用户名: 密码: 验证码:
急性髓细胞白血病细胞和分子遗传学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     1.单中心研究中国4241例初治急性髓细胞白血病(de no AML)患者细胞遗传学分布特征,比较与亚洲其他国家和西方国家差异。
     2.研究430例初治AML患者16种基因突变发生率,分析基因突变与患者临床资料、MICM分型、危险分组及对预后的影响。
     3.研究EZH2基因突变在714例AML患者中发生率和临床意义。
     [方法]
     1.分析1985年4月至2010年11月于苏州大学附属第一医院4196例经MICM分型确诊的初治AML患者骨髓细胞遗传学特征。采用R显带核型分析技术,并按照国际人类细胞遗传学术语命名法(ISCN2009)进行核型突变命名。
     2.采集430例AML患者骨髓单个核细胞,采用基因组DNA-PCR方法扩增C-KIT、NPM1、FLT3-TKD、FLT3-ITD、MLL-PTD、EZH2、RUNX1、 ASXL1、IDH1、IDH2、NRAS、CBL、WT1、TET2、DNMT3和JAK2基因,采用直接基因测序分析基因突变。随访患者临床与实验室资料及疗效、复发及长期生存情况。
     3.对714例AML患者骨髓单个核细胞基因组DNA进行PCR方法扩增EZH2基因2~20外显子,并通过DNA直接测序法检测EZH2的突变,并分析EZH2基因突变和患者临床特征相关性及对预后的影响。
     [结果]
     1.单中心中国急性髓细胞白血病细胞遗传学特征
     4196例AML患者(98.9%)成功的进行了细胞遗传学的分析,其中2405例(57.3%)患者核型异常,并检测出65种新的核型异位突变。在各种核型异常中,t(15;17)居于首位,占19.3%,其次为t(8;21)(14.3%)、复杂核型(5.3%)、+8(3.2%);本中心t(15;17)和t(8;21)异常比例与其他东亚国家相似,均明显高于北欧和美国;与西方国家相比,M3亚型比例偏高,而M4亚型比例偏低。
     2.16种基因突变的发生率及其临床意义。
     430例AML患者中,77.2.0%患者具有一种及一种以上基因突变发生,而在正常核型中,基因突变比例高达84.3%。RUNX1和IDH1倾向于发生在老年人(P=0.004,P=0.038),而MLL-PTD绝大多数发生于男性(12/14,85.7%)。NPM1(P<0.0001), FLT3-ITD (P<0.0001)、DNMT3A (P=0.021)突变与血象高白细胞(30.0×109/L)具有明显的相关性;MLL-PTD (P<0.0001)和EZH2(p=0.023)突变的发生与患者初诊时骨髓原始细胞比例低于30%具有显著相关性;MLL-PTD (P<0.0001), RUNX1(p=0.015)突变绝大多数发生于髓单核性免疫表型AML;73.5%C-KIT突变发生于CBF阳性AML (P<0.0001),81.1%NPM1、63.8%IDH2和85.2%DNMT3A突变发生于正常核型AML.
     各基因突变相关性分析显示,NPM1突变与FLT3-ITD(37/99, P<0.0001)、IDH1(13/20, P<0.0001)、IDH2(24/47, P<0.0001)、TET2(17/47, P=0.007)和DNMT3A (18/27, P<0.0001)突变具有显著相关。
     预后分析显示存在FLT3-ITD、IDH1和NRAS突变患者CR率明显低下,P值分别为0.007、0.031和0.031,FLT3-ITD、NRAS突变和危险分组是CR率的独立影响因素(P<0.0001,p=0.003, P=0.006respectively); Kaplan-Meier生存分析发现NPM1、 FLT3-ITD、MLL-PTD、RUNX1、IDH1、IDH2、NRAS和DNMT3A突变患者与不良预后相关,无病生存率(EFS):P=0.0148,P=0.0164,P=0.0018,P=0.0015,P=0.0213, P=0.0116,P=0.0001,P<0.0001;总生存率(OS:P=0.0077,P=0.0039,P=0.0177, P=0.0150,P=0.0014,P=0.0159,P<0.0001, P=0.0001。
     多因素Cox回归分析显示,FLT3-ITD、NRAS、IDH2突变,年龄和危险分类是独立预后因素,EFS:P值分别为P<0.0001、0.029、0.046、<0.0001、<0.0001;OS:P值分别为<0.0001、0.001、0.005、<0.0001、<0.0001。
     3.EZH2发生率及其临床意义。
     714例AML患者中,13例检测到EZH2基因突变,突变率为1.8%,更易存在于男性(11/13),具有统计学意义(P=0.033)。单因素分析显示骨髓原始细胞<30%组EZH2突变率为14.3%(4/28),而原始细胞≥30%组患者EZH2突变率仅1.3%(9/686),两者存在着显著的差异(P<0.0001)。具有-7和7q-核型异常的患者EZH2突变率(2/22,7.7%)明显高于不伴有-7和7q-核型异常者(11/672,1.65%),(P=0.025)。
     虽然EZH2突变组患者无病生存时间和总生存时间均低于野生组,但EZH2突变对AML患者CR率、无病生存率(EFS)和总生存率(OS)影响无统计学意义,p值>0.05。因EZH2突变发生在AML患者为小概率事件,经预后加权分析后显示,EZH2突变对预后的影响尚不能定论。
     [结论]
     1.与西方国家相比,我单位AML患者发病年龄更加年轻。东亚地区AML患者更倾向于FAB M3亚型及预后较好细胞核型,t(15;17)和t(8;21)。
     2.基因突变与AML的临床特征具有一定相关性并且是AML预后重要影响因。
     3. EZH2突变作为AML患者重现性基因遗传学异常,与发病时骨髓原始细胞比例低于30%及-7/del(7q)核型异常具有显著相关性,其对预后的影响尚不清楚。
     4.对AML预后危险分组评估和个体化治疗方案的制定过程中,应该对包括年龄,身体状况、临床和MICM特征,尤其细胞和分子遗传学因素进行综合分析。
[Objective]
     1. To analyze cytogenetic characters on4241consecutive and unselected de novo AML patients from a single center in China and compare our results with that of other Asian and western countries
     2. To investigated the prevalence of16gene mutations including C-KIT, NPM1, FLT3-TKD, FLT3-ITD, MLL-PTD, EZH2, RUNX1, ASXL1, IDH1, IDH2, NRAS, CBL, WT1, TET2, DNMT3A and JAK2on the molecular level by sequencing coding exons in a cohort of430de novo AML patients, analyzed the relationship with clinical features, MICM characters and risk-status categories, evaluated the correlation among gene mutations and the prognostic relevance with treatment.
     3. To determine the incidence and clinical implications of somatic EZH2mutations in714patients with de novo AML.
     [Methods]
     1. From April1985to November2011, samples from4196newly diagnosed patients with de novo AML were received at the cytogenetic laboratory of the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology for cytogenetic analysis. R-banded karyotypic analyses were then performed according to standard procedures of our laboratory.Chromosomal abnormalities were described according to the International System for Human Cytogenetic Nomenclature (ISCN2009).
     2. Genomic DNA of all430patients was extracted from frozen bone marrow mononuclear cells (BMMCs) after Ficoll gradient centrifugation using standard procedures. Mutations of C-KIT, NPM1, FLT3-TKD, FLT3-ITD, MLL-PTD,EZH2, RUNX1, ASXL1, IDH1, IDH2, NRAS, CBL, WT1, TET2, DNMT3and JAK2were analyzed by PCR amplification followed by direct DNA sequencing. The clinical and lab data of these cases were collected, and their clinical characteristics therapies and survival prognosis were analyzed.
     3. EZH2mutations were analyzed by PCR amplification of the entire coding region of PHF6exons2-10followed by direct bidirectional DNA sequencing in714AML patients from January2005to December2010.
     [Results]
     1. Cytogenetic characters on4241de novo AML patients from a single center Karyotypic analyses were successfully performed in4196patients (98.9%) at diagnosis. Chromosome abnormalities were detected in2405patients (57.3%). Besides the aberrations previously reported in the literature,65novel translocations were observed in this study. t(15;17) represented the most frequent anomaly(19.3%) in our cohort, followed by t(8;21)(14.3%), complex (5.3%),+8(3.2%). The percentage of t(15;17) and t(8;21) was comparable with that in most East Asian countries, which was obviously higher than reported in Central-North Europe and the United States. Among the FAB subtype, the frequency of M3was higher while M4was lower compared with that of western countries.
     2. Gene mutation patterns
     77.2.0%of430AML patients and84.3%of178normal karyotype AMLs were found to have at least one mutation. RUNX1and IDH1mutation had the tendency to occur in the old age (P=0.004, P=0.038) and MLL-PTD mutation exclusively in male patients12/14(85.7%). NPM1, FLT3-ITD, DNMT3A mutations were significantly associated to high WBC count (30.0×109/L)(P<0.0001, P<0.0001and P=0.021respectively), MLL-PTD and EZH2to less percentage of blasts in bone marrow(<30%)(P<0.0001and p=0.023) and MLL-PTD, RUNX1mostly to BM immunophenotype of both myeloid and monocytic (P<0.0001and p=0.015). C-KIT mutation overwhelming occurred in core binding factor (CBF) leukemias (73.5%)(P<0.0001), while NPM1(81.1%), IDH2(63.8%) and DNMT3A (85.2%) mostly occurred in normal karyotype AMLs.
     NPM1mutation often overlapped with the others genes, associated with FLT3-ITD (37/99, P<0.0001), IDH1(13/20, P<0.0001), IDH2(24/47, P<0.0001), TET2(17/47, P=0.007) and DNMT3A (18/27, P<0.0001).
     Prognosis analysis showed FLT3-ITD, IDH1, NRAS mutations were associated with a significant lower CR rate (P=0.007,0.031and0.031, respectively), FLT3-ITD, NRAS and risk-status subgroup were independent influence factors for CR rate (P<0.0001, p=0.003, P=0.006respectively). By Kaplan-Meier survival analysis, NPM1, FLT3-ITD, MLL-PTD, RUNX1, IDH1, IDH2, NRAS and DNMT3A mutations predicted the poor EFS and OS(EFS:P=0.0148, P=0.0164, P=0.0018, P=0.0015, P=0.0213, P=0.0116, P=0.0001and P<0.0001, respectively and OS:P=0.0077,P=0.0039, P=0.0177, P=0.0150, P=0.0014, P=0.0159, P<0.0001, P=0.0001, respectively).
     In a multivariate Cox regression model, mutations of FLT3-ITD, NRAS, IDH2, age and risk-status category were revealed independent prognostic significance (EFS: P<0.0001,0.029,0.046,<0.0001<0.0001;OS:<0.0001,0.001,0.005,<0.0001,<0.0001).
     3. Prevalence and prognostic value of somatic EZH2mutations in714patients with de novo AML.
     EZH2mutations were identified in13/714(1.8%) of AML patients and occurred more in males (P=0.033). The presence of EZH2mutations was significantly associated with lower blast percentage (21-30%) in bone marrow (P<0.0001) and-7/del(7q)(P=0.025). There were no differences in the incidence of mutations in13genes, including ASXL1, CBL, c-KIT, DNMT3A, FLT3, IDH1, IDH2, MLL, NPM1, NRAS, RUNX1, TET2, and WT1, between patients with and without EZH2mutations.
     Because of rarity of EZH2mutations in de novo AML, the prognostic impact of EZH2mutations in AML is still uncertain, and will need to be assessed in larger cohorts of patients collected on multi-center co-operative studies, though there were no significant difference on EFS and OS between EZH2mutated patients and wild-type in this study.
     [Conclusions]
     1. Age at diagnosis of AML was much younger than those from the western countries. AML patients of the East Asian population may predispose to have a favorable karyotype and the M3subtype.
     2. Gene mutations were demonstrated related with clinical features and valuable prognostic markers of AML.
     3. Somatic mutations of EZH2may play an important role in pathogenesis of de novo AML patients with-7/del(7q) or with21-30%of blasts in BM.The prognostic impact of EZH2mutations in AML is still uncertain, though there were no significant difference on EFS and OS between EZH2mutated patients and wild-type in this study.
     4. To evaluate exactly prognosis risk status and formulate the personal therapeutic regimen, synthetic analysis of all the factors including age, physical condition, clinical feathers, and MICM characters, especially in cytogenetics and genetic mutation pattern, should extremely been taken into account in advanced
引文
1 Udayakumar AM, Pathare AV, Al-Kindi S, et al. Cytogenetic, morphological, and immunophenotypic patterns in Omani patients with de novo acute myeloid leukemia. Cancer Genet Cytogenet,2007;177(2):89-94.
    2 Vardiman JW, J T, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia:rationale and important changes. Blood, 2009; 114(5):937-951.
    3 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines TM) Acute Myeloid leukemia-Version 2.2011.
    4 Johansson B, Mertens F, Mitelman F. Geographic heterogeneity of neoplasia-associated chromosome aberrations. Genes Chromosomes Cancer,1991;3(1):1-7.
    5 Enjeti AK TS, Sivaswaren CR. Cytogenetic abnormalities in de novo acute myeloid leukemia in adults:relation to morphology, age, sex and ethnicity-a single center study from Singapore. Hematol J,2004;5(5):419-25.
    6 Li T, Xue Y, Wu Y, Pan J. Clinical and molecular cytogenetic studies in seven patients with myeloid diseases characterized by i(20q-). Br J Haematol,2004;125(3):337-342.
    7 LGSM S, Campbell LJ e. An International System for Human Cytogenetic Nomenclature.2009;
    8 Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML:analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood,1998;92(7):2322-2333.
    9 Mitelman F, Johansson B, Mertens F, Mitelman F. Database of Chromosome Aberrations in Cancer. URLhttp://atlasgeneticsoncologyorg//Anomalies,2011.
    10 Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9:1783.
    11 Pallisgaard N, Hokland P, Riishoj DC, et a.l Multiplex reverse translocation polymerase chain reaction for simultaneous screening of 29 translocation and chromosomal aberrations in acute leukemia. Blood,1998,92:574-588.
    12 Gill RD. Multistate life-tables and regression models. Math Popul Stud.1992;3(4):259-276.
    13 Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol.2003; 21(24):4642-4649.
    14 Dai H, Xue Y, Pan J, et al. Two novel translocations disrupt the RUNX1 gene in acute myeloid leukemia. Cancer Genet Cytogenet,2007; 177(2):120-4.
    15 Wang Y, Xue Y, Chen S, et al. A novel t(5;11)(q31;p15) involving the NUP98 gene on 11 p15 is associated with a loss of the EGRI gene on 5q31 in a patient with acute myeloid leukemia. Cancer Genet Cytogenet,2010; 199(1):9-14.
    16 Cheng Y, Wang Y, Wang H, et al. Cytogenetic profile of de novo acute myeloid leukemia:a study based on 1432 patients in a single institution of China. Leukemia,2009;23(10):1801-6.
    17 Wang Y, Xue Y, Chen S, et al. A novel t(5;11)(q31;p15) involving the NUP98 gene on 11p15 is associated with a loss of the EGR1 gene on 5q31 in a patient with acute myeloid leukemia. Cancer Genet Cytogenet,2010; 199(1):9-14.
    18 Ahmad F, Dalvi R, Das BR, Mandava S. Specific chromosomal aberrations in de novo acute myeloid leukemia:a comparative analysis of results with a report of three novel chromosomal rearrangements t(7;14)(q35;q13), t(8;18)(p11.2;q12), t(13;15) in Indian population. Cancer Detect Prev,2008;32(2):168-177.
    19 Kuriyama K, Tomonaga M, Kobayashi T, et al. Morphological diagnoses of the Japan adult leukemia study group acute myeloid leukemia protocols:central review. Int J Hematol,2001;73(1):93-9.
    20 Nakase K, Bradstock K, Sartor M, et al. Geographic heterogeneity of cellular characteristics of acute myeloid leukemia:a comparative study of Australian and Japanese adult cases. Leukemia, 2000;14(1):163-8.
    21 Tien HF, Wang CH, Lin MT, et al. Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan. Cancer Genet Cytogenet,1995;84(1):60-8.
    22 Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia:correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 2002;100(1):59-66.
    23 Preiss BS, Kerndrup GB, Schmidt KG, et al. Cytogenetic findings in adult de novo acute myeloid leukaemia. A population-based study of 303/337 patients. Br J Haematol,2003; 123(2):219-34.
    24 Mauritzson N, Johansson B, Albin M, et al. A single-center population-based consecutive series of 1500 cytogenetically investigated adult hematological malignancies:karyotypic features in relation to morphology, age and gender. Eur J Haematol,1999;62(2):95-102.
    25 Sanderson RN, Johnson PR, Moorman AV, et al. Population-based demographic study of karyotypes in 1709 patients with adult acute myeloid leukemia. Leukemia,2006;20(3):444-450.
    26 Sekeres MA, Peterson B, Dodge RK, et al. Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia. Blood,2004; 103(11):4036-4042.
    27 Visani G, Bernasconi P, Boni M, et al. The prognostic value of cytogenetics is reinforced by the kind of induction/consolidation therapy in influencing the outcome of acute myeloid leukemia--analysis of 848 patients. Leukemia,2001;15(6):903-909.
    28 Chillon CM, Garcia-Sanz R, Balanzategui A, et al. Molecular characterization of acute myeloblastic leukemia according to the new WHO classification:a different distribution in Central-West Spain. Haematologica,2001;86(2):162-6.
    29 Arana-Trejo RM, Gomez-Morales E, Rubio-Borja ME, et al. Cytogenetic findings in 303 Mexican patients with de novo acute myeloblastic leukemia. Arch Med Res,1997;28(2):209-14.
    30 Onsten T, Girardi FM, Coelho GM, Lima-Frey MC, Paskulin G. Cytogenetic and morphological findings in 166 patients with de novo acute myeloid leukemia in southern Brazil. Cancer Genet Cytogenet,2006; 170(2):167-70.
    31 14 Bacher U, Kern W, Schnittger S, Hiddemann W, Schoch C, Haferlach T. Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia:a study on 2,235 patients. Ann Hematol,2005;84(12):785-91.
    32 Shanghai. SULCGo. Clinical study of 572 adult acute leukemia patients in Shanghai according to WHO classification. Zhonghua Xue Ye Xue Za Zhi,2007;28(7):444-8.
    33 Hiorns LR, Swansbury GJ, Mehta J, et al. Additional chromosome abnormalities confer worse prognosis in acute promyelocytic leukaemia. Br J Haematol,1997;96(2):314-21.
    34 Pan J, Xue Y, Qiu H, et al. Tetraploid clone characterized by two t(15;17) in five cases of acute promyelocytic leukemia. Cancer Genet Cytogenet,2009;188(1):57-9.
    35 MBaudard, Beauchamp-Nicoud A, Delmer A, et al. Has the prognosis of adult patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive patients over a 16-year period. Leukemia,1999; 13(10):1481-90.
    36 Peterson LF, Boyapati A, Ahn EY, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood,2007; 110(3):799-805.
    37 Douer D, Preston-Martin S, Chang E, Nichols P, Watkins KJ, Levine AM. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood,1996;87(1):308-13.
    38 Sierra M, Alonso A, Odero MD, et al. Geographic differences in the incidence of cytogenetic abnormalities of acute myelogenous leukemia (AML) in Spain. Leuk Res,2006;30(8):943-948.
    39 Mitelman F. Geographic heterogeneity of chromosome aberrations in hematologic disorders. Cancer Genet Cytogenet 1986; 20:203-8.
    40 Xiao Z, Liu S, Liu X, Yu M, Hao Y. Tetraploidy or near-tetraploidy clones with double 8;21 translocation:a non-random additional anomaly of acute myeloid leukemia with t(8;21)(q22;q22). Haematologica 2005;90(3):413-4.
    1 Gilliland DG. Molecular genetics of human leukemias:new insights into therapy. Semin Hematol.2002;39:6-11.
    2 Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med.2008; 358(18):1909-1918.
    3 Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650-665.
    4 Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. Jun 2006;20 (6):965-970.
    5 Wang YY, Zhao LJ, Wu CF, et al. C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci U S A.2011; 108(6):2450-2455.
    6 Heerema-McKenney A, Arber DA. Acute myeloid leukemia. Hematol Oncol Clin North Am, 2009;23(4):633-54.
    7. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines TM) Acute Myeloid leukemia-Version 2.2011.
    8. Gilliland DG. Hematologic malignancies. Current Opinion in Hematology,2001,8:189-191.
    9. Reilly JT. Class III receptor tyrosine kinases:role in leukaemogenesis. Br. J. Haematol,2002, 116(4):744-757.
    10. Tenen DG. Disruption of diferentiation in human cancer:AML shows the way. Nature Review Cancer,2003,3(2):89-101.
    11. Kottaridis PD, Gale RE, Langabeer SE, et al.Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia:implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood.2002; 100:2393-2398.
    12. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia:correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood.2002; 100:59-66.
    13. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia:association with FAB subtypes and identification of subgroups with poor prognosis. Blood.2002;99:4326-4335.
    14 Schnittger S, Kohl T, Haferlach T, et al. KIT-D816 mutations in AML1-ETO positive AML are associated with impaired event-free and overall survival. Blood. Prepublished on October 27,2005, as DOI 10.1182/blood-2005-04-1466.
    15. Pabst T, Mueller BU, Zhang P, et al. Dominantnegative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBP alpha), in acute myeloid leukemia. Nat Genet. 2001;27:263-270.
    16. Frohling S, Schlenk RE, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics:prognostic relevance and analysis of cooperating mutations. J Clin Oncol.2004;22:624-633.
    17. Roumier C, Eclache V, Imbert M, et al. M0 AML.clinical and biologic features of the disease, including AMLI gene mutations:a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood. 2003;101:1277-1283.
    18.10. Schnittger S, Kinkelin U, Schoch C, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia. 2000; 14:796-804.
    19. Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol.2002;20:3254-3261.
    20. Schnittger S, Schoch CW, Mecucci C, et al. Nucleophosmin gene mutations are predictors of favoable prognosis in acute myelogenous leukemiawith a normal karyotype. Blood. 2005;106:3733-3739.
    21. Verhhaak RG, Goodswaard CS, Van Putten W,Bijl MA, Valk PJM. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML):association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005; 106:3747-3754.
    22. Neubauer A, Dodge RK, George SL, et al. Prognostic importance of mutations in the Ras protooncogenes in de novo acute myeloid leukemia. Blood.1994;83:1603-1611.
    23. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood.1999;93:3074-3080.
    24. Stirewalt. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589-3595.
    25. Illmer T, Thiede C, Fredersdorf A, et al. Activation of the RAS pathway is predictive for a chemosensitive phenotype of acute myelogenous leukemia blasts. Clin Cancer Res. 2005; 11:3217-3224.
    26. Bowen D, Frew M, Hills R, et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years.Blood.2005;106:2113-2119.
    27.23. Bos JL, Verlaandevries M, Vandereb AJ, et al. Mutations in N-Ras predominate in acute myeloid leukemia. Blood.1987;69:1237-1241.
    28. Toksoz D, Farr CJ, Marshall CJ. Ras-gene activation in a minor proportion of the blast population in acute myeloid leukemia. Oncogene.1987; 1:409-413
    29. Bacher U, Kern W, Schnittger S, Hiddemann W, Schoch C, Haferlach T. Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia:a study on 2,235 patients. Ann Hematol,2005;84(12):785-91.
    30. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361:1058-1066
    31. Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W et al. Distinct clinical and biological characteristics in adult acute myeloid leukemia bearing isocitrate dehydrogenase 1 (IDH1) mutation. Blood 2010,
    32. Peter Paschka, Richard F. Schlenk, Verena I. et al. IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia With NPM1 Mutation Without FLT3 Internal Tandem Duplication. J Clin Oncol 2010,28:3636-3643.
    33. A Tefferi.Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms:JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1.Leukemia (2010) 24,1128-1138.
    34. Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood.2009; 114(1):144-147.
    35. Ley TJ, Ding L, Walter MJ, McLellan MD, et al. DNMT3A Mutations in Acute Myeloid Leukemia. N Engl J Med.2010; 363(25):2424-2433.
    36.乔纯,孙超,张苏江.急性髓系白血病中DNMT3a丛因突变的研究.《中国实验血液学杂志》2011年02期:303-307
    37. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet.2010; 42(8):722-726.
    38. Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet.2010; 42(8):665-667.
    39. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia:prevalence and prognostic value. Blood.2010; 116(12):2122-2126.
    40. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy:analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood.2001; 98(6):1752-9.
    41 Thiede C, Koch S, Creutzig E, Steudel C, et al.Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood.2006; 107(10):4011-20.
    42. Rocquain J, Carbuccia N, Trouplin V, et al. Combined mutations of ASXL1, CBL, FLT3, IDH1,IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer.2010; 10:401.
    43. Whitman SP, Ruppert AS, Marcucci G, et al.Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication:a Cancer and Leukemia Group B study. Blood.2007; 109(12):5164-7.
    44. Shen Y, Zhu YM, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1,185 patients with acute myeloid leukemia. Blood.2011;118(20):5593-603
    45. LGSM S, Campbell LJ e. An International System for Human Cytogenetic Nomenclature.2009;
    46. Kuendgen A, Germing U. Emerging treatment strategies for acute myeloid leukemia (AML) in the
    elderly. Cancer Treat Rev.2009; 35(2):97-120.
    47. Schneider F, Hoster E, Schneider S,et al. Age-dependent frequencies of NPM 1 mutations and FLT3-ITD in patients with normal karyotype AML(NK-AML). Ann Hematol.2012 Jan;91(1):9-18
    48.吴德沛,颜灵芝,杨莉等.急性髓细胞白血病患者NPM1与FLT3基因突变的研究《中华内科杂志》2007年11期907-910
    49. Nicolas Boissel, Olivier Nibourel, Aline Renneville.et al. Prognostic Impact of Isocitrate Dehydrogenase Enzyme Isoforms 1 and 2 Mutations in Acute Myeloid Leukemia:A Study by the Acute Leukemia French Association Group. J Clin Oncol.2010 Aug 10;28(23):3717-23.
    1. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues,4th ed. Lyon (2008): International Agency for Research on Cancer (IARC).
    2. Bacher U, Kern W, Schnittger S, Hiddemann W, Schoch C, et al. (2005) Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia:a study on 2,235 patients. Ann Hematol 84:785-791.
    3. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, et al. (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML):analysis of 1065 patients entered into the United Kingdom Medical Research Council AML II trial. Blood 98:1312-1320.
    4. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, et al. (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366:1079-1089.
    5. Chou WC, Huang HH, Hou HA, Chen CY, Tang JL, et al. (2010) Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations.Blood 116:4086-4094.
    6. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, et al. (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363:2424-2433.
    7. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, et al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058-1066.
    8. Thol F, Damm F, Wagner K, Gohring G, Schlegelberger B, et al. (2010) Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood 116:614-616.
    9. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, et al. (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289-2301.
    10. Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J, et al. (2010) IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic-or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 24:1302-1309.
    11. Walter MJ, Ding L, Shen D, Shao J, Grillot M, et al. (2011 Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25:1153-1158.
    12. Stegelmann F, Bullinger L, Schlenk RF, Paschka P, Griesshammer M, et al. (2011)DNMT3A mutations in myeloproliferative neoplasms. Leukemia 25:1217-1219.
    13. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039-1043.
    14. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, et al. (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107:20980-20985.
    15. Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, et al. (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes:evidence from a core dataset of 2124 patients. Blood 110:4385-4395.
    16. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, et al. (2010)Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722-726.
    17. Nikoloski G, Langemeijer SMC, Kuiper RP, Knops R, Massop M, et al. (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665-667.
    18. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, et al. (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181-185.
    19. Julien Rocquain, Nadine Carbuccia, Virginie Trouplin, Stephane Raynaud, Anne Murati, et al. Combined mutations of ASXL1, CBL, FLT3, IDH1,IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias BMC Cancer 2010, 10:401-407
    20. Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. Jun 2006; 20:965-970.
    21. Timothy J. Ley, Li Ding, Matthew J. Walter, Michael D. McLellan, Tamara Lamprecht, et al. DNMT3A Mutations in Acute Myeloid Leukemia. N Engl J Med 2010; 363:2424-2433.
    22. Shiah HS, Kuo YY, Tang JL, Huang SY, Yao M, et al. Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia 2002; 16:196-202
    23. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, et al. (1982)Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51:189-199.
    24. Huh YO, Jilani I, Estey E, Giles F, Kantarjian H, et al. (2002) More cell death in refractory anemia with excess blasts in transformation than in acute myeloid leukemia. Leukemia 16:2249-2252.
    25. Greenberg P, Anderson J, de Witte T, Estey E, Fenaux P, et al. (2000)Problematic WHO reclassification of myelodysplastic syndromes. Members of the International MDS Study Group. J Clin Oncol 18:3447-3452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700