用户名: 密码: 验证码:
FGFRs在骨矿代谢中作用的临床与基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松(osteoporosis)是由于骨强度降低引起的骨折风险增加的慢性复杂代谢性疾病。随着社会老年化,骨质疏松已成为严重威胁我国人口健康的高发疾病。其主要危害是骨折风险增加。男性骨质疏松骨折发病率低于女性,但死亡率却明显高于女性,其发生机制尚不清楚。既往研究主要集中在女性绝经后骨质疏松,由于不同性别间骨质疏松的环境及遗传影响因素存在差异,非常有必要对男性骨质疏松相关表型进行研究。
     骨强度降低是骨质疏松发生的关键病理生理改变。骨强度反映骨的密度和骨质量。骨密度(bone mineral density, BMD)可反映约70%的骨强度情况,并且是目前骨质疏松诊断的金标准,所以骨密度也是最常使用的骨强度变量。髋部几何形态(hipgeometry)独立于BMD能反映骨强度。在男性和女性中都发现股骨颈剖面形态参数是独立的髋部骨折风险危险因子。骨面积与骨质疏松骨折发生率显著相关,有流行病学研究发现股骨颈骨面积是独立的髋部骨折风险因素。定量超声(Quantitativeultrasound,QUS)可无创检测骨结构及材料性状变化,可反映骨质量的变化,因此也可被认为是骨强度参数之一。
     上述骨强度参数均受到环境和遗传的协同调控。在峰值骨密度达到阶段,年龄及环境因素对BMD的累积影响效应相对较低,人群中的变异主要受遗传因素影响。研究峰值骨密度年龄段人群的骨强度遗传变异度有助于排除非遗传因素的影响,可能更易发现相关基因。
     随着人类基因组计划的完成、生物信息学、统计学等学科的发展,通过候选基因法(candidate gene approaches)、连锁分析(linkage analysis)和全基因组关联分析(genome-wide association study, GWAS)技术的应用,骨强度相关的许多候选基因得到了鉴定和明确。但这些研究在不同人群/人种中的结果存在差异或矛盾之处。这提示我们有必要在中国人群中研究/验证骨强度相关基因。
     既往研究提示参与调节骨骼的发育和成年期骨代谢的基因可能也是骨质疏松/骨强度表型的相关基因。成纤维生长因子受体(fibroblast growth factor receptors,FGFRs)1、2、3型在骨骼细胞表达并参与调节其生长发育和成年期骨代谢。多种FGFRs基因突变可导致人类骨骼遗传病,出现头颅、脊柱、胸廓、四肢长骨畸形。既往在欧美人群中发现FGFR1和FGFR2的基因多态性与BMD相关。这些研究集中在白人老年人群中,并且只检测了骨强度的一个变量,考虑到骨强度变量间遗传差异度、不同人种的遗传异质性、欧美与中国BMD环境影响因素的不同等,有必要在中国青年人群中检测FGFRs是否是BMD及其它骨强度变量的相关基因。
     我们既往发现这三种FGFRs可通过调节骨骼细胞生物学活性影响骨生物力学性能与骨密度。FGFRs也可通过调节磷代谢来影响骨密度。骨细胞合成的FGF23可在肾小管上皮细胞中特异性结合FGFR1、3、4并与Klotho形成复合物来抑制肾脏磷重吸收,调节血磷平衡,间接影响骨骼的矿化。FGF23也可依赖于维生素D受体(vitaminD receptor, VDR)调节肠道磷的吸收。但FGFRs是否参与肠道磷吸收尚不清楚。
     为此,本研究将首先在中国青年人群中检测FGFRs是否是BMD及其他骨强度变量的相关基因。另外利用动物模型探讨FGFR1在肠磷吸收中的作用及可能的机制,并检测其对骨强度的影响。
     主要实验方法:
     1.中国青年汉族男性骨强度环境影响因素及其与FGFRs SNPs相关性分析
     1.1研究对象人群资料采集
     共计812名某陆军汉族新兵被纳入本研究,测量身高(m)、体重(kg)、腰围(cm)、臀围(cm),同时计算BMI。问卷表记录出生日期、籍贯、既往生活习惯、家庭成员骨骼健康情况。
     1.2骨强度各变量测量
     采用Prodigy DXA测量第1到第4腰椎(L1-4)与左侧股骨颈(Femoral Neck, FN)、全髋(Total hip, TH)的BMD(g/cm2)、骨面积值(cm2)。左侧髋部形态参数由HSA软件(Prodigy,GE)基于骨密度检测结果进行自动分析获取:包括髋轴长度(hip axislength, HAL)(mm)、股骨颈角度(neck–shaft angle, Angle)(o)、骨骼强度系数(femoralstrength index, SI)、横截面积(cross-sectional area, CSA)(mm2)及横断面转动惯量(cross-sectional moment of inertia, CSMI)(mm4)。SONOST2000跟骨定量超声仪测量QUS参数,包括超声速率(Speed of sound, SOS)(m/s)、宽带超声衰减(Broadbandultrasound attenuation, BUA)(Db/MHz),并计算刚度系数(QUS-SI)。
     1.3ELISA法检测血清骨代谢指标(Tracp5b、BALP)。
     1.4基因组DNA提取后利用iMLDR法对FGFRs基因型进行检测。
     1.5统计分析
     采用SPSS11.0软件进行统计。计量资料以均数±标准差(x±SD)表示。Bartlett检验各计量资料方差是否齐性,Shapiro-Wilks检验检测各计量资料是否符合正态分布。卡方检验计算各SNP位点分布是否符合Hardy-Weinberg定律。PS v3.0.43软件计算检验效能。Haploview4.2计算LD及连锁不平衡系数r2。Stepwise回归分析各骨强度变量的协变量,年龄、身高、体重、腰围、臀围、BMI等为候选变量。ANOVA法分析各SNP位点基因型间年龄、身高、体重、腰围、臀围、BMI的差异。ANCOVA法分析各SNP位点基因型与各骨强度变量的相关性,分析各单体型与BMD的相关性。P<0.05表示差异显著。
     2. FGFR1对肠道发育和钙磷吸收的影响
     2.1FGFR1-vil条件性敲除小鼠繁殖及鉴定。
     2.2测量小鼠出生后体重、肠道长度、周径、肠绒毛高度、隐窝深度的变化。
     2.3AB-PAS染色计数杯状细胞和潘氏细胞。ALP染色检测肠细胞分化情况。BrdU检测细胞增生变化。TUNEL法检测肠绒毛上皮细胞凋亡变化。
     2.4免疫组化或免疫荧光检测肠绒毛上皮细胞FGFR1、NPT2b、P-ERK、P-JNK表达。
     2.5臧红固绿染色、TRAP染色检测小鼠骨骼病理形态及破骨细胞活性变化。micro-CT分析小鼠股骨近端松质骨和中段皮质骨变化。
     2.6检测不同磷含量饮食条件下小鼠粪便、尿液及血清钙磷含量。
     2.7定量PCR检测钙吸收相关基因(calbindin D9k、TRPV6、VDR)、磷吸收/重吸收相关基因(NPT2a、2b、2c)、FGFR1、IGF1在肠道或肾脏的表达情况。
     2.8WB检测肠绒毛组织P-P38及不同磷含量饮食条件下NPT2b蛋白含量变化。
     2.9共转染FGFR1siRNA及NPT2b报告基因质粒,检测其荧光素酶活性变化。
     2.10采用SPSS11.0软件进行统计。计量资料以均数±标准差(x±SD)表示。独立样本T检验比较组间差异。P<0.05表示差异显著。
     主要实验结果:
     1.中国汉族青年男性各骨强度变量的环境影响因素
     1.1BMD的环境影响因素
     年龄、体重、BMI、腰围与L1-4、FN及TH的BMD及BMC均显著正相关。三个部位峰值BMD均出现在22岁组。地域对BMD存在显著影响,西南地区组人群L1-4BMD显著低于北方地区组和东南地区组(P<0.05)。种族也是BMD的一个重要影响因素,本研究人群L1-4峰值BMD值均高于韩国及印度人群,髋部峰值BMD略低于印度人群,但仍高于韩国人群。
     军事训练后三个部位骨密度均显著高于训练前。训练后血清TRACP5b含量显著降低,BALP含量显著增加(P<0.001)。相关分析显示,TRACP5b和BALP与年龄负相关(P<0.001)。训练前后BALP变化率与L1-4BMD和全髋BMD变化率显著正相关(P<0.05)。
     1.2骨面积、髋部形态及跟骨QUS参数的环境影响因素
     年龄是影响腰椎骨面积的正性调节因素(P<0.05),但各年龄组间股骨颈及全髋骨面积均无显著差异。
     经过身体测量参数校正,发现年龄为CSA及CSMI的主要变异变量,21-23岁年龄组的CSA及CSMI显著高于低龄组(17-18岁)(P<0.05)。22及23岁年龄组SI显著高于18岁组(P<0.05)。HAL和Angle变异与年龄变化无关。
     年龄为三个QUS参数的主要变异变量(P<0.05)。SOS、BUA、QUS-SI的最大均值均出现在23岁年龄组。20-23岁年龄组的SOS、BUA显著高于低龄组(17-19岁)(P<0.05)。
     2.中国汉族青年男性各骨强度变量与FGFRs SNP相关性
     2.1BMD与FGFRs SNP相关性
     位于FGFR2基因exon1区域的rs1047111位点的基因多态性与腰椎(P=0.013)及股骨颈骨密度(P=0.0012)相关。
     FGFR1基因上rs2956724、rs6983315、rs6474354及rs4733930构成单倍体,但其4种单倍体型与腰椎、股骨颈和全髋BMD均无显著相关性。
     2.2骨面积与FGFRs SNP相关性
     位于FGFR1基因intron4的rs2288696(P=0.006)、位于intron3的rs2956724(P=0.028)及rs6474354(P=0.025)位点的基因多态性与股骨颈面积相关(表4-2)。位于FGFR15'-Flanking区域的rs10958704(P=0.043)位点的基因多态性与髋部面积相关。
     2.3髋部形态与FGFRs SNP相关性
     FGFR1基因内位于intron4区域的rs2288696基因多态性与髋部CSA和CSMI相关(P=0.049,0.035),单个G等位基因也存在显著效应,GG和GA基因型的CSA及CSMI均显著低于AA基因型。髋部SI与位于5'-Flanking的rs10958704基因多态性相关(P=0.027)。
     2.4跟骨QUS参数与FGFRs SNP相关性
     位于FGFR1基因intron2的rs4733946位点与跟骨SOS(P=0.017)及QUS-S(IP=0.025)显著相关,位于intron3的rs2956724与跟骨BUA(P=0.000)及QUS-SI(P=0.026)显著相关,位于5'-Flanking的rs10958704与跟骨SOS(P=0.023)显著相关。
     3. FGFR1通过MAPK-P38通路正性调节肠腔扩张及细胞凋亡
     3.1肠绒毛上皮细胞特异性敲除FGFR1降低肠周径
     定量PCR及免疫组化结果显示FGFR1在肠绒毛敲除效率在70%左右,肠绒毛上皮只检测到少量细胞残存表达FGFR1。FGFR1-vil小鼠(敲除小鼠)的体重及小肠长度无显著改变。FGFR1-vil小鼠回肠周径降低,回肠绒毛高度增加,但隐窝深度无显著差异。FGFR1-vil小鼠回肠IGF1表达降低,且与FGFR1mRNA表达水平正相关。提示FGFR1可能通过影响上皮下层IGF1表达调节肠腔扩张。
     3.2肠绒毛上皮细胞特异性敲除FGFR1不影响上皮细胞增生、分化但抑制凋亡
     BrdU掺入在两组间无显著差异,提示肠上皮敲除FGFR1不影响细胞增生。利用AB-PAS染色计数杯状细胞和潘氏细胞未见明显差异。ALP活性从近端小肠到远端小肠逐渐减弱,但两组间无明显差异。提示FGFR1不影响杯状细胞、潘氏细胞和肠细胞的分化。FGFR1-vil小鼠肠绒毛上皮细胞凋亡信号阳性细胞数量减少,提示FGFR1正性调节肠上皮细胞凋亡。
     3.3肠绒毛上皮细胞特异性敲除FGFR1后P-P38水平降低
     使用免疫组化检测到FGFR1-vil小鼠肠绒毛上皮细胞P-ERK与WT比较无显著差异,而P-JNK表达减少,但WT小鼠表达量也较低。WB结果发现FGFR1-vil小鼠肠绒毛上皮组织P-P38蛋白量显著减少。这提示FGFR1可能主要通过MAPK-P38通路影响肠道发育。
     4. FGFR1不依赖于食物磷含量和VDR途径,通过转录前负性调控NPT2b抑制肠道钙磷吸收
     4.1FGFR1-vil小鼠血磷正常,肠磷吸收增加,尿磷重吸收减少
     正常饮食(0.9%Pi),FGFR1-vil小鼠血清钙磷与WT小鼠比较无显著差异。利用0.5M NaH2PO4溶液灌胃小鼠制造急性高磷血症,FGFR1-vil小鼠小鼠血磷增加幅度更明显(P<0.05)。长期给予小鼠高磷饲料(1.25%Pi),FGFR1-vil小鼠小鼠血磷增高(P<0.05),而WT小鼠血磷仍维持在正常水平。
     正常饮食FGFR1-vil小鼠尿磷含量显著增加,同时粪便磷含量显著减少(P<0.05)。尿钙和粪便钙含量也有类似变化趋势。低磷饮食FGFR1-vil小鼠尿钙、尿磷含量增加,同时粪便钙含量降低。这提示FGFR1-vil小鼠肠磷吸收增加,同时尿磷重吸收减少以维持血磷稳定。
     4.2FGFR1-vil小鼠肠上皮NPT2b表达增加,肾皮质NPT2a表达降低
     FGFR1-vil小鼠回肠组织NPT2b mRNA表达水平和蛋白含量均增加。低磷饲料增加WT小鼠NPT2b蛋白量,而高磷饮食降低NPT2b蛋白量。FGFR1-vil小鼠NPT2b蛋白表达量对饮食P含量变化有类似反应趋势,但变化幅度较WT小鼠显著降低。转染FGFR1siRNA后CaCO2细胞中人NPT2b启动子活性增加。提示FGFR1不依赖于食物磷含量转录前负性调控NPT2b,
     FGFR1-vil小鼠肾皮质中,调节磷重吸收的NPT2a mRNA表达水平降低,但NPT2cmRNA表达水平无显著变化。提示肠磷吸收异常时可通过改变NPT2a表达来调节肾磷重吸收。
     FGFR1-vil小鼠肠上皮组织内钙吸收相关基因钙结合蛋白D9k(calbindin D9k)、VDR和V型瞬时感受器电位阳离子通道6(transient receptor potential cation channel,subfamily V, member6, TRPV6) mRNA表达水平无显著改变。这提示FGFR1不影响VDR介导的肠钙主动吸收。
     4.3FGFR1-vil小鼠骨骼表型未见异常
     臧红固绿染色显示FGFR1-vil小鼠同WT小鼠比较,病理形态无明显改变,TRAP染色显示破骨细胞活性也无明显差异。micro-CT分析股骨近端松质骨和中段皮质骨变化,两组小鼠间仍未见显著差异。
     全文结论:
     1.中国青年男性BMD受到运动、地域、种族等环境因素的影响,在22岁达到峰值BMD。
     2.年龄是获得峰值骨密度年龄段中国青年男性骨面积、髋部形态和QUS参数的主要影响因素。
     3. FGFR1是一个与骨面积、髋部形态和骨质量相关的多效应基因,FGFR2是BMD的相关基因。
     4.肠绒毛上皮表达的FGFR1通过激活MAPK-P38通路促进肠绒毛上皮细胞凋亡并正性调节肠腔扩张。
     5.肠绒毛上皮表达的FGFR1通过转录前负性调控NPT2b表达,不依赖食物磷含量和VDR途径抑制肠磷吸收。
Background
     Osteoporosis is a chronic complex metabolism disease characterized by decreasedbone strength that increases the risk of fracture. Osteoporosis has become an importantpublic health problem with increasing incidence rate as ageing population expanding. Themost harmful aspect of osteoporosis is the increased risk of fracture. About70%ofosteoporotic fractures occur in women, but the fracture-related mortality ratio is higher inmen. The mechanisms under this phenomenon remain unknown. Most of previousresearches focus on postmenopausal osteoporosis in women. Considering the genderdifferences of environmental and hereditary factors on osteoporosis, studying thephenotypes of osteoporosis in men is important for understanding the pathogenesis of maleosteoporosis.
     Decreased bone strength is the key point for the development of osteoporosis. Bonestrength reflects bone density and quality. Bone mineral density (BMD) is the gold criteriafor diagnosis of osteoporosis. BMD predicts about70%of variation of bone strength and isthe most frequently used trait in studying bone strength. Hip geometry can reflect bonestrength independent of BMD. Femoral geometry has been found being an independent riskfactor for hip fracture in both genders. Bone area is significantly associated with anincidence of osteoporotic fracture. Epidemiologic studies found that the area at femoralneck was an independent risk factor for hip fracture. Quantitative ultrasound (QUS) detectsbone architecture and material characters. QUS parameters can reflect bone quality and aredefined as bone strength traits as well.
     These bone strength traits are regulated by both environmental and hereditary factorswhile the main contributor is genetic variation. The accumulated effects of environmentalfactors on BMD are relatively weak in peak BMD achieved age stage. Studying geneticvariation of bone strength traits in this age stage helps eliminating the effects of*This study is supported by the National Natural Science Foundation of China (No.31000555). non-hereditary factors on BMD. Many candidate genes of bone strength have beenidentified by using candidate gene approaches, linkage analysis and genome-wideassociation studies (GWAS) along with the accomplishment of Human Genome Projectsand development of bioinformatics and statistics. But the results show more discrepancythan agreement among studies based on different populations or races. This suggests weshould study or validate the association genes of bone strength traits in Chinese population.
     Previous studies indicated the bone development and metabolism related genes couldbe associated with osteoporosis or bone strength traits. Fibroblast growth factor receptors(FGFRs)1,2,3express in bone tissues and regulate bone development and metabolism.Multiple point mutations in these genes lead to human skeletal hereditary diseases whichinvolved skull, spine, thoracic and limbs. The SNPs of FGFR1and FGFR2were foundassociated with BMD in white elder people. Considering the genetic variation among bonestrength traits, genetic heterogeneity of races and differences of environmental factorsbetween European and Chinese, it's necessary to indentify the association between FGFRsSNPs and bone strength traits in Chinese young men.
     Our lab found the three FGFRs affected bone mechanical properties and BMD throughregulating the biologic activity of multiple types of bone cells. FGFRs can also influenceBMD by regulating phosphate metabolism. FGF23, mainly produced by osteocytes, bindsto FGFR1,3,4coupling with Klotho in kidney and depresses renal phosphate reabsorption.FGF23also have effect on intestinal phosphate absorption in a vitamin D receptor (VDR)dependent way. But it's not clear the role of FGFRs in intestinal phosphate absorption.
     This study will firstly analyze the association between FGFRs SNPs and bone strengthtraits in Chinese young men, and investigate the effect of FGFR1on intestinal phosphateabsorption and the related mechanisms as well. Furthermore, the effect of alteration ofphosphate metabolism on bone strength will be detected.
     Main Methods
     1. Analysis of environmental and hereditary factors affecting bone strength traitsin Chinese young men of Han ethnicity
     1.1Subjects and body measurement
     A total of812Chinese male army recruits of Han ethnicity were involved in this study.Height (cm), weight (kg), waist circumference (WC)(cm), hip circumference (HC)(cm), BMI was measured. A questionnaire recorded age, daily calcium intake and activity, bonediseases of family members and so on.
     This study received ethical approval from the Ethics Committee of Daping Hospital,Third Military Medical University, China.
     1.2Bone strength traits measurement
     BMD (g/cm2) and bone area (cm2) at lumbar (L1-4), left femoral Neck (FN) and totalhip (TH) were measured using DXA (Prodigy, GE). Left hip geometry: hip axis length(HAL)(mm), neck–shaft angle (Angle)(o), femoral strength index (SI), cross-sectional area(CSA)(mm2) and cross-sectional moment of inertia (CSMI)(mm4) were assessed using HipStructure Analysis (HSA) software (Prodigy, GE). Speed of sound (SOS)(m/s), broadbandultrasound attenuation (BUA)(Db/MHz) and stiffness index (QUS-SI) were measuredusing QUS (SONOST2000) at left calcaneus.
     1.3Serum bone metabolism markers (Tracp5b, BALP) were quantified using ELISAkit.
     1.4The genotypes of FGFRs were determined by iMLDR assays.
     1.5Statistic analysis
     All the data was represented as mean±SD. Bartlett tests were used to evaluate thehomogeneity of variance. Shapiro-Wilks tests were applied to analyze the distribution of allthe quantitative parameters. Chi-square tests were performed to evaluate theHardy-Weinberg equilibrium of genotypes. PS v3.0.43software was used to calculatedpower. Haploview4.2software was performed to conduct haplotypes of FGFR1. Pearson'scorrelation tests were performed to analyze the relationship between bone metabolismmarkers and BMD. Stepwise regression analyses were applied to bone strength traits usingage, height, weight, WC, HC, BMI as covariates. ANOVA analyses were used to test thedifferences of age, height, weight, WC, HC and BMI among genotypes. ANCOVA analyseswere performed to evaluate the association between genotypes of FGFRs and bone strengthtraits as well as haplotypes of FGFR1and BMD. P<0.05was considered significant.
     2. The role of FGFR1in intestinal development and absorption of calcium andphosphate
     2.1Animals: Conditional knockout of FGFR1in intestinal villus epithelial cells(FGFR1-vil) and the littermate controls (WT).
     2.2Measurements of weight, intestinal length and circumference, villus height andcrypt depth after birth.
     2.3BrdU labeling was used to determine the proliferation of epithelial cells. Thenumbers of goblet cells and Paneth's cells were counted after AB-PAS staining. ALPstaining was used to evaluate the differentiation of enterocytes. TUNEL assay wasperformed to detect the apoptosis of intestinal villus epithelial cells.
     2.4Immunohistochemistry or immunofluorescence was used to observe theexpressions of FGFR1, NPT2b, P-ERK and P-JNK in intestine.
     2.5Safranine O/fast green (SO/FG) staining was used to evaluate the changes of boneremodeling of tibia. The differentiation and activation of osteoclasts were detected withtartrate resistant acid phosphatase (TRAP) staining. micro-CT scanning was performed todetermine the bone content at proximal trabecular bone and midshaft cortical bone offemurs.
     2.6Serum, urine and fecal phosphate and calcium of mice were measured after beingfed with diet contained different contents of phosphate.
     2.7Real-time PCR was performed to detect the mRNA expression levels of calciumabsorption related genes (calbindin D9k, TRPV6, VDR), phosphate absorption/reabsorption related genes (NPT2a,2b,2c), FGFR1and IGF1in intestinal villus or kidneycortex tissues.
     2.8Western bolt was used to quantify the protein contents of P-P38and NPT2b inintestine after being fed with diet contained different contents of phosphate.
     2.9Luciferase activity was determined in CaCO2cells after cotransfection of FGFR1siRNA and NPT2b promotor plasmids.
     2.10Statistic analysis: Independent t-tests were performed to analyze the differencebetween FGFR1-vil and WT mice. P<0.05was considered significant.
     Main results
     1. Analysis of environmental and hereditary factors affecting bone strength traitsin Chinese young men of Han ethnicity
     1.1Environment factors affecting BMD
     Age, weight, WC and HC were significantly correlated with BMD and BMCrespectively (P<0.05). All of the peak BMD at three sites was found in the22years age group. Geographic factor contributed to the variation of BMD. The mean L1-4BMD insouthwestern group was significantly lower than that in northern group and southeasterngroup (P<0.05). We also found ethnic difference in Asia countries. The mean peak BMD atL1-4in this group was higher than that in both Korean and Indian men. But the mean peakBMD of Chinese men at hip was lower than of Indian men.
     Military training increased BMD at three sites. Comparing with baseline, serum levelsof TRACP5b (P<0.05) were significantly decreased while elevated levels of BALP(P<0.001) were detected after training. Serum concentration of TRACP5b and BALP werenegatively related with age (P<0.001). The variation ratio of BALP was positively relatedwith that of BMD at L1-4and TH (P<0.05).
     1.2Environment factors affecting bone area, hip geometry and QUS parameters
     Age was the positive regulator of bone area at L1-4(P<0.05). There was no significantdifference of bone area at HN and TH among age groups.
     Age was the major factor contributed to variations of CSA and CSMI withanthropometric traits as covariants. All the mean CSA and CSMI in21-23years age groupsare significantly higher than that in17or18years age group (P<0.05). Both mean SI in22and23years age group were significantly higher than that in18years age group (P<0.05).There was no significant relationship between age and HAL or Angle.
     Age was significantly related with variation of three QUS parameters (P<0.05). Thepeak values of SOS, BUA and QUS-SI were found in23years age group. All the mean SOSand BUA in20-23years age groups are significantly higher than that in17-19years agegroups (P<0.05).
     2. Association between FGFRs SNPs and BMD
     rs1047111located at exon1of FGFR2was associated with BMD at L1-4(P=0.013)and FN (P=0.0012). A four loci haplotype in FGFR1constructed by rs2956724, rs6983315,rs6474354and rs4733930had no significant association with BMD.
     2.1Association between FGFRs SNPs and bone area
     In FGFR1gene, rs2288696located at intron4, rs2956724and rs6474354located atintron3were associated with bone area of FN while rs10958704in5'-Flanking wasassociated with that of TH (P=0.006,0.028,0.025,0.043respectively).
     2.2Association between FGFRs SNPs and hip geometry
     Two SNPs of FGFR1was associated with hip geometry parameters: rs2288696inintron4with CSA and CSMI while rs10958704in5'-Flanking with SI (P=0.049,0.035,0.027respectively).
     2.3Association between FGFRs SNPs and QUS traits
     All the associated SNPs of QUS parameters were found in FGFR1. rs4733946inintron2was associated with SOS (P=0.017) and QUS-SI (P=0.025). rs2956724in intron3was associated with BUA (P=0.000) and QUS-SI (P=0.026) while rs10958704in5'-Flanking with SOS (P=0.023).
     3. The role of FGFR1in intestinal development and absorption of calcium andphosphate
     3.1Conditional knockout FGFR1in intestinal epithelial cells lead to reducedcircumference of intestine
     The efficiency of gene knockout was confirmed using real-time PCR and IFC.Expression levels of FGFR1in intestinal villus of FGFR1-vil mice were decreased about70%compared with that of WT mice. The body weight and intestine length had no statisticdifference between groups.
     Compared with WT mice, FGFR1-vil mice exhibited decreased intestinecircumference and increased villus height, but no significant change of crypts depth.Depressed mRNA expression levels of IGF1, known as a regulator of intestinal diameter,were detected in intestines of FGFR1-vil mice. The mRNA expression levels of IGF1andFGFR1were positively related which implied that FGFR1may mediate intestinal diameterexpansion through regulating expression of IGF1in subepithelial myofibroblasts.
     3.2FGFR1enhanced apoptosis but not proliferation or differentiation ofintestinal epithelial cells
     No remarkable difference in location and numbers of BrdU positive cells was observedbetween FGFR1-vil and WT mice which suggested FGFR1inactivation didn't seem toaffect epithelial cells proliferation. The numbers of goblet cells and Paneth's cells inFGFR1-vil mice were not significantly different from that in WT mice. ALP activity whichreflected numbers of enterocytes in FGFR1-vil mice was similar to that in WT mice. Thissuggested that intestine-specific FGFR1inactivation may have no effect on goblet cell,Paneth's cell and enterocyte differentiation. TUNEL staining found a significant reduction of apoptosis in FGFR1-vil mice which implied FGFR1positively regulated epitheliaapoptosis.
     3.4Conditional knockout of FGFR1in intestine epithelial cells depressedactivation of MAPK-P38pathway
     IFC staining found similar activated signals of P-ERK between two genotypes. Almostno P-JNK positive cells were observed in FGFR1-vil intestine while few ones were foundin intestine of WT mice. WB detected decreased P-P38protein levels in intestinal epitheliaof FGFR1-vil mice than that in WT mice. This suggested MAPK-P38may be the mainpathway contributing to the effects of FGFR1on intestinal development.
     4. FGFR1inhibited intestinal phosphate absorption through pre-transcriptionalregulating NPT2b expression in the diet phosphate-and VDR-independent way
     4.1Conditional knockout of FGFR1in intestinal epithelial cells maintainednormal serum phosphate by increasing intestinal absorption and reducing renalreabsorption
     Compared with WT mice, serum calcium and phosphate in FGFR1-vil mice had nosignificant change in normal diet condition (0.9%Pi).Higher increased ratio of serumphosphate was detected in FGFR1-vil mice than that in WT mice in a hyperphosphatemiamodel induced by intragastric administration of0.5M NaH2PO4(P<0.05). In long-term highphosphate diet condition (1.25%Pi), elevated serum phosphate was found in FGFR1-vilmice while normal serum phosphate was detected in WT mice (P<0.05). Significantlyincreased urine phosphate and decreased fecal phosphate were detected in FGFR1-vil witheither normal diet or low phosphate diet (P<0.05). This suggested that increased intestinalphosphate absorption in absence of FGFR1lead to reduced renal phosphate resorptionwhich helped normal serum phosphate maintenance.
     4.2Deletion of FGFR1in intestine upregulated NPT2b expression in intestinalepithelia and downregualted NPT2a expression in renal cortex
     Both increased mRNA and protein expression levels of NPT2b were detected inFGFR1-vil mice. Low phosphate diet upregulated protein expression levels of NPT2b inWT mice. High phosphate diet had opposite effects on that in WT mice. The similarresponses were found in FGFR1-vil mice. But the variation ratio of NPT2b in FGFR1-vilmice was significantly lower than that in WT mice. The promoter activity of NPT2b was reduced after transfection of FGFR1siRNA in CaCO2cells. This suggested FGFR1negatively pre-transcriptionally regulatd NPT2b expression in a diet phosphate-independentway.
     Increased mRNA expression level of NPT2a, known as a phosphate transporter locatedat proximal tubules, was detected in kidney cortical tissues of FGFR1-vil mice. The mRNAexpression level of NPT2c was not significantly different from that in WT mice. Thissuggests abnormal intestinal phosphate absorption may regulate renal phosphatereabsorption by altering NPT2a mRNA expression.
     No significant difference of mRNA expression levels of calcium absorption relatedgenes (calbindin D9k, VDR and TRPV6) was found between FGFR1-vil and WT mice.This suggested FGFR1may not contribute to intestinal active absorption of calcium.
     4.3Conditional knockout of FGFR1in intestinal epithelial cells didn't affect bonephenotypes
     SO/FG staining found no abnormal pathologic change in FGFR1-vil tibias. TRAPstaining indicated the differentiation and activation of osteoclasts were similar betweenFGFR1-vil and WT mice. micro-CT traits at proximal trabecular bone and midshaft corticalbone of femurs had no significant changes in FGFR1-vil compared with that in WT mice.
     Conclusions
     1. BMD of Chinese young men is affected by exercise, geography and race. PeakBMD at three sites (L1-4, FN and TH) are observed in22years age group.
     2. Age is the major factor influencing bone area, hip geometry and QUS parameters ofChinese men in the period of peak BMD achieved.
     3. FGFR1is a multiple effect gene associated with bone area, bone geometry and bonequality. FGFR2is the association gene of BMD in Chinese young men.
     4. FGFR1increases apoptosis of intestinal epithelial cells and positively regulatesintestinal diameter expansion by activating MAPK-P38pathway.
     5. FGFR1inhibits intestinal phosphate absorption through pre-transcriptionallydepressing NPT2b expression in the diet phosphate-and VDR-independent way.
引文
1Dallas SL, Prideaux M, Bonewald LF. The Osteocyte: An Endocrine Cell and More. Endocr Rev2013:1-34.
    2Calvi LM, Bromberg O, Rhee Y, et al. Osteoblastic expansion induced by parathyroid hormone receptor signaling inmurine osteocytes is not sufficient to increase hematopoietic stem cells. Blood2012;119:2489-2499.
    3Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implicatio ns for the pathogenesis andtreatment of osteoporosis. Endocr Rev2000;21:115-137.
    4Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localizedbone destruction. J Bone Miner Res2008;23:915-927.
    1Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorptionwith formation. Nat Med2009;15:757-765.
    2Xian L, Wu X, Pang L, et al. Matrix IGF-1maintains bone mass by activation of mTOR in mesenchymal stem cells.Nat Med2012;18:1095-1101.
    3Osteoporosis prevention, diagnosis, and therapy. JAMA2001;285:785-795.
    4原发性骨质疏松症诊治指南.中华医学会骨质疏松和骨矿盐疾病分会.2010.
    1Iacovino JR. Mortality outcomes after osteoporotic fractures in men and women. J Insur Med2001;33:316-320.
    2Bass E, French DD, Bradham DD, Rubenstein LZ. Risk-adjusted mortality rates of elderly veterans with hip fractures.Ann Epidemiol2007;17:514-519.
    3Osteoporosis prevention, diagnosis, and therapy. JAMA2001;285:785-795.
    4P. Ammann, Rizzoli R. Bone strength and its determinants. Osteoporosis International2003;14:13-18.
    5Melton LJ r, Atkinson EJ, Khosla S, Oberg AL, Riggs BL. Evaluation of a prediction model for long-term fracture risk.J Bone Miner Res2005;20:551-556.
    1Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev2002;23:303-326.
    2Akhter MP, Cullen DM, Pedersen EA, Kimmel DB, Recker RR. Bone response to in vivo mechanical loading in twobreeds of mice. Calcif Tissue Int1998;63:442-449.
    3Vega E, Ghiringhelli G, Mautalen C, et al. Bone mineral density and bone size in men with primary osteoporosis andvertebral fractures. Calcif Tissue Int1998;62:465-469.
    4Cosman F, Ruffing J, Zion M, et al. Determinants of stress fracture risk in United States Mil itary Academy cadets.Bone2013;55:359-366.
    5P. Ammann, Rizzoli R. Bone strength and its determinants. Osteoporosis International2003;14:13-18.
    6Deng FY, Dong SS, Xu XH, et al. Genome-wide association study identified UQCC locus for spine bone size inhumans. Bone2013;53:129-133.
    1Melton LJ,3rd, Beck TJ, Amin S, et al. Contributions of bone density and structure to fracture risk assessment in menand women. Osteoporos Int2005;16:460-467.
    2Zhang H, Hu YQ, Zhang ZL. Age trends for hip geometry in Chinese men and women and the association with femoralneck fracture. Osteoporos Int2011;22:2513-2522.
    3El Hage R. Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent boys.Osteoporos Int2012;23:1593-1600.
    4El Hage R, El Hage Z, Moussa E, et al. Influence of the weight status on hip bone strength indices in a group ofsedentary adolescent girls. J Med Liban2012;60:30-36.
    5Slemenda CW, Turner CH, Peacock M, Christian JC, Sorbel J, Hui SL, Johnston CC. The geneti cs of proximal femurgeometry, distribution of bone mass and bone mineral density. Osteoporos Int1996;6:178-182.
    6Gupta M, Cheung CL, Hsu YH, et al. Identification of homogeneous genetic architecture of multiple geneticallycorrelated traits by block clustering of genome-wide associations. J Bone Miner Res2011;26:1261-1271.
    1Grimal Q, Grondin J, Guerard S, Barkmann R, Engelke K, Gluer CC, Laugier P. Quantitative ultrasound of corticalbone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res2013;28:302-312.
    2Etherington J, Keeling J, Bramley R, et al. The effects of10weeks military training on heel ultrasound and boneturnover. Calcif Tissue Int1999;64:389-393.
    3Chatzipapas CN, Drosos GI, Kazakos KI, Tripsianis G, Iatrou C, Verettas DA. Stress fractures in military men and bonequality related factors. Int J Sports Med2008;29:922-926.
    4Jergas M, Uffmann M, Wittenberg R, et al. Ultrasonic velocity measurements at weight-bearing and non-weightbearingsites of the peripheral skeleton. The effect of physical activity in soccer players. Rofo1992;157:420-424.
    5Valimaki VV, Loyttyniemi E, Valimaki MJ. Quantitative ultrasound variables of the heel in Finnish men aged18-20yr: predictors,relationship to bone mineral content, and changes during military service. Osteoporos Int2006;17:1763-1771.
    6Zhu ZQ, Liu W, Xu CL, et al. Reference data for quantitative ultrasound values of calcaneus in2927healthy Chinesemen. J Bone Miner Metab2008;26:165-71.
    7Siffert RS, Kaufman JJ. Ultrasonic bone assessment:"the time has come". Bone2007;40:5-8.
    8Williams FM, Spector TD. The genetics of osteoporosis. Acta Reumatol Port2007;32:231-240.
    9Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA. Genetic and environmental contributions to the associationbetween quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res1998;13:1318-1327.
    10Gupta M, Cheung CL, Hsu YH, et al. Identification of homogeneous genetic architecture of multiple geneticallycorrelated traits by block clustering of genome-wide associations. J Bone Miner Res2011;26:1261-1271.
    11Roshandel D, Thomson W, Pye SR, et al. A validation of the first genome-wide association study of calcaneusultrasound parameters in the European Male Ageing Study. BMC Med Genet2011;12:1-9.
    1Lazary A, Kosa JP, Tobias B, et al. Single nucleotide polymorphisms in new candidate genes are associated with bonemineral density and fracture risk. Eur J Endocrinol2008;159:187-196.
    2Yerges LM, Klei L, Cauley JA, et al. High-density association study of383candidate genes for volumetric BMD at thefemoral neck and lumbar spine among older men. J Bone Miner Res2009;24:2039-2049.
    3Zmuda JM, Yerges-Armstrong LM, Moffett SP, et al. Genetic analysis of vertebral trabecular bone density andcross-sectional area in older men. Osteoporos Int2011;22:1079-1090.
    4Su N, Sun Q, Li C, et al. Gain-of-function mutation in FGFR3in mice leads to decreased bone mass by affecting bothosteoblastogenesis and osteoclastogenesis. Hum Mol Genet2010;19:1199-1210.
    5Su N, Sun Q, Li C, et al. Gain-of-function mutation in FGFR3in mice leads to decreased bone mass by affecting bothosteoblastogenesis and osteoclastogenesis. Hum Mol Genet2010;19:1199-1210.
    6Gladys Valverde-Franco, Liu H, Davidson D, et al. Defective bone mineralization and osteopenia in young adultFGFR3-/-mice. Human Molecular Genetics2004;13:271–284.
    7Yu K, Xu J, Liu Z, et al. Conditional inactivation of FGF receptor2reveals an essential role for FGF signaling in theregulation of osteoblast function and bone growth. Development2003;130:3063-3074.
    8Lieben L, Masuyama R, Torrekens S, et al. Normocalcemia is maintained in mice under conditions of calciummalabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest2012;122:1803-1815.
    1Gattineni J, Bates C, Twombley K, et al, Mohammadi M, Baum M. FGF23decreases renal NaPi-2a and NaPi-2cexpression and induces hypophosphatemia in vivo predominantly via FGF receptor1. Am J Physiol Renal Physiol2009;297:282-291.
    2Martin A, Liu S, David V, et al. Bone proteins PHEX and DMP1regulate fibroblastic growth factor Fgf23expression inosteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J2011;25:2551-2562.
    3Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H. Inhibition of intestinal sodium-dependent inorganic phosphatetransport by fibroblast growth factor23. Ther Apher Dial2005;9:331-335.
    1Tan LJ, Lei SF, Chen XD, et al. Establishment of peak bone mineral density in Southern Chinese males and itscomparisons with other males from different regions of China. J Bone Miner Metab2007;25:114-121.
    2Zhang ZL, Qin YJ, Huang QR, et al. Bone mineral density of the spine and femur in healthy Chines e men. Asian JAndrol2006;8:419-427.
    3Wu XP, Hou YL, Zhang H, et al. Establishment of BMD reference databases for the diagnosis and evaluation ofosteoporosis in central southern Chinese men. J Bone Miner Metab2008;26:586-594.
    4Zhu H, Fang J, Luo X, et al. A survey of bone mineral density of healthy Han adults in China. Osteoporos Int2010;21:765-772.
    1Zhu H, Fang J, Luo X, et al. A survey of bone mineral density of healthy Han adults in China. Osteoporos Int2010;21:765-772.
    2Zhang ZL, Qin YJ, Huang QR, et al. Bone mineral density of the spine and femur in healthy Chinese men. Asian JAndrol2006;8:419-427.
    3Wu XP, Hou YL, Zhang H, et al. Establishment of BMD reference databases for the diagnosis and evaluation ofosteoporosis in central southern Chinese men. J Bone Miner Metab2008;26:586-594.
    1Cui LH, Choi JS, Shin MH, et al. Prevalence of osteoporosis and reference data for lumbar spine and hip bone mineraldensity in a Korean population. J Bone Miner Metab2008;26:609-617.
    2Pande KC, Veeraji E, Pande SK. Normative reference database for bone mineral density in Indian men and womenusing digital X-ray radiogrammetry. J Indian Med Assoc2006;104:288-291.
    1Nordstr m A, H gstr m M, Nordstr m P. Early and Rapid Bone Mineral Density Loss of the Proximal Femur in Men.The Journal of Clinical Endocrinology and Metabolism2007;92:1902–1908.
    2Marwaha RK, Tandon N, Shivaprasad C, et al. Peak bone mineral density of physically active healthy Indian men withadequate nutrition and no known current constraints to bone mineralization. J Clin Densitom2009;12:314-321.
    3Pettersson U, Nilsson M, Sundh V, Mellstr m D, Lorentzon M. Physical activity is the strongest predictor of calcanealpeak bone mass in young Swedish men. Osteoporos Int2009;21:447-455.
    1Tan LJ, Lei SF, Chen XD, et al. Establishment of peak bone mineral density in Southern Chinese males and itscomparisons with other males from different regions of China. J Bone Miner Metab2007;25:114-121.
    2Zhang ZL, Qin YJ, Huang QR, et al. Bone mineral density of the spine and femur in healthy Chinese men. Asian JAndrol2006;8:419-427.
    3Wu XP, Hou YL, Zhang H, et al. Establishment of BMD reference databases for the diagnosis and evaluation ofosteoporosis in central southern Chinese men. J Bone Miner Metab2008;26:586-594.
    4Zhu H, Fang J, Luo X, et al. A survey of bone mineral density of healthy Han adults in China. Osteoporos Int2010;21:765-772.
    5Yu N, Liu YJ, Pei Y, et al. Evaluation of Compressive Strength Index of the Femoral Neck in Caucasians and Chinese.Calcif Tissue Int2010;87:324-332.
    6Cui LH, Choi JS, Shin MH, et al. Prevalence of osteoporosis and reference data for lumbar spine and hip bone mineraldensity in a Korean population. J Bone Miner Metab2008;26:609-617.
    7Pande KC, Veeraji E, Pande SK. Normative reference database for bone mineral density in Indian men and womenusing digital X-ray radiogrammetry. J Indian Med Assoc2006;104:288-291.
    8Wallace JM, Rajachar RM, Allen MR, et al. Exercise-induced changes in the cortical bone of growing mice are bone-and gender-specific. Bone2007;40:1120-1127.
    9Nordstr m A, H gstr m M, Nordstr m P. Effects of different types of weight-bearing loading on bone mass and size inyoung males: A longitudinal study. Bone2008;42565–571.
    10Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners.Bone2006;39:880-885.
    1Wu J, Wang XX, Higuchi M, et al. High bone mass gained by exercise in growing male mice is increased bysubsequent reduced exercise. J Appl Physiol2004;97:806-810.
    2Wallace JM, Ron MS, Kohn DH. Short-term exercise in mice increases tibial post-yield mechanical properties whiletwo weeks of latency following exercise increases tissue-level strength. Calcif Tissue Int2009;84:297-304.
    3朱汉民.加强骨转换生化标志物的检测和临床应用.华中医学杂志2008;32:1-2.
    1P. Ammann, Rizzoli R. Bone strength and its determinants. Osteoporosis International2003;14:13-18.
    2Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeletonmalformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone2008;42:
    631-643.
    3Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3causes achondroplasia by affecting bothchondrogenesis and osteogenesis. J Clin Invest1999;104:1517-1525.
    4Lazary A, Kosa JP, Tobias B, et al. Single nucleotide polymorphisms in new candidate genes are associated with bonemineral density and fracture risk. Eur J Endocrinol2008;159:187-196.
    5Yerges LM, Klei L, Cauley JA, et al. High-density association study of383candidate genes for volumetric BMD at thefemoral neck and lumbar spine among older men. J Bone Miner Res2009;24:2039-2049.
    1Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeletonmalformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone2008;42:631-643.
    2Su N, Sun Q, Li C, et al. Gain-of-function mutation in FGFR3in mice leads to decreased bone mass by affecting bothosteoblastogenesis and osteoclastogenesis. Hum Mol Genet2010;19:1199-1210.
    3Ogawa Y, Kurosu H, Yamamoto M, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor21.Proc Natl Acad Sci U S A2007;104:7432-7437.
    4Jiao H, Arner P, Dickson SL, et al. Genetic association and gene expression analysis identify FGFR1as a newsusceptibility gene for human obesity. J Clin Endocrinol Metab2011;96:962-926.
    5den Hoed M, Ekelund U, Brage S, et al. Genetic susceptibility to obesity and related traits in childhood andadolescence: influence of loci identified by genome-wide association studies. Diabetes2010;59:2980-2988.
    1Lazary A, Kosa JP, Tobias B, et al. Single nucleotide polymorphisms in new candidate genes are associated with bonemineral density and fracture risk. Eur J Endocrinol2008;159:187-196.
    2Yerges LM, Klei L, Cauley JA, et al. High-density association study of383candidate genes for volumetric BMD at thefemoral neck and lumbar spine among older men. J Bone Miner Res2009;24:2039-2049.
    3Zmuda JM, Yerges-Armstrong LM, Moffett SP, et al. Genetic analysis of vertebral trabecular bone density andcross-sectional area in older men. Osteoporos Int2011;22:1079-1090.
    4Roseman CC, Weaver TD. Multivariate apportionment of global human craniometric diversity. Am J Phys Anthropol2004;125:257-263.
    5Cheung CL, Chan V, Kung AW. A differential association of ALOX15polymorphisms with bone mineral density inpre-and post-menopausal women. Hum Hered2008;65:1-8.
    1Melton LJ,3rd, Beck TJ, Amin S, et al. Contributions of bone density and structure to fracture risk assessment in menand women. Osteoporos Int2005;16:460-467.
    2Flicker L, Faulkner KG, Hopper JL, et al. Determinants of hip axis length in women aged10-89years: a twin study.Bone1996;18:41-45.
    3Jian WX, Long JR, Deng HW. High heritability of bone size at the hip and spine in Chinese. J Hum Genet2004;49:87-91.
    4Slemenda CW, Turner CH, Peacock M, Christian JC, Sorbel J, Hui SL, Johnston CC. The genetics of proximal femurgeometry, distribution of bone mass and bone mineral density. Osteoporos Int1996;6:178-182.
    5Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeletonmalformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone2008;42:631-643.
    6Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3causes achondroplasia by affecting bothchondrogenesis and osteogenesis. J Clin Invest1999;104:1517-1525.
    1Gladys Valverde-Franco, Liu H, David Davidson, et al. Defective bone mineralization and osteopenia in young adultFGFR3-/-mice. Human Molecular Genetics2004;13:271–284.
    2Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeletonmalformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone2008;42:631-643.
    1El Hage R. Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent boys.Osteoporos Int2012;23:1593-1600.
    2Isaksson H, Tolvanen V, Finnila MA, et al. Physical exercise improves properties of bone and its collagen network ingrowing and maturing mice. Calcif Tissue Int2009;85:247-256.
    3Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J. Effects of gender, anthropometric variables, andaging on the evolution of hip strength in men and women aged over65. Bone2003;32:561-570.
    4李曦.骨质疏松症相关表型的全基因诅关联研究.湖南师范大学博士学位论文2011.
    5Patel SG, DiMario JX. Two distal Sp1-binding cis-elements regulate fibroblast growth factor receptor1(FGFR1) geneexpression in myoblasts. Gene2001;270:171-180.
    6Parakati R, DiMario JX. Sp1-and Sp3-mediated transcriptional regulation of the fibroblast growth factor receptor1gene in chicken skeletal muscle cells. J Biol Chem2002;277:9278-9285.
    7O'Shea PJ, Guigon CJ, Williams GR, Cheng SY. Regulation of fibroblast growth factor receptor-1(FGFR1) by thyroidhormone: identification of a thyroid hormone response element in the murine Fgfr1promoter. Endocrinology2007;148:5966-5976.
    8Wickelgren I. Molecular biology. Spinning junk into gold. Science2003;300:1646-1649.
    9Groth C, Lardelli M. The structure and function of vertebrate fibroblast growth factor recep tor1. Int J Dev Biol2002;46:393-400.
    1Siffert RS, Kaufman JJ. Ultrasonic bone assessment:"the time has come". Bone2007;40:5-8.
    2Lappe J, Davies K, Recker R, Heaney R. Quantitative ultrasound: use in screening for susceptibility to stress fracturesin female army recruits. J Bone Miner Res2005;20:571-578.
    3Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA. Genetic and environmental contributions to the associationbetween quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res1998;13:1318-1327.
    1Jergas M, Uffmann M, Wittenberg R, et al. Ultrasonic velocity measurements at weight-bearing and non-weightbearingsites of the peripheral skeleton. The effect of physical activity in soccer players. Rofo1992;157:420-424.
    2Valimaki VV, Loyttyniemi E, Valimaki MJ. Quantitative ultrasound variables of the heel in Finnish men aged18-20yr: predictors,relationship to bone mineral content, and changes during military service. Osteoporos Int2006;17:1763-1771.
    3Zhu ZQ, Liu W, Xu CL, et al. Reference data for quantitative ultrasound values of calcaneus in2927healthy Chinesemen. J Bone Miner Metab2008;26:165-171.
    1Jergas M, Uffmann M, Wittenberg R, et al. Ultrasonic velocity measurements at weight-bearing and non-weigh bearingsites of the peripheral skeleton. The effect of physical activity in soccer players. Rofo1992;157:420-424.
    2Zhu ZQ, Liu W, Xu CL, et al. Reference data for quantitative ultrasound values of calcaneus in2927healthy Chinesemen. J Bone Miner Metab2008;26:165-171.
    3Hanneken A. Structural characterization of the circulating soluble FGF receptors reveals multiple isoforms generatedby secretion and ectodomain shedding. FEBS Lett2001;489:176-181.
    4Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA. Genetic and environmental contributions to the associationbetween quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res1998;13:1318-1327.
    5Gupta M, Cheung CL, Hsu YH, et al. Identification of homogeneous genetic architecture of multiple geneticallycorrelated traits by block clustering of genome-wide associations. J Bone Miner Res2011;26:1261-1271.
    1Lieben L, Masuyama R, Torrekens S, et al. Normocalcemia is maintained in mice under conditions of c alciummalabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest2012;122:1803-1815.
    2Gattineni J, Bates C, Twombley K, et al, Mohammadi M, Baum M. FGF23decreases renal NaPi-2a and NaPi-2cexpression and induces hypophosphatemia in vivo predominantly via FGF receptor1. Am J Physiol Renal Physiol2009;297:282-291.
    1Stieger B, Murer H. Heterogeneity of brush-border-membrane vesicles from rat small intestine prepared by aprecipitation method using Mg/EGTA. Eur J Biochem1983;135:95-101.
    1Quarles LD. Role of FGF23in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp CellRes2012;318:1040-1048.
    2Geske MJ, Zhang X, Patel KK, et al. Fgf9signaling regulates small intestinal elongation and mesenchym aldevelopment. Development2008;135:2959-2568.
    3Madison BB, Dunbar L, Qiao XT, et al. Cis elements of the villin gene control expression in restricted domains of thevertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem2002;277:33275-33283.
    1Garrison AP, Dekaney CM, von Allmen DC et al. Early but not late administration of glucagon-like peptide-2followingileo-cecal resection augments putative intestinal stem cell expansion. Am J Physiol Gastrointest Liver Physiol2008;296:643–650.
    1Geske MJ, Zhang X, Patel KK, et al. Fgf9signaling regulates small intestinal elongation and mesenchymaldevelopment. Development2008;135:2959-2968.
    2Sala FG, Curtis JL, Veltmaat JM, et al. Fibroblast growth factor10is required for survival and proliferation but notdifferentiation of intestinal epithelial progenitor cells during murine colon development. Dev Biol2006;299:373-385.
    3Reeder AL, Botham RA, Franco M, Zaremba KM, Nichol PF. Formation of intestinal atresias in the Fgfr2III b-/-mice isnot associated with defects in notochord development or alterations in Shh expression. J Surg Res2012;177:139-145..
    1Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol2007;69:341-359.
    2Gattineni J, Bates C, Twombley K, et al, Mohammadi M, Baum M. FGF23decreases renal NaPi-2a and NaPi-2cexpression and induces hypophosphatemia in vivo predominantly via FGF receptor1. Am J Physiol Renal Physiol2009;297:282-291.
    3Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis2011;18:85-90.
    4Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators.Pediatr Nephrol.2008;23:1203-1210.
    5Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis2011;18:85-90.
    6Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type IIb Na(+)/P(i)cotransporter. J Membr Biol2006;212:177-190.
    1Sabbagh Y, O'Brien SP, Song W, et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. JAm Soc Nephrol2009;20:2348-2358.
    2Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis2011;18:85-90.
    3Katai K, Miyamoto K, Kishida S, et al. Regulation of intestinal Na+-dependent phosphate co-transporters by alow-phosphate diet and1,25-dihydroxyvitamin D3. Biochem J1999;343Pt3:705-712.
    4Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin Dreceptor null mice. Am J Physiol Renal Physiol2004;287:39-47.
    5Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H. Inhibition of intestinal sodium-dependent inorganic phosphatetransport by fibroblast growth factor23. Ther Apher Dial2005;9:331-335.
    6Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation of the human NaPi-IIb cotransporter byEGF in Caco-2cells involves c-myb. Am J Physiol Cell Physiol2003;284:1262-1271.
    1Chen H, Xu H, Dong J, et al. Tumor necrosis factor-alpha impairs intestinal phosphate absorption in colitis. Am JPhysiol Gastrointest Liver Physiol2009;296:775-781.
    2Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation of the human NaPi-IIb cotransporter byEGF in Caco-2cells involves c-myb. Am J Physiol Cell Physiol2003;284:1262-1271.
    3Xu H, Uno JK, Inouye M, et al. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am JPhysiol Gastrointest Liver Physiol2003;285:1317-1324.
    4Miralles F, Ron D, Baiget M, Felez J, Munoz-Canoves P. Differential regulation of urokinase-type plasminogenactivator expression by basic fibroblast growth factor and serum in myogenesis. Requirement of a commonmitogen-activated protein kinase pathway. J Biol Chem1998;273:2052-2058.
    5Jaakkola P, Vihinen T, Maatta A, Jalkanen M. Activation of an enhancer on the syndecan-1gene is restricted tofibroblast growth factor family members in mesenchymal cells. Mol Cell Biol1997;17:3210-3219.
    6Tan Y, Low KG, Boccia C, Grossman J, Comb MJ. Fibroblast growth factor and cyclic AMP (cAMP) synergisticallyactivate gene expression at a cAMP response element. Mol Cell Biol1994;14:7546-7556.
    7Hoag HM, Martel J, Gauthier C, Tenenhouse HS. Effects of Npt2gene ablation and low-phosphate diet on renalNa(+)/phosphate cotransport and cotransporter gene expression. J Clin Invest1999;104:679-686.
    1Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23demonstrates an essential physiological role ofFGF23in phosphate and vitamin D metabolism. J Clin Invest2004;113:561-568.
    2Gattineni J, Bates C, Twombley K, et al, Mohammadi M, Baum M. FGF23decreases renal NaPi-2a and NaPi-2cexpression and induces hypophosphatemia in vivo predominantly via FGF receptor1. Am J Physiol Renal Physiol2009;297:282-291.
    3Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R. Evidence for a signaling axis by whichintestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A2007;104:11085-11090.
    4Lieben L, Masuyama R, Torrekens S, et al. Normocalcemia is maintained in mice under conditions of calciummalabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest2012;122:1803-1815.
    1Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and otherfactors. Crit Rev Clin Lab Sci2010;47:181-195.
    2Sitara D, Kim S, Razzaque MS, et al. Genetic evidence of serum phosphate-independent functions of FGF-23on bone.PLoS Genet2008;4:1-10.
    3Christakos S, Gill R, Lee S, Li H. Molecular aspects of the calbindins. J Nutr1992;122:678-682.
    4Segawa H, Onitsuka A, Kuwahata M, et al. Type IIc sodium-dependent phosphate transporter regulates calciummetabolism. J Am Soc Nephrol2009;20:104-113.
    1Osteoporosis prevention, diagnosis, and therapy. JAMA2001;285:785-795.
    2原发性骨质疏松症诊治指南.中华医学会骨质疏松和骨矿盐疾病分会.2010.
    3Melton LJ r, Atkinson EJ, Khosla S, Oberg AL, Riggs BL. Evaluation of a prediction model for long-term fracture risk.J Bone Miner Res2005;20:551-556.
    4Uusi-Rasi K, Karkkainen MU, Lamberg-Allardt CJ. Calcium intake in health maintenance-a systematic review. FoodNutr Res2013;57:7: doi:10.3402/fnr. v57i0.21082.
    5Chung M, Balk EM, Brendel M, et al. Vitamin D and calcium: a systematic review of health outcomes. Evid RepTechnol Assess (Full Rep)2009;183:1-420.
    1Yan C, Li A, Amling M, et al. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependentrickets type II with alopecia. Proc. Natl. Acad. Sci. USA1997;94:9831-9835.
    2Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem2003;88:259-266.
    3Binkley N, Harke J, Krueger D, et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alterbone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res2009;24:983-991.
    4Ma DF, Qin LQ, Wang PY, Katoh R. Soy isoflavone intake increases bone mineral density in the spine of menopausalwomen: meta-analysis of randomized controlled trials. Clin Nutr2008;27:57-64.
    5Yang Z, Zhang Z, Penniston KL, Binkley N, Tanumihardjo SA. Serum carotenoid concentrations in postmenopausalwomen from the United States with and without osteoporosis. Int J Vitam Nutr Res2008;78:105-111.
    6Leveille SG, LaCroix AZ, Koepsell TD, et al. Dietary vitamin C and bone mineral density in postmenopausal women inWashington State, USA. J Epidemiol Community Health1997;51:479-485.
    7Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, Kohn DH. Exercise-induced changes inthe cortical bone of growing mice are bone-and gender-specific. Bone2007;40:1120-1127.
    8Anna Nordstr m MH, Peter Nordstr m. Effects of different types of weight-bearing loading on bone mass and size inyoung males: A longitudinal study. Bone2008;42565–571.
    9Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners.Bone2006;39:880-885.
    10Wu J, Wang XX, Higuchi M, Yamada K, Ishimi Y. High bone mass gained by exercise in growing male mice isincreased by subsequent reduced exercise. J Appl Physiol2004;97:806-810.
    11Wallace JM, Ron MS, Kohn DH. Short-term exercise in mice increases tibial post-yield mechanical properties whiletwo weeks of latency following exercise increases tissue-level strength. Calcif Tissue Int2009;84:297-304.
    12Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int2001;68:259-270.
    1Hollenbach KA, Barrett-Connor E, Edelstein SL, Holbrook T. Cigarette smoking and bone mineral density in older menand women. Am J Public Health1993;83:1265-1270.
    2Kanis JA, Johnell O, Oden A, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int2005;16:155-162.
    3Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int2001;68:259-270.
    4Sorensen LT, Toft BG, Rygaard J, et al. Effect of smoking, smoking cessation, and nicotine patch on wound dimension,vitamin C, and systemic markers of collagen metabolism. Surgery2010;148:982-990.
    5Cassidenti DL, Vijod AG, Vijod MA, Stanczyk FZ, Lobo RA. Short-term effects of smoking on the pharmacokineticprofiles of micronized estradiol in postmenopausal women. Am J Obstet Gynecol1990;163:1953-1960.
    6Ma L, Zheng LW, Sham MH, Cheung LK. Uncoupled angiogenesis and osteogenesis in nicotine-compromised bonehealing. J Bone Miner Res2010;25:1305-1313.
    7Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev2002;23:303-326.
    8Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature2001;411:199-204.
    1Devoto M, Shimoya K, Caminis J, et al. First-stage autosomal genome screen in extended pedigrees suggests genespredisposing to low bone mineral density on chromosomes1p,2p and4q. Eur J Hum Genet1998;6:151-157.
    2Niu T, Chen C, Cordell H, et al. A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet1999;104:226-233.
    3Karasik D, Cupples LA, Hannan MT, Kiel DP. Age, gender, and body mass effects on quantitative trait loci for bonemineral density: the Framingham Study. Bone2003;33:308-316.
    4Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev2002;23:303-326.
    5Albagha OM, Pettersson U, Stewart A, et al. Association of oestrogen receptor alpha gene polymorphisms withpostmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet2005;42:240-246.
    1Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeletonmalformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone2008;42:
    631-643.
    2Su N, Sun Q, Li C, Lu X, et al. Gain-of-function mutation in FGFR3in mice leads to decreased bone mass by affectingboth osteoblastogenesis and osteoclastogenesis. Hum Mol Genet2010;19:1199-1210.
    3Lazary A, Kosa JP, Tobias B, et al. Single nucleotide polymorphisms in new candidate genes are associated with bonemineral density and fracture risk. Eur J Endocrinol2008;159:187-196.
    4Yerges LM, Klei L, Cauley JA, et al. High-density association study of383candidate genes for volumetric BMD at thefemoral neck and lumbar spine among older men. J Bone Miner Res2009;24:2039-2049.
    5Zmuda JM, Yerges-Armstrong LM, Moffett SP, et al. Genetic analysis of vertebral trabecular bone density andcross-sectional area in older men. Osteoporos Int2011;22:1079-1090.
    6Mann V, Hobson EE, Li B, et al. A COL1A1Sp1binding site polymorphism predisposes to osteoporotic fracture byaffecting bone density and quality. J Clin Invest2001;107:899-907.
    7Beavan S, Prentice A, Dibba B, et al. Polymorphism of the collagen type Ialpha1gene and ethnic differences inhip-fracture rates. N Engl J Med1998;339:351-352.
    8Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature1994;367:284-287.
    9Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev2002;23:303-326.
    10Arai H, Miyamoto K, Taketani Y, et al. A vitamin D receptor gene polymorphism in the translation initiation codon:effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res1997;12:915-921.
    11Fang Y, van Meurs JB, d'Alesio A, et al. Promoter and3'-untranslated-region haplotypes in the vitamin d receptor genepredispose to osteoporotic fracture: the rotterdam study. Am J Hum Genet2005;77:807-823.
    1Hsu YH, Kiel DP. Clinical review: Genome-wide association studies of skeletal phenotypes: what we have learned andwhere we are headed. J Clin Endocrinol Metab2012;97:1958-1977.
    2Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies56bone mineral density lociand reveals14loci associated with risk of fracture. Nat Genet2012;44:491-501.
    1Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis2011;18:85-90.
    2Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by the phosphatonins and other novel mediators.Pediatr Nephrol.2008;23:1203-1210.
    3Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key rolesfor calcium and phosphate. Circ Res.2011;109:697-711.
    4Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol.2007;69:341-359.
    5Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, et al. FGF23decreases renal NaPi-2a andNaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor1. Am J P hysiol RenalPhysiol.2009;297:282-291.
    6Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23demonstratesan essential physiological role of FGF23in phosphate and vitamin D metabolism. J Clin Invest.2004;113:561-568.
    7Hoag HM, Martel J, Gauthier C, Tenenhouse HS. Effects of Npt2gene ablation and low-phosphate diet on renalNa(+)/phosphate cotransport and cotransporter gene expression. J Clin Invest1999;104:679-686.
    1Benais-Pont G, Punn A, Flores-Maldonado C, et al. Identification of a tight junction-associated guanine nucleotide exchangefactor that activates Rho and regulates paracellular permeability. The Journal of cell biology.2003;160:729-740.
    2Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+resorption. Science.1999;285:103-06.
    3Will C, Fromm M, Muller D. Claudin tight junction proteins: novel aspects in paracellular transport. Peritoneal dialysisinternational: journal of the International Society for Peritoneal Dialysis.2008;28:577-584.
    4Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis.2011;18:85-90.
    5Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type IIb Na(+)/P(i)cotransporter. The Journal of membrane biology.2006;212:177-190.
    6Tomoe Y, Segawa H, Shiozawa K, et al. Phosphaturic action of fibroblast growth factor23in Npt2null mice. Am JPhysiol Renal Physiol.2010;298:1341-1350.
    7Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type IIsodium-phosphate cotransporter expressed in mammalian small intestine. PNAS.1998;95:14564-14569.
    8Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al. Intestinal npt2b plays a major role inphosphate absorption and homeostasis. J Am Soc Nephrol.2009;20:2348-2358.
    9Marks J, Srai SK, Biber J, et al. Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats withmice. Exp Physiol.2006;91:531-937.
    10Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol RenalPhysiol.2010;299:285-296.
    11Kohler K, Forster IC, Stange G, Biber J, Murer H. Transport function of the renal type IIa Na+/P(i) cotransporter iscodetermined by residues in two opposing linker regions. The Journal of general physiology.2002;120:693-705.
    1Ghezzi C, Murer H, Forster IC. Substrate interactions of the electroneutral Na+-coupled inorganic phosphatecotransporter (NaPi-IIc). The Journal of physiology.2009;587:4293-4307.
    2Virkki LV, Murer H, Forster IC. Mapping conformational changes of a type IIb Na+/Pi cotransporter by voltage clampfluorometry. J Biol Chem.2006;281:28837-28849.
    3Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type IIb Na(+)/P(i)cotransporter. The Journal of membrane biology.2006;212:177-190.
    4Chen H, Xu H, Dong J, et al. Tumor necrosis factor-alpha impairs intestinal phosphate absorption in colitis. Am JPhysiol Gastrointest Liver Physiol.2009;296:775-781.
    5Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation of the human NaPi-IIb cotransporter byEGF in Caco-2cells involves c-myb. Am J Physiol Cell Physiol.2003;284:1262-1271.
    6Xu H, Uno JK, Inouye M, et al. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am JPhysiol Gastrointest Liver Physiol.2003;285:1317-1324.
    7Arima K, Hines ER, Kiela PR, et al. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i)cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol.2002;283:426-434.
    8Stauber A, Radanovic T, Stange G, et al. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulatesNa(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine. Am JPhysiol Gastrointest Liver Physiol.2005;288:501-506.
    9Marks J, Churchill LJ, Debnam ES, Unwin RJ. Matrix extracellular phosphoglycoprotein inhibits phosphate transport. JAm Soc Nephrol.2008;19:2313-2320.
    10Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, et al. Regulation of intestinal Na+-dependent phosphateco-transporters by a low-phosphate diet and1,25-dihydroxyvitamin D3. The Biochemical journal.1999;343:705-712.
    1Palmada M, Dieter M, Speil A, Bohmer C, Mack AF, Wagner HJ, et al. Regulation of intestinal phosphate cotransporterNaPi IIb by ubiquitin ligase Nedd4-2and by serum-and glucocorticoid-dependent kinase1. Am J Physiol GastrointestLiver Physiol.2004;287:143-150.
    2Hattenhauer O, Traebert M, Murer H, Biber J. Regulation of small intestinal Na-P(i) type IIb cotransporter by dietaryphosphate intake. Am J Physiol.1999;277:756-762.
    3Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin Dreceptor null mice. Am J Physiol Renal Physiol.2004;287:39-47.
    4Miyamoto K, Ito M, Kuwahata M, et al. Inhibition of intestinal sodium-dependent inorganic phosphate transport byfibroblast growth factor23. Ther Apher Dial.2005;9:331-935.
    5Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis2011;18:85-90.
    6Nishida Y, Taketani Y, Yamanaka-Okumura H, et al. Acute effect of oral phosphate loading on serum fibroblast growthfactor23levels in healthy men. Kidney international.2006;70:2141-2147.
    1Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, et al. Evidence for a signaling axis by which intestinalphosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A.2007;104:11085-11090.
    2Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al. Intestinal npt2b plays a major role inphosphate absorption and homeostasis. J Am Soc Nephrol.2009;20:2348-2358.
    3Quarles LD. Role of FGF23in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp CellRes.2012;318:1040-1048.
    4Schiavi SC, Tang W, Bracken C, et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am SocNephrol.2012;23:1691-1700.
    5Eto N, Miyata Y, Ohno H, Yamashita T. Nicotinamide prevents the development of hyperphosphataemia by suppressingintestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol Dial Transplant.2005;20:1378-1384.
    6Cheng SC, Young DO, Huang Y, et al. A randomized, double-blind, placebo-controlled trial of niacinamide forreduction of phosphorus in hemodialysis patients. Clinical journal of the American Society of Nephrology: CJASN.2008;3:1131-1138.
    [1] Dallas SL, Prideaux M, Bonewald LF. The Osteocyte: An Endocrine Cell and More.Endocr Rev2013.
    [2] Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ,McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrineregulation of energy metabolism by the skeleton. Cell2007;130:456-69.
    [3] CALVI LM. Osteoblastic Activation in the Hematopoietic Stem Cell Niche. New YorkAcademy of Sciences2006.
    [4] Calvi LM, Bromberg O, Rhee Y, et al. Osteoblastic expansion induced by parathyroidhormone receptor signaling in murine osteocytes is not sufficient to increase hematopoieticstem cells. blood2012;119:2489-99.
    [5] Kollet O. Osteoclasts degrade endosteal components and promote mobilization ofhematopoietic progenitor cells. nature medcine2006.
    [6] Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms andimplications for the pathogenesis and treatment of osteoporosis. Endocr Rev2000;21:115-37.
    [7] Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiatingosteoclastogenesis and localized bone destruction. J Bone Miner Res2008;23:915-27.
    [8] Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stemcells couples bone resorption with formation. Nat Med2009;15:757-65.
    [9] Xian L, Wu X, Pang L, et al. Matrix IGF-1maintains bone mass by activation ofmTOR in mesenchymal stem cells. Nat Med2012;18:1095-101.
    [10]Osteoporosis prevention, diagnosis, and therapy. JAMA2001;285:785-95.
    [11]原发性骨质疏松症诊治指南.中华医学会骨质疏松和骨矿盐疾病分会.2010.
    [12]Iacovino JR. Mortality outcomes after osteoporotic fractures in men and women. JInsur Med2001;33:316-20.
    [13]Bass E, French DD, Bradham DD, Rubenstein LZ. Risk-adjusted mortality rates ofelderly veterans with hip fractures. Ann Epidemiol2007;17:514-9.
    [14] P. Ammann, Rizzoli R. Bone strength and its determinants. Osteoporosis International2003;14:13-18.
    [15] Melton LJ r, Atkinson EJ, Khosla S, Oberg AL, Riggs BL. Evaluation of a prediction model for long-term fracturerisk. J Bone Miner Res2005;20:551-556.
    [16]Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev2002;23:303-26.
    [17]Akhter MP, Cullen DM, Pedersen EA, Kimmel DB, Recker RR. Bone response to invivo mechanical loading in two breeds of mice. Calcif Tissue Int1998;63:442-9.
    [18]Vega E, Ghiringhelli G, Mautalen C, et al. Bone mineral density and bone size in menwith primary osteoporosis and vertebral fractures. Calcif Tissue Int1998;62:465-9.
    [19]Cosman F, Ruffing J, Zion M, et al. Determinants of stress fracture risk in United StatesMilitary Academy cadets. Bone2013;55:359-66.
    [20]Gao Y, Grassi F, Ryan MR, et al. IFN-gamma stimulates osteoclast formation and boneloss in vivo via antigen-driven T cell activation. J Clin Invest2007;117:122-32.
    [21]Kuipers A, Zhang Y, Cauley JA, et al. Association of a high mobility group gene(HMGA2) variant with bone mineral density. Bone2009;45:295-300.
    [22]Abe T, Nomura S, Nakagawa R, et al. Osteoblast differentiation is impaired inSOCS-1-deficient mice. J Bone Miner Metab2006;24:283-90.
    [23]Ohba S, Kawaguchi H, Kugimiya F, et al. Patched1haploinsufficiency increases adultbone mass and modulates Gli3repressor activity. Dev Cell2008;14:689-99.
    [24]Deng FY, Dong SS, Xu XH, et al. Genome-wide association study identified UQCClocus for spine bone size in humans. Bone2013;53:129-33.
    [25]Melton LJ,3rd, Beck TJ, Amin S, et al. Contributions of bone density and structure tofracture risk assessment in men and women. Osteoporos Int2005;16:460-7.
    [26]Zhang H, Hu YQ, Zhang ZL. Age trends for hip geometry in Chinese men and womenand the association with femoral neck fracture. Osteoporos Int2011;22:2513-22.
    [27]El Hage R. Geometric indices of hip bone strength in obese, overweight, andnormal-weight adolescent boys. Osteoporos Int2012;23:1593-600.
    [28]El Hage R, El Hage Z, Moussa E, et al. Influence of the weight status on hip bonestrength indices in a group of sedentary adolescent girls. J Med Liban2012;60:30-6.
    [29]Slemenda CW, Turner CH, Peacock M, Christian JC, Sorbel J, Hui SL, Johnston CC.The genetics of proximal femur geometry, distribution of bone mass and bone mineraldensity. Osteoporos Int1996;6:178-82.
    [30]Gupta M, Cheung CL, Hsu YH, et al. Identification of homogeneous geneticarchitecture of multiple genetically correlated traits by block clustering of genome-wideassociations. J Bone Miner Res2011;26:1261-71.
    [31]Grimal Q, Grondin J, Guerard S, Barkmann R, Engelke K, Gluer CC, Laugier P.Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: resultsof a pilot study. J Bone Miner Res2013;28:302-12.
    [32]Etherington J, Keeling J, Bramley R, et al. The effects of10weeks military training onheel ultrasound and bone turnover. Calcif Tissue Int1999;64:389-93.
    [33]Chatzipapas CN, Drosos GI, Kazakos KI, Tripsianis G, Iatrou C, Verettas DA. Stressfractures in military men and bone quality related factors. Int J Sports Med2008;29:922-6.
    [34]Jergas M, Uffmann M, Wittenberg R, Muller P, Koster O.[Ultrasonic velocitymeasurements at weight-bearing and non-weight-bearing sites of the peripheral skeleton.The effect of physical activity in soccer players]. Rofo1992;157:420-4.
    [35]Valimaki VV, Loyttyniemi E, Valimaki MJ. Quantitative ultrasound variables of theheel in Finnish men aged18-20yr: predictors, relationship to bone mineral content, andchanges during military service. Osteoporos Int2006;17:1763-71.
    [36]Zhu ZQ, Liu W, Xu CL, et al. Reference data for quantitative ultrasound values ofcalcaneus in2927healthy Chinese men. J Bone Miner Metab2008;26:165-71.
    [37]Siffert RS, Kaufman JJ. Ultrasonic bone assessment:"the time has come". Bone2007;40:5-8.
    [38]Arden NK, Baker J, Hogg C, Baan K, Spector TD. The heritability of bone mineraldensity, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. JBone Miner Res1996;11:530-4.
    [39]Karasik D, Myers RH, Hannan MT, Gagnon D, McLean RR, Cupples LA, Kiel DP.Mapping of quantitative ultrasound of the calcaneus bone to chromosome1bygenome-wide linkage analysis. Osteoporos Int2002;13:796-802.
    [40]Lee M, Czerwinski SA, Choh AC, et al. Heritability of calcaneal quantitativeultrasound measures in healthy adults from the Fels Longitudinal Study. Bone2004;35:1157-63.
    [41]Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA. Genetic and environmentalcontributions to the association between quantitative ultrasound and bone mineral densitymeasurements: a twin study. J Bone Miner Res1998;13:1318-27.
    [42]Tzakas P, Wong BY, Logan AG, Rubin LA, Cole DE. Transforming growth factorbeta-1(TGFB1) and peak bone mass: association between intragenic polymorphisms andquantitative ultrasound of the heel. BMC Musculoskelet Disord2005;6:29.
    [43]McGuigan FE, Larzenius E, Callreus M, et al. Variation in the BMP2gene: bonemineral density and ultrasound in young adult and elderly women. Calcif Tissue Int2007;81:254-62.
    [44]Holliday KL, Pye SR, Thomson W, et al. The ESR1(6q25) locus is associated withcalcaneal ultrasound parameters and radial volumetric bone mineral density in Europeanmen. PLoS One2011;6: e22037.
    [45]Roshandel D, Thomson W, Pye SR, et al A validation of the first genome-wideassociation study of calcaneus ultrasound parameters in the European Male Ageing Study.BMC Med Genet2011;12:19.
    [46]Lazary A, Kosa JP, Tobias B, et al. Single nucleotide polymorphisms in new candidategenes are associated with bone mineral density and fracture risk. Eur J Endocrinol2008;159:187-96.
    [47]Yerges LM, Klei L, Cauley JA, et al. High-density association study of383candidategenes for volumetric BMD at the femoral neck and lumbar spine among older men. J BoneMiner Res2009;24:2039-49.
    [48]Zmuda JM, Yerges-Armstrong LM, Moffett SP, et al. Genetic analysis of vertebraltrabecular bone density and cross-sectional area in older men. Osteoporos Int2011;22:1079-90.
    [49]Su N, Sun Q, Li C, et al. Gain-of-function mutation in FGFR3in mice leads todecreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum MolGenet2010;19:1199-210.
    [50]Yu K, Xu J, Liu Z, et al. Conditional inactivation of FGF receptor2reveals an essentialrole for FGF signaling in the regulation of osteoblast function and bone growth.Development2003;130:3063-74.
    [51]Lieben L, Masuyama R, Torrekens S, et al. Normocalcemia is maintained in mice underconditions of calcium malabsorption by vitamin D-induced inhibition of bonemineralization. J Clin Invest2012;122:1803-15.
    [52]Gattineni J, Bates C, Twombley K, et al, Mohammadi M, Baum M. FGF23decreasesrenal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivopredominantly via FGF receptor1. Am J Physiol Renal Physiol2009;297: F282-91.
    [53]Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23demonstrates anessential physiological role of FGF23in phosphate and vitamin D metabolism. J Clin Invest2004;113:561-8.
    [54]Martin A, Liu S, David V, et al. Bone proteins PHEX and DMP1regulate fibroblasticgrowth factor Fgf23expression in osteocytes through a common pathway involving FGFreceptor (FGFR) signaling. FASEB J2011;25:2551-62.
    [55]Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H. Inhibition of intestinalsodium-dependent inorganic phosphate transport by fibroblast growth factor23. Ther ApherDial2005;9:331-5.
    [56]Tan LJ, Lei SF, Chen XD, et al. Establishment of peak bone mineral density inSouthern Chinese males and its comparisons with other males from different regions ofChina. J Bone Miner Metab2007;25:114-21.
    [57]Zhang ZL, Qin YJ, Huang QR, et al. Bone mineral density of the spine and femur inhealthy Chinese men. Asian J Androl2006;8:419-27.
    [58]Wu XP, Hou YL, Zhang H, et al. Establishment of BMD reference databases for thediagnosis and evaluation of osteoporosis in central southern Chinese men. J Bone MinerMetab2008;26:586-94.
    [59]Zhu H, Fang J, Luo X, et al. A survey of bone mineral density of healthy Han adults inChina. Osteoporos Int2010;21:765-72.
    [60]Cui LH, Choi JS, Shin MH, et al. Prevalence of osteoporosis and reference data forlumbar spine and hip bone mineral density in a Korean population. J Bone Miner Metab2008;26:609-17.
    [61]Pande KC, Veeraji E, Pande SK. Normative reference database for bone mineraldensity in Indian men and women using digital X-ray radiogrammetry. J Indian Med Assoc2006;104:288-91.
    [62]Nordstr m A, H gstr m M, Nordstr m P. Early and Rapid Bone Mineral Density Lossof the Proximal Femur in Men. The Journal of Clinical Endocrinology and Metabolism2007;92:1902–1908.
    [63]Marwaha RK, Tandon N, Shivaprasad C, et al. Peak bone mineral density of physicallyactive healthy Indian men with adequate nutrition and no known current constraints to bonemineralization. J Clin Densitom2009;12:314-21.
    [64]Pettersson U, Nilsson M, Sundh V, Mellstr m D, Lorentzon M. Physical activity is thestrongest predictor of calcaneal peak bone mass in young Swedish men. Osteoporos Int2009;21:447-455.
    [65]Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisitionin healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J ClinEndocrinol Metab1999;84:4702-4712.
    [66]Yu N, Liu YJ, Pei Y, et al. Evaluation of Compressive Strength Index of the FemoralNeck in Caucasians and Chinese. Calcif Tissue Int2010;87:324-332.
    [67]Wallace JM, Rajachar RM, Allen MR, et al. Exercise-induced changes in the corticalbone of growing mice are bone-and gender-specific. Bone2007;40:1120-1127.
    [68]Nordstr m A, H gstr m M, Nordstr m P. Effects of different types of weight-bearingloading on bone mass and size in young males: A longitudinal study. Bone2008;42565–571.
    [69]Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both maleand female endurance runners. Bone2006;39:880-5.
    [70]Wu J, Wang XX, Higuchi M, et al. High bone mass gained by exercise in growing malemice is increased by subsequent reduced exercise. J Appl Physiol2004;97:806-10.
    [71]Wallace JM, Ron MS, Kohn DH. Short-term exercise in mice increases tibial post-yieldmechanical properties while two weeks of latency following exercise increases tissue-levelstrength. Calcif Tissue Int2009;84:297-304.
    [72]朱汉民.加强骨转换生化标志物的检测和临床应用.华中医学杂志2008;32:1-2.
    [73]Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting bothchondrogenesis and osteogenesis. Bone2008;42:631-43.
    [74]Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3causesachondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest1999;104:1517-25.
    [75]Dupont WD, Plummer WD, Jr. Power and sample size calculations for studiesinvolving linear regression. Control Clin Trials1998;19:589-601.
    [76]Ogawa Y, Kurosu H, Yamamoto M, et al. BetaKlotho is required for metabolic activityof fibroblast growth factor21. Proc Natl Acad Sci U S A2007;104:7432-7.
    [77]Jiao H, Arner P, Dickson SL, et al. Genetic association and gene expression analysisidentify FGFR1as a new susceptibility gene for human obesity. J Clin Endocrinol Metab2011;96: E962-6.
    [78]den Hoed M, Ekelund U, Brage S, et al. Genetic susceptibility to obesity and relatedtraits in childhood and adolescence: influence of loci identified by genome-wide associationstudies. Diabetes2010;59:2980-8.
    [79]Roseman CC, Weaver TD. Multivariate apportionment of global human craniometricdiversity. Am J Phys Anthropol2004;125:257-63.
    [80]Cheung CL, Chan V, Kung AW. A differential association of ALOX15polymorphismswith bone mineral density in pre-and post-menopausal women. Hum Hered2008;65:1-8.
    [81]Flicker L, Faulkner KG, Hopper JL, et al. Determinants of hip axis length in womenaged10-89years: a twin study. Bone1996;18:41-5.
    [82]Heaney RP, Barger-Lux MJ, Davies KM, Ryan RA, Johnson ML, Gong et al. Bonedimensional change with age: interactions of genetic, hormonal, and body size variables.Osteoporos Int1997;7:426-31.
    [83]Tan LJ, Liu YZ, Xiao P, et al. Evidence for major pleiotropic effects on bone sizevariation from a principal component analysis of451Caucasian families. Acta PharmacolSin2008;29:745-51.
    [84]Jian WX, Long JR, Deng HW. High heritability of bone size at the hip and spine inChinese. J Hum Genet2004;49:87-91.
    [85]Gladys Valverde-Franco HL, David Davidson, Sen Chai, et al. Henderson. Defectivebone mineralization and osteopenia in young adult FGFR3-/-mice. Human MolecularGenetics2004;13:271–284.
    [86]Isaksson H, Tolvanen V, Finnila MA, et al. Physical exercise improves properties ofbone and its collagen network in growing and maturing mice. Calcif Tissue Int2009;85:247-56.
    [87]Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J. Effects of gender,anthropometric variables, and aging on the evolution of hip strength in men and womenaged over65. Bone2003;32:561-70.
    [88]李曦.骨质疏松症相关表型的全基因诅关联研究.湖南师范大学博士学位论文2011.
    [89]Patel SG, DiMario JX. Two distal Sp1-binding cis-elements regulate fibroblast growthfactor receptor1(FGFR1) gene expression in myoblasts. Gene2001;270:171-80.
    [90]Parakati R, DiMario JX. Sp1-and Sp3-mediated transcriptional regulation of thefibroblast growth factor receptor1gene in chicken skeletal muscle cells. J Biol Chem2002;277:9278-85.
    [91]O'Shea PJ, Guigon CJ, Williams GR, Cheng SY. Regulation of fibroblast growth factorreceptor-1(FGFR1) by thyroid hormone: identification of a thyroid hormone responseelement in the murine Fgfr1promoter. Endocrinology2007;148:5966-76.
    [92]Wickelgren I. Molecular biology. Spinning junk into gold. Science2003;300:1646-9.
    [93]Groth C, Lardelli M. The structure and function of vertebrate fibroblast growth factorreceptor1. Int J Dev Biol2002;46:393-400.
    [94]Lappe J, Davies K, Recker R, Heaney R. Quantitative ultrasound: use in screening forsusceptibility to stress fractures in female army recruits. J Bone Miner Res2005;20:571-8.
    [95]Hanneken A. Structural characterization of the circulating soluble FGF receptorsreveals multiple isoforms generated by secretion and ectodomain shedding. FEBS Lett2001;489:176-81.
    [96]Stieger B, Murer H. Heterogeneity of brush-border-membrane vesicles from rat smallintestine prepared by a precipitation method using Mg/EGTA. Eur J Biochem1983;135:95-101.
    [97]Quarles LD. Role of FGF23in vitamin D and phosphate metabolism: implications inchronic kidney disease. Exp Cell Res2012;318:1040-8.
    [98]Geske MJ, Zhang X, Patel KK, et al. Fgf9signaling regulates small intestinalelongation and mesenchymal development. Development2008;135:2959-68.
    [99]Madison BB, Dunbar L, Qiao XT, Braunstein K, Braunstein E, Gumucio DL. Ciselements of the villin gene control expression in restricted domains of the vertical (crypt)and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem2002;277:33275-83.
    [100] Garrison AP, Dekaney CM, von Allmen DC et al. Early but not late administrationof glucagon-like peptide-2following ileo-cecal resection augments putative intestinal stemcell expansion. Am J Physiol Gastrointest Liver Physiol2008;296:643–650.
    [101] Sala FG, Curtis JL, Veltmaat JM, et al. Fibroblast growth factor10is required forsurvival and proliferation but not differentiation of intestinal epithelial progenitor cellsduring murine colon development. Dev Biol2006;299:373-85.
    [102] Reeder AL, Botham RA, Franco M, Zaremba KM, Nichol PF. Formation ofintestinal atresias in the Fgfr2IIIb-/-mice is not associated with defects in notochorddevelopment or alterations in Shh expression. J Surg Res2012.
    [103] Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis.Annu Rev Physiol2007;69:341-59.
    [104] Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport.Adv Chronic Kidney Dis2011;18:85-90.
    [105] Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of amammalian intestinal type IIb Na(+)/P(i) cotransporter. J Membr Biol2006;212:177-90.
    [106] Sabbagh Y, O'Brien SP, Song W, et al. Intestinal npt2b plays a major role inphosphate absorption and homeostasis. J Am Soc Nephrol2009;20:2348-58.
    [107] Katai K, Miyamoto K, Kishida S, et al. Regulation of intestinal Na+-dependentphosphate co-transporters by a low-phosphate diet and1,25-dihydroxyvitamin D3. BiochemJ1999;343Pt3:705-12.
    [108] Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-P(i) cotransporter adaptationto dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol2004;287: F39-47.
    [109] Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation ofthe human NaPi-IIb cotransporter by EGF in Caco-2cells involves c-myb. Am J PhysiolCell Physiol2003;284: C1262-71.
    [110] Chen H, Xu H, Dong J, et al. Tumor necrosis factor-alpha impairs intestinalphosphate absorption in colitis. Am J Physiol Gastrointest Liver Physiol2009;296:G775-81.
    [111] Xu H, Uno JK, Inouye M, et al. Regulation of intestinal NaPi-IIb cotransportergene expression by estrogen. Am J Physiol Gastrointest Liver Physiol2003;285: G1317-24.
    [112] Miralles F, Ron D, Baiget M, Felez J, Munoz-Canoves P. Differential regulation ofurokinase-type plasminogen activator expression by basic fibroblast growth factor andserum in myogenesis. Requirement of a common mitogen-activated protein kinase pathway.J Biol Chem1998;273:2052-8.
    [113] Jaakkola P, Vihinen T, Maatta A, Jalkanen M. Activation of an enhancer on thesyndecan-1gene is restricted to fibroblast growth factor family members in mesenchymalcells. Mol Cell Biol1997;17:3210-9.
    [114] Tan Y, Low KG, Boccia C, Grossman J, Comb MJ. Fibroblast growth factor andcyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.Mol Cell Biol1994;14:7546-56.
    [115] Hoag HM, Martel J, Gauthier C, Tenenhouse HS. Effects of Npt2gene ablation andlow-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression.J Clin Invest1999;104:679-86.
    [116] Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R.Evidence for a signaling axis by which intestinal phosphate rapidly modulates renalphosphate reabsorption. Proc Natl Acad Sci U S A2007;104:11085-90.
    [117] Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calciumabsorption by vitamin D and other factors. Crit Rev Clin Lab Sci2010;47:181-95.
    [118] Sitara D, Kim S, Razzaque MS, et al. Genetic evidence of serumphosphate-independent functions of FGF-23on bone. PLoS Genet2008;4: e1000154.
    [119] Christakos S, Gill R, Lee S, Li H. Molecular aspects of the calbindins. J Nutr1992;122:678-82.
    [120] Segawa H, Onitsuka A, Kuwahata M, et al. Type IIc sodium-dependent phosphatetransporter regulates calcium metabolism. J Am Soc Nephrol2009;20:104-13.
    [1] Osteoporosis prevention, diagnosis, and therapy. JAMA2001;285:785-95.
    [2]原发性骨质疏松症诊治指南.中华医学会骨质疏松和骨矿盐疾病分会.2010.
    [3] Melton LJ r, Atkinson EJ, Khosla S, Oberg AL, Riggs BL. Evaluation of a predictionmodel for long-term fracture risk. J Bone Miner Res2005;20:551-556.
    [4] Reid IR, Bolland MJ, Grey A. Effect of calcium supplementation on hip fractures.Osteoporos Int2008;19:1119-23.
    [5] Uusi-Rasi K, Karkkainen MU, Lamberg-Allardt CJ. Calcium intake in healthmaintenance-a systematic review. Food Nutr Res2013;57: doi:10.3402/fnr. v57i0.21082.
    [6] Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calciumin combination with vitamin D supplementation to prevent fractures and bone loss in peopleaged50years and older: a meta-analysis. Lancet2007;370:657-66.
    [7] Chung M, Balk EM, Brendel M, et al. Vitamin D and calcium: a systematic review ofhealth outcomes. Evid Rep Technol Assess (Full Rep)2009:1-420.
    [8] YAN CHUN LI AEP, MICHAEL AMLING, GUNTER DELLING, et al. Targetedablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type IIwith alopecia. Proc. Natl. Acad. Sci. USA1997;94:9831-9835.
    [9] Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem2003;88:259-66.
    [10]Binkley N, Harke J, Krueger D, et al. Vitamin K treatment reduces undercarboxylatedosteocalcin but does not alter bone turnover, density, or geometry in healthypostmenopausal North American women. J Bone Miner Res2009;24:983-91.
    [11]Ma DF, Qin LQ, Wang PY, Katoh R. Soy isoflavone intake increases bone mineraldensity in the spine of menopausal women: meta-analysis of randomized controlled trials.Clin Nutr2008;27:57-64.
    [12]Yang Z, Zhang Z, Penniston KL, Binkley N, Tanumihardjo SA. Serum carotenoidconcentrations in postmenopausal women from the United States with and withoutosteoporosis. Int J Vitam Nutr Res2008;78:105-11.
    [13]Leveille SG, LaCroix AZ, Koepsell TD, et al. Dietary vitamin C and bone mineraldensity in postmenopausal women in Washington State, USA. J Epidemiol CommunityHealth1997;51:479-85.
    [14]Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, Kohn DH.Exercise-induced changes in the cortical bone of growing mice are bone-andgender-specific. Bone2007;40:1120-7.
    [15]Anna Nordstr m MH, Peter Nordstr m. Effects of different types of weight-bearingloading on bone mass and size in young males: A longitudinal study. Bone2008;42565–571.
    [16]Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both maleand female endurance runners. Bone2006;39:880-5.
    [17]Wu J, Wang XX, Higuchi M, Yamada K, Ishimi Y. High bone mass gained by exercisein growing male mice is increased by subsequent reduced exercise. J Appl Physiol2004;97:806-10.
    [18]Wallace JM, Ron MS, Kohn DH. Short-term exercise in mice increases tibial post-yieldmechanical properties while two weeks of latency following exercise increases tissue-levelstrength. Calcif Tissue Int2009;84:297-304.
    [19]Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bonemineral density. Calcif Tissue Int2001;68:259-70.
    [20]Hollenbach KA, Barrett-Connor E, Edelstein SL, Holbrook T. Cigarette smoking andbone mineral density in older men and women. Am J Public Health1993;83:1265-70.
    [21]Kanis JA, Johnell O, Oden A, et al. Smoking and fracture risk: a meta-analysis.Osteoporos Int2005;16:155-62.
    [22]Sorensen LT, Toft BG, Rygaard J, et al. Effect of smoking, smoking cessation, andnicotine patch on wound dimension, vitamin C, and systemic markers of collagenmetabolism. Surgery2010;148:982-90.
    [23]Cassidenti DL, Vijod AG, Vijod MA, Stanczyk FZ, Lobo RA. Short-term effects ofsmoking on the pharmacokinetic profiles of micronized estradiol in postmenopausal women.Am J Obstet Gynecol1990;163:1953-60.
    [24]Ma L, Zheng LW, Sham MH, Cheung LK. Uncoupled angiogenesis and osteogenesis innicotine-compromised bone healing. J Bone Miner Res2010;25:1305-13.
    [25]Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev2002;23:303-26.
    [26]Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome.Nature2001;411:199-204.
    [27]Devoto M, Shimoya K, Caminis J, et al. First-stage autosomal genome screen inextended pedigrees suggests genes predisposing to low bone mineral density onchromosomes1p,2p and4q. Eur J Hum Genet1998;6:151-7.
    [28]Devoto M, Specchia C, Li HH, et al. Variance component linkage analysis indicates aQTL for femoral neck bone mineral density on chromosome1p36. Hum Mol Genet2001;10:2447-52.
    [29]Niu T, Chen C, Cordell H, et al. A genome-wide scan for loci linked to forearm bonemineral density. Hum Genet1999;104:226-33.
    [30]Karasik D, Cupples LA, Hannan MT, Kiel DP. Age, gender, and body mass effects onquantitative trait loci for bone mineral density: the Framingham Study. Bone2003;33:308-16.
    [31]Albagha OM, Pettersson U, Stewart A, et al. Association of oestrogen receptor alphagene polymorphisms with postmenopausal bone loss, bone mass, and quantitativeultrasound properties of bone. J Med Genet2005;42:240-6.
    [32]Yin L, Du X, Li C, et al. A Pro253Arg mutation in fibroblast growth factor receptor2(Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting bothchondrogenesis and osteogenesis. Bone2008;42:631-43.
    [33]Su N, Sun Q, Li C, Lu X, et al. Gain-of-function mutation in FGFR3in mice leads todecreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum MolGenet2010;19:1199-210.
    [34]Lazary A, Kosa JP, Tobias B, et al. Single nucleotide polymorphisms in new candidategenes are associated with bone mineral density and fracture risk. Eur J Endocrinol2008;159:187-96.
    [35]Yerges LM, Klei L, Cauley JA, et al. High-density association study of383candidategenes for volumetric BMD at the femoral neck and lumbar spine among older men. J BoneMiner Res2009;24:2039-49.
    [36]Zmuda JM, Yerges-Armstrong LM, Moffett SP, et al. Genetic analysis of vertebraltrabecular bone density and cross-sectional area in older men. Osteoporos Int2011;22:1079-90.
    [37]Mann V, Hobson EE, Li B, et al. A COL1A1Sp1binding site polymorphismpredisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest2001;107:899-907.
    [38]Beavan S, Prentice A, Dibba B, et al. Polymorphism of the collagen type Ialpha1geneand ethnic differences in hip-fracture rates. N Engl J Med1998;339:351-2.
    [39]Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin Dreceptor alleles. Nature1994;367:284-7.
    [40]Arai H, Miyamoto K, Taketani Y, et al. A vitamin D receptor gene polymorphism in thetranslation initiation codon: effect on protein activity and relation to bone mineral density inJapanese women. J Bone Miner Res1997;12:915-21.
    [41]Arai H, Miyamoto KI, Yoshida M, et al. The polymorphism in the caudal-relatedhomeodomain protein Cdx-2binding element in the human vitamin D receptor gene. J BoneMiner Res2001;16:1256-64.
    [42]Fang Y, van Meurs JB, d'Alesio A, et al. Promoter and3'-untranslated-regionhaplotypes in the vitamin d receptor gene predispose to osteoporotic fracture: the rotterdamstudy. Am J Hum Genet2005;77:807-23.
    [43]Hsu YH, Kiel DP. Clinical review: Genome-wide association studies of skeletalphenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab2012;97: E1958-77.
    [44]Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies56bone mineral density loci and reveals14loci associated with risk of fracture. Nat Genet2012;44:491-501.
    [1] Kornberg A. The enzymatic replication of DNA. CRC critical reviews in biochemistry.1979;7:23-43.
    [2] Hansen NM, Felix R, Bisaz S, Fleisch H. Aggregation of hydroxyapatite crystals.Biochimica et biophysica acta.1976;451:549-59.
    [3] Krebs EG, Beavo JA. Phosphorylation-dephosphorylation of enzymes. Annual reviewof biochemistry.1979;48:923-59.
    [4] Lehninger AL, Wadkins CL. Oxidative phosphorylation. Annual review of biochemistry.1962;31:47-78.
    [5] Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annual review ofbiochemistry.1998;67:481-507.
    [6] Shaikh A, Berndt T, Kumar R. Regulation of phosphate homeostasis by thephosphatonins and other novel mediators. Pediatr Nephrol.2008;23:1203-10.
    [7] Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification inchronic kidney disease: key roles for calcium and phosphate. Circ Res.2011;109:697-711.
    [8] Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. AnnuRev Physiol.2007;69:341-59.
    [9] Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, et al.FGF23decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia invivo predominantly via FGF receptor1. Am J Physiol Renal Physiol.2009;297:F282-91.
    [10] Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al.Targeted ablation of Fgf23demonstrates an essential physiological role of FGF23inphosphate and vitamin D metabolism. J Clin Invest.2004;113:561-8.
    [11] Benais-Pont G, Punn A, Flores-Maldonado C, Eckert J, Raposo G, Fleming TP, et al.Identification of a tight junction-associated guanine nucleotide exchange factor thatactivates Rho and regulates paracellular permeability. The Journal of cell biology.2003;160:729-40.
    [12] Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al.Paracellin-1, a renal tight junction protein required for paracellular Mg2+resorption.Science.1999;285:103-6.
    [13] Will C, Fromm M, Muller D. Claudin tight junction proteins: novel aspects inparacellular transport. Peritoneal dialysis international: journal of the International Societyfor Peritoneal Dialysis.2008;28:577-84.
    [14] Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport.Adv Chronic Kidney Dis.2011;18:85-90.
    [15] Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of amammalian intestinal type IIb Na(+)/P(i) cotransporter. The Journal of membrane biology.2006;212:177-90.
    [16] Eto N, Tomita M, Hayashi M. NaPi-mediated transcellular permeation is thedominant route in intestinal inorganic phosphate absorption in rats. Drug metabolism andpharmacokinetics.2006;21:217-21.
    [17] Sabbagh Y, O'Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al.Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am SocNephrol.2009;20:2348-58.
    [18] Danisi G, Straub RW. Unidirectional influx of phosphate across the mucosalmembrane of rabbit small intestine. Pflugers Arch.1980;385:117-22.
    [19] Tomoe Y, Segawa H, Shiozawa K, Kaneko I, Tominaga R, Hanabusa E, et al.Phosphaturic action of fibroblast growth factor23in Npt2null mice. Am J Physiol RenalPhysiol.2010;298:F1341-50.
    [20] Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J.Characterization of a murine type II sodium-phosphate cotransporter expressed inmammalian small intestine. Proc Natl Acad Sci U S A.1998;95:14564-9.
    [21] Marks J, Srai SK, Biber J, et al. Intestinal phosphate absorption and the effect ofvitamin D: a comparison of rats with mice. Exp Physiol.2006;91:531-7.
    [22] Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and therenal-gastrointestinal axis. Am J Physiol Renal Physiol.2010;299:F285-96.
    [23] Kohler K, Forster IC, Stange G, Biber J, Murer H. Transport function of the renaltype IIa Na+/P(i) cotransporter is codetermined by residues in two opposing linker regions.The Journal of general physiology.2002;120:693-705.
    [24] Ghezzi C, Murer H, Forster IC. Substrate interactions of the electroneutralNa+-coupled inorganic phosphate cotransporter (NaPi-IIc). The Journal of physiology.2009;587:4293-307.
    [25] Virkki LV, Murer H, Forster IC. Mapping conformational changes of a type IIbNa+/Pi cotransporter by voltage clamp fluorometry. J Biol Chem.2006;281:28837-49.
    [26] Chen H, Xu H, Dong J, et al. Tumor necrosis factor-alpha impairs intestinalphosphate absorption in colitis. Am J Physiol Gastrointest Liver Physiol.2009;296:G775-81.
    [27] Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation ofthe human NaPi-IIb cotransporter by EGF in Caco-2cells involves c-myb. Am J PhysiolCell Physiol.2003;284:C1262-71.
    [28] Xu H, Uno JK, Inouye M, et al. Regulation of intestinal NaPi-IIb cotransportergene expression by estrogen. Am J Physiol Gastrointest Liver Physiol.2003;285:G1317-24.
    [29] Arima K, Hines ER, Kiela PR, et al. Glucocorticoid regulation and glycosylation ofmouse intestinal type IIb Na-P(i) cotransporter during ontogeny. Am J Physiol GastrointestLiver Physiol.2002;283:G426-34.
    [30] Stauber A, Radanovic T, Stange G, et al. Regulation of intestinal phosphatetransport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption andexpression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine. Am J PhysiolGastrointest Liver Physiol.2005;288:G501-6.
    [31] Marks J, Churchill LJ, Debnam ES, Unwin RJ. Matrix extracellularphosphoglycoprotein inhibits phosphate transport. J Am Soc Nephrol.2008;19:2313-20.
    [32] Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, et al. Regulation ofintestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and1,25-dihydroxyvitamin D3. The Biochemical journal.1999;343Pt3:705-12.
    [33] Palmada M, Dieter M, Speil A, Bohmer C, Mack AF, Wagner HJ, et al. Regulationof intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4-2and by serum-and glucocorticoid-dependent kinase1. Am J Physiol Gastrointest Liver Physiol.2004;287:G143-50.
    [34] Hattenhauer O, Traebert M, Murer H, Biber J. Regulation of small intestinal Na-P(i)type IIb cotransporter by dietary phosphate intake. Am J Physiol.1999;277: G756-62.
    [35] Segawa H, Kaneko I, Yamanaka S, et al. Intestinal Na-P(i) cotransporter adaptationto dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol.2004;287:F39-47.
    [36] Capuano P, Radanovic T, Wagner CA, et al. Intestinal and renal adaptation to alow-Pi diet of type II NaPi cotransporters in vitamin D receptor-and1alphaOHase-deficientmice. Am J Physiol Cell Physiol.2005;288:C429-34.
    [37] Miyamoto K, Ito M, Kuwahata M, et al. Inhibition of intestinal sodium-dependentinorganic phosphate transport by fibroblast growth factor23. Ther Apher Dial.2005;9:331-5.
    [38] Nishida Y, Taketani Y, Yamanaka-Okumura H, et al. Acute effect of oral phosphateloading on serum fibroblast growth factor23levels in healthy men. Kidney international.2006;70:2141-7.
    [39] Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, et al. Evidencefor a signaling axis by which intestinal phosphate rapidly modulates renal phosphatereabsorption. Proc Natl Acad Sci U S A.2007;104:11085-90.
    [40] Quarles LD. Role of FGF23in vitamin D and phosphate metabolism: implicationsin chronic kidney disease. Exp Cell Res.2012;318:1040-8.
    [41] Schiavi SC, Tang W, Bracken C, et al. Npt2b deletion attenuateshyperphosphatemia associated with CKD. J Am Soc Nephrol.2012;23:1691-700.
    [42] Eto N, Miyata Y, Ohno H, Yamashita T. Nicotinamide prevents the development ofhyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter inrats with adenine-induced renal failure. Nephrol Dial Transplant.2005;20:1378-84.
    [43] Cheng SC, Young DO, Huang Y, et al. A randomized, double-blind,placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysispatients. Clinical journal of the American Society of Nephrology: CJASN.2008;3:1131-8.
    [44] Takahashi Y, Tanaka A, Nakamura T, et al. Nicotinamide suppresseshyperphosphatemia in hemodialysis patients. Kidney international.2004;65:1099-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700