞强,人工晶状体亲水化处理对巨噬细胞黏附和一氧化氮合成的影响.中华眼科杂志,2004.40(5)
    [58] Henderson, B.A. and K.J. Grimes, Blue-Blocking IOLs: A Complete Review of theLiterature. Survey of Ophthalmology,2010.55(3): p.284-289
    [59] Richard Wormald, L.S.a.K.H., evidence-based ophthalmology.2004, BMJ PublishingGroup
    [60] Mark Chehade, F.a.M.J.E., MD, FRACS, FRACO, lntraocular lens materials andstyles: A review. Australian and New Zealand Journal of Ophthalmology,1997.25: p.255-263
    [61] Drimtzias, E.G., et al., Experimental investigation on mechanism of hydrophilicacrylic intraocular lens calcification. Am J Ophthalmol,2011.152(5): p.824-33e1
    [62]罗莉霞,吴明星,刘玉华,刘奕志,<葡萄膜炎并发白内障超声乳化手术前后的血房水屏障功能变化.pdf>.中华显微外科杂志,2007.30(5)
    [63] Lucy J. Dawes, C.D.I., and I. Michael Wormstone, A Fully Human In Vitro CapsularBag Model to Permit Intraocular Lens Evaluation. Investigative Ophthalmology&Visual Science,2012.53(1)
    [64] Emma J Hollick, D.J.S., Paul G Ursell, Milind V Pande, Lens epithelial cellregression on the posterior capsule with diVerent intraocular lens materials. Br JOphthalmol1998.82: p.1182-1188
    [65]王瑶,刘.,徐志康,姚克,聚丙烯酸酯人工晶状体的表面改性研究_常压介质阻挡放电等离子体处理中国科学,2009.39(2): p.135-143
    [66] Campbell, G.R. and J.H. Campbell, Development of tissue engineered vascular grafts.Current Pharmaceutical Biotechnology,2007.8(1): p.43-50
    [67] Furuzono, T., et al., Increase in cell adhesiveness on a poly(ethylene terephthalate)fabric by sintered hydroxyapatite nanocrystal coating in the development of anartificial blood vessel. Asaio Journal,2006.52(3): p.315-320
    [68]陶蕊,陈晓农,夏宇正,石淑先,预吸附法阻抗材料表面蛋白吸附的研究进展.中国化工学会(IESC)2006年年会,2006
    [69] Mathias Ulbricht, H.M., Annett Oechel, Hans-Georg Hicke, Photo-induced graftpolymerization surface modifications for the preparation of hydrophilic andlow-protein-adsorbing ultrafiltration membranes. Journal of Membrane Science,1996.115: p.31-47
    [70] Feng, W., et al., Methacrylate polymer layers bearing poly(ethylene oxide) andphosphorylcholine side chains as non-fouling surfaces: in vitro interactions withplasma proteins and platelets. Acta Biomater,2011.7(10): p.3692-9
    [71] P. Harder, M.G.a.R.D., Molecular Conformation in Oligo(ethylene glycol)-TerminatedSelf-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability ToResist Protein Adsorption. J. Phys. Chem. B,1998.102: p.426-436
    [72]叶鹏,万.,王新平,载体材料与蛋白质的相互作用及对其构象的影响.高分子通报,2010.11
    [73] A Low-Adhesion Surface Providing Minimal Protein Adsorption and Maximal SampleRecovery.2013
    [74] Kazuhiko Ishihara, S.E., Youichi Shindo,, Photoinduced graft polymerizationof2-methacryloyloxyethyl phosphorylcholine on polyethylenemembrane surface forobtaining blood cell adhesionresistance. Colloids and Surfaces B: Biointerfaces,2000.18: p.325-335
    [75. Luo, Q.L. and J.D. Andrade, Cooperative adsorption of proteins onto hydroxyapatite.Journal of Colloid and Interface Science,1998.200(1): p.104-113
    [76]刘荷英,何淑漫,陈楚敏,周健,阻抗蛋白质吸附材料研究进展.化工进展,2009.28(3)
    [77]于谦,张燕霞,徐亚骏,陈红,接枝层厚度对聚(N-异丙基丙烯酰胺)改性表面与蛋白质相互作用的影响.材料导报B:研究篇,2010.24(11)
    [78] Jordan, S.W. and E.L. Chaikof, Novel thromboresistant materials. JOURNAL OFVASCULAR SURGERY,2007.45Suppl A: p. A104-15
    [79] Whitesides.GM, X., YN Soft lithography. ANNUAL REVIEW OF MATERIALSSCIENCE,1998.28: p.153-184
    [80] Hermanson, G.T., ed. Bioconjugate Techniques.2nd edition ed.2008: Academic Pressis an imprint of Elsevier
    [81] Scatena, L.F., M.G. Brown, and G.L. Richmond, Water at hydrophobic surfaces:Weak hydrogen bonding and strong orientation effects. Science,2001.292(5518): p.908-912
    [82] Khang, G., et al., Interaction of different types of cells on poly(L-lactide-co-glycolide)surface with wettability chemogradient. Korea Polymer Journal,2000.8(6): p.276-284
    [83] Lee, J.H., et al., The effect of fluid sheer stress on endothelial cell adhesiveness topolymer surfaces with wettability gradient. Journal of Colloid and Interface Science,2000.230(1): p.84-90
    [84] Ying, P.Q., G. Jin, and Z.L. Tao, Protein competitive adsorption and its effect on celladhesion. Ieee-Embs Asia Pacific Conference on Biomedical Engineering-Proceedings, Pts1&2, ed. X.X. Zheng, B. He, and Y.T. Zhang.2000.548-549
    [85] Castner, D.G. and B.D. Ratner, Biomedical surface science: Foundations to frontiers.Surface Science,2002.500(1-3): p.28-60
    [86] Czeslik, C., Factors ruling protein adsorption. Zeitschrift Fur PhysikalischeChemie-International Journal of Research in Physical Chemistry&Chemical Physics,2004.218(7): p.771-801
    [87] Zolotarskaya, O.Y., et al., Synthesis and Characterization of ClickableCytocompatible Poly(ethylene glycol)-Grafted Polyoxetane Brush Polymers.Macromolecules.46(1): p.63-71
    [88] Freedman, M., D. Birked, and K. Granath, Analyses of glucans from cariogenic andmutant Streptococcus mutans. Infection and immunity,1978.21(1): p.17-27
    [89] Liu, G., et al., Study of the morphology of the three-phase contact line and itsevolution by morphological examination after droplet evaporation of aqueous polymersolutions. Langmuir,2008.24(15): p.7923-7930
    [90] Chen, X. and R. Pelton, Pre-adsorption of amphiphilic polymers on synthetic surfacesfor biofouling retardation, in Aicam2005, M. Nogami, et al., Editors.2006. p.363-366
    [91] Chapman, R.G., et al., Surveying for surfaces that resist the adsorption of proteins.Journal of the American Chemical Society,2000.122(34): p.8303-8304
    [92] Ostuni, E., et al., Self-assembled monolayers that resist the adsorption of proteins andthe adhesion of bacterial and mammalian cells. Langmuir,2001.17(20): p.6336-6343
    [93] Chang, Y., et al., A systematic SPR study of human plasma protein adsorptionbehavior on the controlled surface packing of self-assembled poly(ethylene oxide)triblock copolymer surfaces. Journal of Biomedical Materials Research Part A.93A(1):p.400-408
    [94] Ma, C., et al., Effect of Microphase Separation on the Protein Resistance of aPolymeric Surface. Langmuir,2009.25(16): p.9467-9472
    [95] Li, L.Y., et al., Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolateself-assembled monolayers: The molecular basis for nonfouling behavior. Journal ofPhysical Chemistry B,2005.109(7): p.2934-2941
    [96] Cao, X., et al., Resistance of Polysaccharide Coatings to Proteins, HematopoieticCells, and Marine Organisms. Biomacromolecules,2009.10(4): p.907-915
    [97] Cronin, E.M., et al., Protein-coated poly(L-lactic acid) fibers provide a substrate fordifferentiation of human skeletal muscle cells. Journal of Biomedical MaterialsResearch Part A,2004.69A(3): p.373-381
    [98] Coneski, P.N., P.A. Fulmer, and J.H. Wynne, Enhancing the Fouling Resistance ofBiocidal Urethane Coatings via Surface Chemistry Modulation. Langmuir.28(17): p.7039-7048
    [99] Ma, Z.W., et al., Immobilization of natural macromolecules on poly-L-lactic acidmembrane surface in order to improve its cytocompatibility. Journal of BiomedicalMaterials Research,2002.63(6): p.838-847
    [100] Lin, W., et al., Development of robust biocompatible silicone with high resistance toprotein adsorption and bacterial adhesion. Acta Biomaterialia.7(5): p.2053-2059
    [101] Chu, P.K., et al., Plasma-surface modification of biomaterials. Materials Science&Engineering R-Reports,2002.36(5-6): p.143-206
    [102] Bilek, M.M. and D.R. McKenzie, Plasma modified surfaces for covalentimmobilization of functional biomolecules in the absence of chemical linkers: towardsbetter biosensors and a new generation of medical implants. Biophysical Reviews,2010.2(2): p.55-65
    [103] Grace, J.M., Gerenser, Louis J., Plasma Treatment of Polymers. Journal of DispersionScience and Technology,2003.24(3-4): p.305-341
    [104] Yu, W.H., E.T. Kang, and K.G. Neoh, Controlled grafting of comb copolymer brusheson poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.Langmuir,2005.21(1): p.450-456
    [105] Nai-Yi, C. and N.M.D. Brown, Modification of the surface properties of apolypropylene (PP) film using an air dielectric barrier discharge plasma. AppliedSurface Science,2002.189(1-2): p.31-8
    [106] Durand, A.M., The practical application of plasma treatment to polymer surfaces forimproved adhesion. Vide-Science Technique Et Applications,1997.53(284): p.242-&
    [107] Charbonneau, C., et al., Chondroitin Sulfate and Epidermal Growth FactorImmobilization after Plasma Polymerization: A Versatile Anti-Apoptotic Coating toPromote Healing Around Stent Grafts. Macromolecular Bioscience.12(6): p.812-821
    [108] Oehr, C., et al., Plasma grafting-a method to obtain monofunctional surfaces.Surface&Coatings Technology,1999.116: p.25-35
    [109] Minghao, G., J.E. Kilduff, and G. Belfort, High throughput atmospheric pressureplasma-induced graft polymerization for identifying protein-resistant surfaces.Biomaterials.33(5): p.1261-70
    [110] Sun, F.Q., et al., Improving hydrophilicity and protein resistance of silicone hydrogelby plasma induced graft polymerization of2-methacryloyloxyethyl phosphorylcholine.E-Polymers: p.11
    [111] Han-Bang, D., et al., Modification of polysulfone membranes via surface-initiatedatom transfer radical polymerization. Applied Surface Science,2009.255(21): p.8860-8866
    [112] De Geyter, N., R. Morent, and C. Leys, Influence of ambient conditions on the ageingbehaviour of plasma-treated PET surfaces. Nuclear Instruments&Methods in PhysicsResearch Section B-Beam Interactions with Materials and Atoms,2008.266(12-13): p.3086-3090
    [113] Li, G., et al., Nonfouling Polyampholytes from an Ion-Pair Comonomer withBiomimetic Adhesive Groups. Macromolecules.43(1): p.14-16
    [114] He, Q., et al., The effect of PEGylation of mesoporous silica nanoparticles onnonspecific binding of serum proteins and cellular responses. Biomaterials.31(6): p.1085-1092
    [115] Lin, L., et al., Modification of hydrophobic acrylic intraocular lens with poly(ethyleneglycol) by atmospheric pressure glow discharge: A facile approach. Applied SurfaceScience,2010.256(24): p.7354-7364
    [116] Perrino, C., et al., A biomimetic alternative to poly(ethylene glycol) as an antifoulingcoating: Resistance to nonspecific protein adsorption of poly(L-lysine)-graft-dextran.Langmuir,2008.24(16): p.8850-8856
    [117] Vrlinic, T., et al., How to Control the Recombinant Prion Protein Adhesion forSuccessful Storage Through Modification of Surface Properties. Biointerphases.7(1-4)
    [118] Bo Philipson, P.F., Bertil Calel, Annika Grunge, Kerstin Hallnas, Eva Lydahl andLena ohman, heparin surface modified intraocular lenes-a1year follow-up of a safetystudy. ACTA OPTHALMOLOGICA,1990.68: p.601-603
    [119] Li, G., et al., The effect of coimmobilizing heparin and fibronectin on titanium onhemocompatibility and endothelialization. Biomaterials,2011.32(21): p.4691-703
    [120] Li, J., et al., Covalent heparin modification of a polysulfone flat sheet membrane forselective removal of low-density lipoproteins: a simple and versatile method.Macromol Biosci,2011.11(9): p.1218-26
    [121] S. KANG, M.-J.K., S.-H. PARK, C.-K. JOO, Comparison of clinical results betweenheparin surface modified hydrophilic and hydrophobic acrylic IOLs. European Journalof Ophthalmology,2008.18
    [122] B. Seifert, P.R.a.T.G., Covalent immobilization of hirudin immoves thehaemocompatibilitv of PLGA in vitro. Biomaterials,1997.18: p.1495-1502
    [123] H-S Chiang, R.-S.Y.a.T.-F.H., Thrombin enhances the adhesion and migration ofhuman colon adenocarcinoma cells via increased fl3-integrin expression on thetumour cell surface and their inhibition by the snake venom peptide, rhodostomin.British Journal of Cancer,1996.73: p.902-908
    [124] Graf, J., The effect of symbionts on the physiology of Hirudo medicinalis, themedicinal leech. Invertebrate Reproduction&Development,2002.41(1-3): p.269-275
    [125]袁晓辉,王万杰,郑燕林,蒋纪恺,曾庆华,水蛭素预防眼内增生性病变的初步观察.眼科新进展,2000.20(4)
    [126]孙宇,李运曼,夏仁睿,崔莉,吴梧桐,重组水蛭素对实验性白内障的防治作用.Journal of China Pharmaceutical University,2005.36(3): p.260-262
    [127] Bexborn, F., et al., Hirudin versus heparin for use in whole blood in vitrobiocompatibility models. J Biomed Mater Res A,2009.89(4): p.951-9
    [128] Ma, J., et al., Synthesis and applications of2-methacryloyloxyethyl phosphorylcholinemonomer and its polymers. Progress in Chemistry,2008.20(7-8): p.1151-1157
    [129] Ishihara, K., et al., Photoinduced graft polymerization of2-methacryloyloxyethylphosphorylcholine on polyethylene membrane surface for obtaining blood celladhesion resistance. Colloids and Surfaces B-Biointerfaces,2000.18(3-4): p.325-335
    [130] Liu, P.S., et al., Surface modification of cellulose membranes with zwitterionicpolymers for resistance to protein adsorption and platelet adhesion. Journal ofMembrane Science.350(1-2): p.387-394
    [131] Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention ofbiofouling. Colloids and Surfaces B-Biointerfaces,2000.18(3-4): p.261-275
    [132] Ho Ye, S., et al., High functional hollow fiber membrane modified with phospholipidpolymers for a liver assist bioreactor. Biomaterials,2006.27(9): p.1955-62
    [133] Ishihara, K., et al., Biomimetic phosphorylcholine polymer grafting frompolydimethylsiloxane surface using photo-induced polymerization. Biomaterials,2006.27(30): p.5151-51605160
    [134] Sugiyama, K., et al., Grafting of vinyl monomers on the surface of a poly(ethyleneterephthalate) film using Ar plasma post polymerization technique to increasebiocompatibility. Macromolecular Chemistry and Physics,1998.199(6): p.1201-1208
    [135] Sugiura, S., et al., Surface modification of polydimethylsiloxane with photo-graftedpoly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.Colloids and Surfaces B-Biointerfaces,2008.63(2): p.301-305
    [136] Rautray, T.R., et al., Surface modification of titanium and titanium alloys by ionimplantation. J Biomed Mater Res B Appl Biomater,2010.93(2): p.581-91
    [137] A. Ohl, K.S., Plasma-induced chemical micropatterning for cell culturingapplications: a brief review. Surface and Coatings Technology,1999.116-119: p.820-830
    [138] Jang, K., et al., Surface modification by2-methacryloyloxyethyl phosphorylcholinecoupled to a photolabile linker for cell micropatterning. Biomaterials,2009.30(7): p.1413-20
    [139] Schmalenberg, K.E., H.M. Buettner, and K.E. Uhrich, Microcontact printing ofproteins on oxygen plasma-activated poly(methyl methacrylate). Biomaterials,2004.25(10): p.1851-1857
    [140]周廉等, ed.中国生物医用材料科学与产业现状及发展战略研究.国家重大需求分析, ed.顾忠伟.2012,化学工业出版社:北京.9-10
    [141] Schroeder, A.C., et al., Impact of fibronectin on surface properties of intraocularlenses. Graefes Arch Clin Exp Ophthalmol,2009.247(9): p.1277-83
    [142] Prosdocimo, G., et al., Posterior capsule opacification after phacoemulsification-Silicone CeeOn Edge versus acrylate AcrySof intraocular lens. Journal of Cataract andRefractive Surgery,2003.29(8): p.1551-1555
    [143] Kramer, S., et al., Subluxation of hydrophilic acrylate intraocular lenses due tomassive capsular fibrosis. Ophthalmologe.107(5): p.460-+
    [144] Taboada-Esteve, J.F., et al., Hydrophilic acrylic intraocular lens clouding: Aclinicopathological review. European Journal of Ophthalmology,2007.17(4): p.588-594
    [145] Allers, A., et al., Intraindividual comparison of intraocular lenses made of highlyrefractive silicone (Allergan SI40NB) and hydrophobic acrylic (Alcon AcrysofMA60BM).1-year results. Ophthalmologe,2000.97(10): p.669-675
    [146] Leaming, D.V., Practice styles and preferences of ASCRS members-2003survey.Journal of Cataract and Refractive Surgery,2004.30(4): p.892-900
    [147] Yuen, C., et al., Modification of the surface properties of a lens material to influenceposterior capsular opacification. Clinical and Experimental Ophthalmology,2006.34(6): p.568-574
    [148] Desmet, T., et al., Nonthermal Plasma Technology as a Versatile Strategy forPolymeric Biomaterials Surface Modification: A Review. Biomacromolecules,2009.10(9): p.2351-2378
    [149] Larsson, R., et al., Intraocular PMMA lenses modified with surface-immobilizedheparin: evaluation of biocompatibility in vitro and in vivo. Biomaterials,1989.10(8):p.511-6
    [150] Li, D.J., F.Z. Cui, and H.Q. Gu, F+ion implantation induced cell attachment onintraocular lens. Biomaterials,1999.20(20): p.1889-1896
    [151] Fang, Z., et al., Surface modifications of polymethylmetacrylate films usingatmospheric pressure air dielectric barrier discharge plasma. Vacuum,2012.86(9): p.1305-1312
    [152] Tu, X., H.J. Gallon, and J.C. Whitehead, Electrical and spectroscopic diagnostics of asingle-stage plasma-catalysis system: effect of packing with TiO2. Journal of PhysicsD-Applied Physics.44(48)
    [153] Wang, P., et al., Plasma-induced immobilization of poly(ethylene glycol) ontopoly(vinylidene fluoride) microporous membrane. Journal of Membrane Science,2002.195(1): p.103-114
    [154] Li, L., et al., Surface modification of intraocular lens material by poly(ethylene glycol)methyl ether methacrylate via a plasma technique to influence posterior capsularopacification. Journal of Controlled Release.152: p. E220-E221
    [155] Wang, G.-Q., H.-Q. Gu, and X.-J. Peng, Study on the surface properties of surfacemodified silicone intraocular lenses. International Journal of Ophthalmology.5(1): p.84-87
    [156] Hong-Sub, B., et al., High transmittance of a PMMA-coated film on glass or quartz.Sae Mulli,2005.51(5): p.341-4
    [157] Kim, G.H. and J.H. Park, A PMMA optical diffuser fabricated using an electrospraymethod. Applied Physics a-Materials Science&Processing,2007.86(3): p.347-351
    [158] Ishimura, S., et al., The development of anti-reflection coating for PMMA resin usingvacuum ultraviolet light. Memoirs of the Faculty of Engineering, Miyazaki University,2006(35): p.125-9
    [159] Kaufman, H.E., et al., Corneal endothelium damage with intraocular lenses: contactadhesion between surgical materials and tissue. Science (New York, N.Y.),1977.198(4316): p.525-7
    [160] Yanlin, W., et al., Surface Modification of Hydrophobic PMMA Intraocular Lens bythe Immobilization of Hydroxyethyl Methacrylate for Improving Application inOphthalmology. Plasma Chemistry and Plasma Processing.31(6): p.811-25
    [161] Xia, F., et al., Multiresponsive Surfaces Change Between Superhydrophilicity andSuperhydrophobicity. Advanced Materials,2007.19(18): p.2520-2524
    [162]林园,黄庆荣,苏朝晖, QCM研究蛋白质与多糖的相互作用.应用化学,2010.27(5)
    [163] Xavier Turon, O.J.R., and Randall S. Deinhammer, Enzymatic Kinetics of CelluloseHydrolysis: A QCM-D Study. Langmuir,2008.24: p.3880-3887
    [164]晖,顾帼华,邱冠周,王.,接触角法测量高分子材料的表面能.中南大学学报(自然科学版),2006.37(5)
    [165]京,肖.原.盛.,聚乳酸膜表面氨等离子体改性.天津大学学报,2004.37(7)
    [166] Alibeik, S., S. Zhu, and J.L. Brash, Surface modification with PEG and hirudin forprotein resistance and thrombin neutralization in blood contact. Colloids Surf BBiointerfaces,2010.81(2): p.389-96
    [167] Bexborn, F., et al., Hirudin versus heparin for use in whole blood in vitrobiocompatibility models. Journal of Biomedical Materials Research Part A,2009.89A(4): p.951-959
    [168] Werner, L.P., et al., Endothelial damage caused by uncoated and fluorocarbon-coatedpoly(methyl methacrylate) intraocular lenses. Journal of Cataract and RefractiveSurgery,1997.23(7): p.1013-1019
    [169]袁佳琴,孙慧敏,徐延山,郭红玉,王桂琴,顾汉卿,祁明信,黄秀榕,氟-肝素表面修饰IOL的实验研究.眼科新进展,2003.23(3): p.153-156
    [170] Boeve, T.J., et al., Comparison of argatroban and hirudin for the reperfusion ofthrombotic arterial occlusion by tissue plasminogen activator. Journal of Thrombosisand Thrombolysis,1998.6(2): p.103-108
    [171] Lubenow, N. and A. Greinacher, Hirudin in heparin-induced thrombocytopenia.Seminars in Thrombosis and Hemostasis,2002.28(5): p.431-438
    [172]汪锰,安全福,吴礼光,莫剑雄,高从,膜Zeta电位测试技术研究进展.分析化学评述与进展,2007.35(4): p.605-610
    [173] Uchida, E., H. Iwata, and Y. Ikada, Surface structure of poly(ethylene terephthalate)film grafted with poly(methacrylic acid). Polymer,2000.41(10): p.3609-3614
    [174] Wissink, M.J.B., et al., Improved endothelialization of vascular grafts by local releaseof growth factor from heparinized collagen matrices. Journal of Controlled Release,2000.64(1-3): p.103-114
    [175] Grace, J.M. and L.J. Gerenser, Plasma treatment of polymers. Journal of DispersionScience and Technology,2003.24(3-4): p.305-341
    [176] Sanaee, Z., et al., Minimizing permeability of PET substrates using Oxygen plasmatreatment. Applied Surface Science.257(6): p.2218-2225
    [177] Toufik, M., et al., Improvement of performances of PET track membranes by plasmatreatment. European Polymer Journal,2002.38(2): p.203-209
    [178] De Geyter, N., et al., Treatment of polymer films with a dielectric barrier discharge inair, helium and argon at medium pressure. Surface&Coatings Technology,2007.201(16-17): p.7066-7075
    [179] Kim, Y.J., et al., Surface characterization and in vitro blood compatibility ofpoly(ethylene terephthalate) immobilized with insulin and/or heparin using plasmaglow discharge. Biomaterials,2000.21(2): p.121-130
    [180] Babic, D., I. Poberaj, and M. Mozetic, Fiber optic catalytic probe for weakly ionizedoxygen plasma characterization. Review of Scientific Instruments,2001.72(11): p.4110-4114
    [181] Ciolacu, F.C.L., et al., Molecular level stabilization of poly(ethylene terephthalate)with nanostructured open cage trisilanolisobutyl-POSS. Macromolecules,2007.40(2):p.265-272
    [182] Ramires, P.A., et al., Plasma-treated PET surfaces improve the biocompatibility ofhuman endothelial cells. Journal of Biomedical Materials Research,2000.51(3): p.535-539
    [183] Wu, G., et al., Excimer laser chemical ammonia patterning on PET film. Journal ofMaterials Science-Materials in Medicine,2009.20(2): p.597-606
    [184] Zaplotnik, R.K., M; Doliska, A; Stana-Kleinschek, K MODIFICATION OFPET-POLYMER SURFACE BY NITROGEN PLASMA. MATERIALI INTEHNOLOGIJE MAY-JUN201145(3): p.199-203
    [185] Chen, J.R., X.Y. Wang, and W. Tomiji, Wettability of poly(ethylene terephthalate)film treated with low-temperature plasma and their surface analysis by ESCA. Journalof Applied Polymer Science,1999.72(10): p.1327-1333
    [186] A Vesel, M.M., Modification of PET surface by nitrogen plasma treatment. Journal ofPhysics: Conference Series,2008.100(1): p.1-4
    [187] Wang, M.C., YI; Poncin-Epaillard, F, Acid and basic functionalities of nitrogen andcarbon dioxide plasma-treated polystyrene SURFACE AND INTERFACEANALYSIS2005.37(3): p.348-355
    [188] Inagaki, N., et al., Surface modification of PET films by pulsed argon plasma. Journalof Applied Polymer Science,2002.85(14): p.2845-2852
    [189] Sun, J., et al., Surface modification of PET films by atmospheric pressureplasma-induced acrylic acid inverse emulsion graft polymerization. Surface&Coatings Technology.204(24): p.4101-4106
    [190] Gerenser, L.J., et al., Surface chemistry of nitrogen plasma-treatedpoly(ethylene-2,6-naphthalate): XPS, HREELS and static SIMS analysis. Surface andInterface Analysis,2000.29(1): p.12-22
    [191] Markkula, T.K., et al., Surface chemical derivatization of plasma-treated PET andPTFE. Surface and Interface Analysis,2002.34(1): p.583-587
    [192] Lau, K.H.A., et al., Surface-Grafted Polysarcosine as a Peptoid Antifouling PolymerBrush. Langmuir.28(46): p.16099-16107
    [193] Song, B., L. Meng, and Y. Huang, Surface modification of PBO fiber through oxygenplasma induced vapor phase grafting of acrylic acid. Materials Letters.83: p.118-120
    [194] Inagaki, N., et al., Surface modification of poly(tetrafluoroethylene) with pulsedhydrogen plasma. Journal of Applied Polymer Science,2002.83(2): p.340-348
    [195] Ru, L. and C. Jie-rong, Studies on wettability of medical poly(vinyl chloride)'byremote argon plasma. Applied Surface Science,2006.252(14): p.5076-5082
    [196] Cui, N.Y. and N.M.D. Brown, Modification of the surface properties of apolypropylene (PP) film using an air dielectric barrier discharge plasma. AppliedSurface Science,2002.189(1-2): p.31-38
    [197] Han, S., et al., Polymer surface modification by plasma source ion implantation.Surface&Coatings Technology,1997.93(2-3): p.261-264
    [198] Hayward, J.A. and D. Chapman, Biomembrane surfaces as models for polymer design:the potential for haemocompatibility. Biomaterials,1984.5(3): p.135-42
    [199] Nakabayashi, N. and D.F. Williams, Preparation of non-thrombogenic materials using2-methacryloyloxyethyl phosphorylcholine. Biomaterials,2003.24(13): p.2431-2435
    [200] Xia, B., M. Xie, and B. Yang, Surface modification of ultrahigh molecular weightpolyethylene by the poly(ethylene glycol)-grafted method and its effect on theadsorption of proteins and the adhesion of blood platelets. Journal of BiomedicalMaterials Research Part A.101A(1): p.54-63
    [201] Futamura, K., et al., Rapid development of hydrophilicity and protein adsorptionresistance by polymer surfaces bearing phosphorylcholine and naphthalene groups.Langmuir,2008.24(18): p.10340-10344
    [202] Zhiwen, Z., et al., Surface characterization of polyethylene terephthalate films treatedby ammonia low-temperature plasma. Applied Surface Science,2012.258(18): p.7207-7212
    [203] Shi, M.K., et al., Plasma treatment of PET and acrylic coating surfaces-I. In situXPS measurements. Journal of Adhesion Science and Technology,2000.14(12): p.1485-1498
    [204] Li, W. and E. Ding, Characterization of pet fabrics surface modified by graft cellulosenano-crystal using TGA, FE-SEM and XPS. Surface Review and Letters,2006.13(6):p.819-823
    [205] Zhang, X. and R.B. Bai, Immobilization of chitosan on nylon6,6and PET granulesthrough hydrolysis pretreatment. Journal of Applied Polymer Science,2003.90(14): p.3973-3979
    [206] Battocchio, C., et al., Self-assembling behaviour of self-complementary oligopeptideson biocompatible substrates. Materials Science and Engineering B-AdvancedFunctional Solid-State Materials.169(1-3): p.36-42
    [207] Rokugawa, H. and S. Adachi, Investigation of rapid thermally annealed GaP(001)surfaces in vacuum. Surface and Interface Analysis.42(2): p.88-94
    [208] Vasilets, V.N., et al., Plasma assisted immobilization of poly(ethylene oxide) ontofluorocarbon surfaces. Journal of Adhesion Science and Technology,2002.16(14): p.1855-1868
    [209] Indest, T., et al., Adsorption of human serum albumin (HSA) on modified PET filmsmonitored by QCM-D, XPS and AFM. Colloids and Surfaces a-Physicochemical andEngineering Aspects.360(1-3): p.210-219
    [210] Sawano, H., S.i. Warisawa, and S. Ishihara, Study on wear reduction mechanism ofartificial joints grafted with hydrophilic polymer membranes. Wear.268(1-2): p.233-240
    [211] Kyomoto, M. and K. Ishihara, Self-Initiated Surface Graft Polymerization of2-Methacryloyloxyethyl Phosphorylcholine on Poly(ether ether ketone) byPhotoirradiation. Acs Applied Materials&Interfaces,2009.1(3): p.537-542
    [212] Wei, Y., et al., CONSTRUCTION OF BIOMIMETIC POLYMER SURFACE FORENDOTHELIAL CELL SELECTIVITY. Acta Polymerica Sinica,(12): p.1474-1478
    [213] Griesser, H.J., et al., Plasma surface modifications for structural and biomedicaladhesion applications. First International Congress on Adhesion Science andTechnology-Invited Papers: Festschrift in Honor of Dr. K.L. Mittal on the Occasionof His50th Birthday, ed. W.J.V. Olij and H.R. Anderson.1998.307-328
    [214] Gupta, B., et al., Plasma-induced graft polymerization of acrylic acid ontopoly(ethylene terephthalate) films: characterization and human smooth muscle cellgrowth on grafted films. Biomaterials,2002.23(3): p.863-871
    [215] Ou, Y., et al., Protective Effect of Recombinant Hirudin Variant III againstGalactose-Mediated Rat Lens Epithelial Cell Damage. Current Eye Research.37(3): p.187-194
    [216] Ou, Y., et al., Intracellular GSH and ROS levels may be related to galactose-mediatedhuman lens epithelial cell apoptosis: Role of recombinant hirudin variant III.Chemico-Biological Interactions,2009.179(2-3): p.103-109
    [217] Ou, Y., G.-Y. Liao, and W.-T. Wu, Potential use of hirudin in diabetic cataract: Astudy of galactose mediated human lens epithelial cells injury. Chemico-BiologicalInteractions,2008.173(2): p.141-147
    [218] Lampin, M., et al., Correlation between substratum roughness and wettability, celladhesion, and cell migration. Journal of Biomedical Materials Research,1997.36(1):p.99-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700