用户名: 密码: 验证码:
新型结构脂的酶法制备与功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥胖已成为影响人类健康的一种全球性问题。肥胖的发生和膳食结构密切相关,尤其与富含油脂的高热量食品的过量摄取有关。脂肪是食物的重要组成部分,对食物的口感、风味和饱腹感都具有重要的作用。然而,人们对脂肪的摄取已超过食物总热量比的30%。在此情况下,研究人员开发出了多种脂肪替代品和低热量油脂,包括蔗糖脂肪酸聚酯、中链脂肪酸甘油酯、短长链脂肪酸甘油酯和甘油二酯等。这些产品以低热量或改变油脂在体内的代谢方式来控制脂肪在体内的积聚。其中较为成功的产品有P&G公司的Caprenin产品和Nabiso公司开发的Salatrim系列产品,以及日本花王公司的甘油二酯产品。作为一种理想的油脂替代品,必须具有和传统油脂高度的通用性,即在使用方法、使用条件、感官特性上不得有大的改变,同时必须具有高的安全性和完好的营养特性。以上提及的油脂替代品或多或少有着各自的缺陷,目前还没有一种完全符合理想标准的产品。未来对低热量油脂替代品的市场需求将不断扩大。因此,开发与普通油脂性能相似的油脂替代品具有重要的学术价值和应用潜力。
     本研究所开发的新型结构脂,在其甘油骨架的sn-2位为短链脂肪酸。此结构脂可利用甘油三酯分子在体内的代谢差异减少餐后血脂水平,具有降低脂肪在体内积聚的功能。普通油脂中甘油三酯分子在体内代谢时,会被肠道中的胰脂肪酶水解为2-长链脂肪酸单甘酯和游离脂肪酸,进入小肠绒毛细胞后会被重新合成为甘油三酯,随后并通过淋巴系统穿过胸导管依靠血液系统转运至身体各处。而新型结构脂进入人体代谢系统后,会形成2-短链脂肪酸单甘酯,能够被迅速吸收进入门静脉并运送至肝脏快速代谢,减少了小肠绒毛细胞中甘油三酯的重合成,从而降低餐后血脂水平,达到防止脂肪堆积的效果。
     本研究对新型结构脂的酯交换反应合成条件进行了优化,选用Lipozyme RM IM脂肪酶催化三丁酸甘油酯和大豆油脂肪酸甲酯的酯交换反应体系,考察了反应时间、反应温度和加酶量等参数对酯交换反应合成结构脂过程的影响。以长链脂肪酸插入率、酰基转移率和长链脂肪酸甘油三酯(LLL-TAG)的含量为响应值,利用中心旋转组合设计对Lipozyme RM IM脂肪酶催化酯交换反应进行了优化,最佳反应条件为:反应温度为51.4℃,反应时间为6.77h,加酶量为8.11wt%,此时的长链脂肪酸插入率为43.2%,酰基转移率为5.33%,LLL-TAG含量为0.42%。
     本研究同时考察了双酶两步法合成新型结构脂的工艺条件,发现Novozyme脂肪酶在使用较高摩尔比(乙醇/三丁酸甘油酯)和较低的反应温度时可以得到高含量的2-丁酸单甘酯。获得2-丁酸单甘酯的最佳反应条件为:无水乙醇与三丁酸甘油酯的摩尔比为65:1,反应温度为25℃,加酶量为5wt%;反应2h后,2-丁酸单甘酯的含量和得率分别为21.6%和62.8%。最后使用Lipozyme RM IM脂肪酶催化2-丁酸单甘酯和脂肪酸甲酯反应合成的S2型结构脂,长链脂肪酸插入率达到52%以上,且酰基转移率只有1.1%。但双酶两步法工艺较为复杂,需消耗大量有机溶剂用于纯化2-丁酸单甘酯,无法用于新型结构脂的批量生产,故后期实验仍然选用一步酯交换法合成新型结构脂。
     研究了批量合成和纯化新型结构脂的方法,并考察了使用分子蒸馏方法对结构脂分离的影响。结果发现,在进料速度为2g/min,蒸馏系统压力为1Pa,冷却水温度为40℃,刮膜电机转速250r/min,蒸发面温度为200℃时,可以实现新型结构脂的良好分离。使用循环批次反应法合成新型结构脂,结构脂产品的总得率达到64%,经检测发现短链脂肪酸(丁酸)主要分布在甘油酯的sn-2位,所得目标结构脂的含量可以达到80.9%。通过理化性能评价发现,新型结构脂在外观、酸价、皂化价、折光指数等指标上与其长链脂肪酸的酰基供体油大豆油的相关指标十分接近,但烟点比大豆油低,新型结构脂分子量较小而具有更低的熔点。由此可见,新型结构脂可能对普通食用油脂进行全替代使用。
     随后通过餐后血脂实验和动物成长实验对新型结构脂进行了功能性评价。结果发现,新型结构脂可使小鼠的餐后血液甘油三酯水平降低。在动物成长实验中,对小鼠饲喂第6周时,发现高剂量新型结构脂组的小鼠平均体重低于猪油组,血脂分析结果显示新型结构脂组小鼠的血液总胆固醇浓度具有降低的趋势。肝脏病理学切片观察发现,中剂量和高剂量新型结构脂组小鼠的肝脏中脂肪滴的数量和大小都会相对减少,肾脏病理学切片观察未见异常。以上结果说明新型结构脂具有控制血脂升高,防止脂肪积累的功能,并具有完全替代普通油脂使用的潜力。
Obesity has become a global problem, threatening to human health. The incidence ofobesity is closely related to the dietary pattern, particularly to the excessive intake ofhigh-calorie fatty foods. Fat is an essential part of diet foods, and it contributes to the taste,flavor and satiety of the food. Nowadays, the fat intake by people is more than30%of thetotal calories from food. Under such circumstance, varieties of low-calorie fats and fatsubstitutes, such as sucrose fatty acid polyesters, medium-chain triglycerides, short-andlong-chain triglycerides and diglycerides, have been designed and developed. The relativelysuccessful products are Caprenin product (P&G), Salatrim product (Nabiso) and diglycerides(Kao, Japan). They can control the accumulation of fat in the body either by providing lowercalorie or altering the metabolism of fats. As an ideal fat substitute, it should have a highdegree of universality with traditional oils and fats, that means it should not change a lot inthe usage method, usage conditions and sensory characteristic. Moreover, the fat substitutesshould have good in nutritional properties and high safety. However, most of the fat substituteproducts have their inherent shortcomings which make them only partially meet the abovecriteria. From the point of view to better improve human health, the market requirement fornew low-calorie fat substitutes will continue growing. Therefore, it has important researchmerit and potential market application to develop low-calorie fat substitutes with highsimilarity to the ordinary oils and fats.
     We designed a novel structured lipid, which contained a short chain fatty acid at sn-2position. The novel structured lipid can reduce postprandial lipid levels by the differentmetabolism of triglyceride molecules and thus reduce the accumulation of fat in the body.When an edible oil is took into digestive tract, the majority of ingested triacylglycerols (TAGs)are partially hydrolyzed by pancreatic lipase to2-monoacylglycerols (2-MAGs) containinglong-chain fatty acids and fatty acids (FAs), the2-MAGs are immediately resynthesized intoTAGs molecules after absorbed by the small intestinal epithelial cells. The resynthesizedTAGs will be transferred throughout the body by the lymphatic system and thoracic duct. Inthe case of the novel structured lipids, they are partially hydrolyzed by pancreatic lipase to2-MAGs containing short-chain fatty acids (SFAs) and FAs. The SFAs are rapidly absorbedand metabolized to carbon dioxide in liver. Thereby, the resynthesized TAGs by lipases insmall intestinal epithelial cells could be reduced, resulting in reducing postprandial lipidlevels and preventing fat accumulation in body.
     Firstly, the novel structured lipids were synthesized by transesterification of tributyrin and soybean oil fatty acid methyl esters using Lipozyme RM IM lipase. Central compositerotatable design (CCRD) was used to optimize the reaction variables, i.e, reaction time,reaction temperature and lipase dosage. The incorporation of long chain fatty acids, acylmigration level and content of long-chain triglycerides (LLL-TAG) were set as evaluationcriteria. The optimal reaction conditions were as follows: reaction temperature is51.4℃,reaction time is6.77h and lipase dosage is8.11wt%, and the resulting long chain fatty acidsincorporation rate is43.2%, acyl migration level is5.33%and LLL-TAG content is0.42%under optimized conditions.
     Secondly, the novel structured lipids were synthesized by two-step method using twoenzymes systems. It was found that a higher content of2-monobutyrin was obtained by usinglower temperature and higher molar ratio of ethanol to tributyrin. The optimal reactionconditions were as follows:65:1of of ethanol to tributyrin,25℃of reaction temperature,5wt%of enzyme amount and2h of reaction time. Under these conditions, the content of2-monobutyrin was21.6%and the yield was62.8%. The incorporated long chain fatty acidscontent reached to52%in the final product, and the acyl migration level was only1.1%.However, the method is complex and large amount of organic solvents is required to purify2-MAGs. Moreover, it's difficult for scale-up production. Thus, one-step interesterificationmethod was selected to synthesize the novel structured lipids for the following work in thisthesis.
     Thirdly, a scale-up synthesis of novel structured lipids by transesterification of tributyrinand soybean oil fatty acid methyl esters using Lipozyme RM IM lipase was carried out.Molecular distillation was employed to purify the structured lipids and the effect ofevaporation temperature on the purification was examined. Results showed that betterseparation of transesterification product was achieved under the following conditions:2g/minof the feed rate,1Pa of the distillation system pressure,40℃of the cooling watertemperature at light phase,250r/min of the scraping membrane motor speed and200℃ofthe evaporation temperature. Furthermore, circulating method of scale-up synthesis of novelstructured lipid was studied. The results showed that the total yield was about64%, thecontent of LSL-TAG was80.9%, and most of the butyric acids were distributed in Sn-2position of the TAGs. The physicochemical properties of the novel structured lipids wereevaluated, and the results indicated that the appearance, acid value, saponification value,refractive index and other indicators were very similar to soybean oil which was the acyldonor of long-chain fatty acids. However, the structured lipid had a lower smoking point due to a smaller molecular presented in the product. The results of physicochemical propertiessuggested that the ordinary diet oil could be completely replaced by the structured lipid.TBHQ can effectively improve oxidation stability of the structured lipid.
     Finally, the lipid lowering property of novel structured lipids were evaluated by rapidfasting experiment and animal growth experiment. It was found that the novel structured lipidcould reduce the postprandial plasma triglyceride levels of mice. After feeding for six weeks,the group received high fat diet containing high dosage of structured lipids had lowerbodyweight, comparing with control group of high fat diet containing high dosage of lard.The plasma cholesterol (TC) content in the group received high fat diet containing mediumand high dosage of structured lipid showed a decreasing trend comparing with the controlgroup. For the tested group, the histological slices of liver and kidney were observed undermicroscope, the number and size of fat droplets in liver were found to be reduced, and theresults of kidney histological slices showed no abnormal symptom. In summary, our resultsshowed that the novel low-calorie structured lipid could control the plasma lipid and preventthe accumulation of body fat.
引文
[1] Jala RC., Hu P., Yang T., et al. Lipases as Biocatalysts for the Synthesis of StructuredLipids. Methods in Molecular Biology [J].2012,861:403-33.
    [2] Iwasaki Y, Yaraane T. Enzymatic synthesis of structured lipids [J]. Advances inBiochemical Engineering/Biotechnology,2000,10:129-140.
    [3] Akoh, CC. Structured Lipids-Enzymatic Approach [J]. Inform,1995,6:1055–1061.
    [4] Osborn, HT., Akoh, CC. Structured Lipids–novel fats with medical, nutraceutical, andfood applications [J]. Comprehensive Reviews in Food Science and Food Safety,2002,3:110–120.
    [5]栾霞,王瑛瑶,段章群等.结构脂质技术研究进展[J].农业机械,2011,29:44-48
    [6] Xu X., B. Enzymatic Production of Structured Lipids [J]. Food Science,2000,21(12):195-197.
    [7] Moshe R., Asher M., Nir V., et al. Structured Triacylglycerol Emusion, Containing BothMedium-and Long-Chain fatty Acids, In long-term Home Parenteral Nutrition: ADouble-Blind Randomized Crossover Study [J]. Applied Nutritional investigation,2000,16:95-100.
    [8]乔国平,王兴国.功能性油脂——结构脂质[J].粮食与油脂,2002(9):33-36.
    [9] Osborn H.T., Akoh C.C. Structured Lipids–Novel Fats Medical Nutraceutical and FoodApplications [J]. Institute of Food Technologists,2002,1(3):93-103.
    [10] French S. Effects of dietary fat and carbohydrate on appetite vary depending upon siteand structure [J]. British Journal of Nutrition,2004,92:23-26
    [11] Johnnie J.R., Deborah H.P., Saul S., et al. Review of triacylglycerol digestion, absorption,and metabolism with respect to Salatrim triacylglycerols [J]. Journalof Agricultural and Food Chemistry,1994,42:474-483.
    [12] Smith T.L. Overview of Salatrim. A family of Low-Calorie Fats [J]. Journalof Agricultural and Food Chemistry,1994,42:432-434.
    [13] Hayes H.W. In Vivo Metabolism of Salatrim Fat in the Rat [J]. Journalof Agricultural and Food Chemistry,1994,42:500-514.
    [14] Wong JM., De Souza R., Kendall CW., et al. Colonic health: fermentation and shortchain fatty acids [J]. Journal of Clinical Gastroenterology,2006,40:235-243
    [15] Cook SI., Sellin JH. Review article: short chain fatty acids in health and disease [J].Alimentary Pharmacology&Therapeutics's Latest Table of Contents,1998,12:499-507
    [16]刘燕萍,李宁.中链甘油三酯的代谢特点及临床应用研究[J].肠外与肠内营养,2001,8(1):108-110.
    [17] Megremis. Medium-Chain Triglycerides: A Noconventional Fat [J]. Food Technology,1991(5):108-110.
    [18] Babayan, Medium-Chain-Triglyceride Cheese [J]. Food Technology,1991(5):111-114.
    [19] Straarup EM., Hoy CE. Structured lipids improve fat absorption in normal andmalabsorbing rats[J]. Nutrition,2000,130(11):2802-2808.
    [20]宋慧波,张玉军,刘彩丽.低热量油脂(脂肪代用品)的研究与开发[J].中国粮油学会油脂专业分会第十四届学术年会论文选集,1995:152-155.
    [21] Broun P., Gettner S., Somerville C. Genetic engineering of plant lipids [J]. AnnualReview of Nutrition,1999,19(1):197-216.
    [22]张月红,刘英华,王觐,等.中长链脂肪酸食用油降低超重高甘油三酯患者血脂和低密度脂蛋白胆固醇水平的研究[J].中国食品学报,2010,10(2):20-27.
    [23] Fontani G., Corradeschi F., Felici A., et al. Cognitive and physiological effects ofomega-3polyunsaturated fatty acid supplementation in healthy subjects [J]. EuropeanJournal of Clinical Investigation,2005,35(11):691-699.
    [24] Greg M.C., Qiu L.M., Sally A., et al. Omega-3fatty acids and dementia [J].Prostaglandins, Leukotrienes and Essential Fatty Acids,2009,81(2-3):213-221.
    [25] Fajardo A.R., Casimir CA., Lai OM. Lipase-Catalyzed Incorporation of n-3PUFA intoPalm Oil [J]. Journal of Agricultural and Food Chemistry,2003,80(12):1197-1200.
    [26] Daniela S., Sartorelli, Renata D., et al. Dietary u-3fatty acid and u-3: u-6fatty acid ratiopredict improvement in glucose disturbances in Japanese Brazilians [J]. Nutrition,2010(26):84-191.
    [27] Kramer KG., Parod PW., Tensenk RG., et al. Rumenic acid: aproposed common name forthe major conjugated linoleic acid isomer found in nature products [J]. Lipids,1998,3(8):835.
    [28] Rossir, Pastorell IG., Bontempo V., et al. Effects of dietary conjugated linoleic acid (CLA)on immunoglobulin concentration in sow colostrum and piglet serum [J]. VeterinaryResearch Communications,2004,28(1):241-244.
    [29] Yu J. Continuous production of structured lipid containing linolenic and caprylic acids byimmobilized Rhizopous,delemar lipase [J]. Journal of Agricultural and Food Chemistry,1999,76(2):189.
    [30]蔡秋声.脂肪替代品特性及开发现状和前景[J].粮油食品,1998,3:31-38.
    [31] Barbara FH. Fat Replacers [J]. Inform,1993,11:1227-1232.
    [32] Rosanna. Fat Replacers [J]. Inform,1992,2:1270-1282.
    [33]董建林,曹万新,郜顺成.低热量油脂(脂肪代用品)的市场需求及研究开发现状[J].中国油脂,2000,25(3):5-7.
    [34] Lee YY., Tang TK., Lai OM., et al. Health Benefits, Enzymatic Production, andApplication of medium-and long-chain triacylglycerol (MLCT) in food industries: Areview [J]. Journal of Food Science,2012,77:137–144.
    [35] Rolls BJ., Pirraglia PA., Jones MB., et al. Effects of olestra, a noncaloric fat substitute,on daily energy and fat intakes in lean men [J]. American Journal of Clinical Nutrition,1992,56:84–92.
    [36] Webb DR., Sanders RA. Caprenin1: Digestion, absorption, and rearrangement inthoracic duct-cannulated rats [J]. International Journal of Toxicology,1991,10:325–340.
    [37] Mela, D.J. Quest for fat substitutes taking many routes [J]. Food Technology,1991:119-115.
    [38] Migrenne S., Magnan C., Cruciani-Guglielmacci C. Fatty acid sensing and nervouscontrol of energy homeostasis [J]. Diabetes&Metabolism,2007,33(3):177-182.
    [39] S rensen LB., Cueto HT., Andersen MT., et al. The effect of salatrim, a low-caloriemodified triacylglycerol, on appetite and energy intake [J]. American Journal of ClinicalNutrition,2008,87(5):1163-1169.
    [40]刘燕萍,李宁,张思源.中链甘油三酷的代谢特点及临床应用研究[J].肠外与肠内营养,2001,8(1):54-56.
    [41] Megremis, Medium-Chain Triglycerides: A Noconvention Fat [J]. Food Technology,1991(5):108-110.
    [42] Meesha SA., Navin K., Rastogi B., et al. Synthesis of structured lipid withbalancedomega-3: Omega-6ratio by lipase-catalyzed acidolysis reaction: Optimizationofreaction using response surface methodology [J]. Process Biochemistry,2009,44:1284-1288.
    [43] Heydinger JA., Nakhasid K. Medium Chain Triacylglycerols [J]. Journal of Food Lipids,1996,3:251-257.
    [44]周汉芬.中链甘油三酯的化学合成研究[D].无锡:江南大学,2005.
    [45] Yasukawa T, Yasunaga K. Nutritional functions of dietary diacylglycerols [J]. Journal ofOleo Science,2001;50(5):427-32.
    [46] Lo SK., Tan CP., Long K., et al. Diacylglycerol oil-properties, processes and products: areview [J]. Food and Bioprocess Technology,2008,1:223–233
    [47] Destaillats F., Craft BD., Dubois M., et al. Glycidyl esters in refined palm (Elaeisguineensis) oil and related fractions. Part I: Formation mechanism [J]. Food Chemistry,2012,131:1391–1398
    [48] Bakhiya N., Abraham, Gürtler R., et al. Toxicological assessment of3-chloropropane-1,2-diol and glycidol fatty acid esters in food [J]. Molecular Nutrition&Food Research,2011,4:509-521.
    [49] Hunter JE. Studies on effects of dietary fatty acids as related to their position ontriglycerides [J]. Lipids,2001,36:655-668.
    [50] Mu H., H y CE. The digestion of dietary triacylglycerols [J]. Progress in Lipid Research,2004,43:105-133.
    [51] Watt MJ., Steinberg GR. Regulation and function of triacylglycerol lipases in cellularmetabolism [J]. Biochemistry,2008,414:313-325.
    [52]唐传核,彭志英.构造脂质的开发状况[J].西部粮油科技,2000,25(5):34-37.
    [53] Mu HL., Porsgaard T. The metabolism of structured triacylglycerols [J]. Progress inLipid Research,2005,44:430–448.
    [54]孟祥河.功能性甘油二酯的酶促酯化合成及其减肥功能的研究[D].无锡:江南大学,2005.
    [55]张根旺.油脂化学[M].北京:中国财政经济出版社,1998:159-163.
    [56]吴素萍.特种食用油的功能特性与开发[M].北京:中国轻工业出版社,2008:1-4.
    [57] Hui H.Y.贝雷:油脂化学与工艺学(第一卷)[M].第五版.徐生庚,裘爱泳译.北京:中国轻工业出版社,2001:163-167,429-440.
    [58] Vaclavik V.A., Christian E.W. Fat and oil product In: Essentials of food science [M].Third Eidition. New York: Springer Press,2008:273-309.
    [59] Hayes J.R., Finley J.W., Leveille G.A. In vivo metabolism of salatrim fats in the rat [J].Journal of Agriculture and Food Chemistry,1994,42:500-514.
    [60] Bailey JW., Barker R.L, Karlstad MD. Total parenteral nutrition with short-andlong-chain triglycerides: triacetin improves nitrogen balance in rats. Journal of Nutrition,1992,122:1823–1829.
    [61] Karlstad MD., Killeffer JA., Bailey JW., et al. Parenteral nutrition with short-andlong-chain triglycerides: triacetin reduces atrophy of small and large bowel mucosa andimproves protein metabolism in burned rats. American Journal of Clinical Nutrition,1992,55:1005–1011.
    [62] Carvajal O., Nakayama M., Kishi T., et al. Effect of medium-chain fatty acid positionaldistribution in dietary triacylglycerol on lymphatic lipid transport and chylomicroncomposition in rats [J]. Lipids,2000,35(12):1345-1352.
    [63]郑建仙.现代新型蛋白和油脂食品开发[M].北京:科学技术文献出版社2003,235-240.
    [64] Finley J.W., Klemann L.P., Leveille G.A., et al. Caloric availability of Salatrim in ratsand humans [J]. Journal of Agriculture and Food Chemistry,1994,42:495-499.
    [65] Kaplan R.J., Greenwood C.E. Poor digestibility of fully hydrogenated soybean oil in rats:a potential benefit of hydrogenated fats and oils [J]. Journal of Nutrition,1998,128(5):875-880.
    [66] Smith R.E., Finley J.W., Leveille, G.A. Overview of Salatrim, a family of low-caloriefats [J]. Journal of Agriculture and Food Chemistry,1994,42:432-434.
    [67] Cater N.B., Denke M.A. Behenic acid is a cholesterol-raising saturated fatty acid inhumans [J]. The American Journal of Clinical Nutrition,2001,73:41-44.
    [68] Soni M, Kimura H, Burdock G. Chronic study of diacylglycerol oil in rats [J]. Food andChemical Toxicology,2001,39(4):317-29.
    [69] Murase T, Aoki M, Wakisaka T, Hase T, Tokimitsu I. Anti-obesity effect of dietarydiacylglycerol in C57BL/6J mice [J]. Journal of Lipid Research,2002,43(8):1312-9.
    [70] Watanabe H, Onizawa K, Taguchi H, et al. Nutritional characterization of diacylglycerolsin rats [J]. Journal-Japan Oil Chemists Society,1997,46:301-8.
    [71]吴时敏.功能性油脂[M].北京:中国轻工业出版社,2001,4.
    [72]伍怡耐,阚建全,赵国华等.新型功能性油脂问题浅析[J].粮食与油脂,2005,3:3-6.
    [73]吴道银,严庆收.结构脂质及其制备方法[J].现代商贸工业,2003(9):44-46.
    [74] Kishi T., Carvajal O., Tomoyori H., et a1. Structured triglycerides containingmedium-chain acids and linoleic acid differently influence clearance in serum oftriglycerides in rats [J]. Nutrition Research,2002,22(1):1343-1351.
    [75]何川.酶法酯交换与化学酯交换[J].粮食与油脂,2003,5:24-25.
    [76]孙志芳,高荫榆,郑渊月.功能性油脂的研究进展[J].中国食品添加剂,2005,3:4-7.
    [77] Xu X., Balchen S., H y C.E., et al. Production of specific-structured lipids by enzymaticinteresterification in a pilot continuous enzyme bed reactor [J]. Journal of the AmericanOil Chemists' Society,1998,75(11):1573-1579.
    [78] Kastle JH., Loevenhart AS. Concerning lipase, the fatsplitting enzyme, and thereversibility of its action [J]. Journal of the American Chemical Society,1900,24:491-525.
    [79]王瑛瑶,新型功能性油脂-结构脂质的研究现状[J].食品研究与开发,2008,4:162-165
    [80]何东平.油脂精炼与加工工艺学[M].北京:化学工业出版社.2005.
    [81]林雪玲,李炎,李毅群,等.低热油脂三酰甘油酯合成的研究[J].中国油脂,2003,28(7):61-63.
    [82]张晶,周家春,夏泉明.低热量油脂Salatrim的研制[J].粮食与油脂,2004,(1):22-24.
    [83] Watanabe T, Shimizu M, Sugiura M, et al. Optimization of reaction conditions for theproduction of DAG using immobilized1,3-regiospecific lipase lipozyme RM IM [J].Journal of the American Oil Chemists' Society,2003,80(12):1201-7.
    [84] Nandi S, Gangopadhyay S, Ghosh S. Production of medium chain glycerides fromcoconut and palm kernel fatty acid distillates by lipase-catalyzed reactions [J]. Enzymeand Microbial Technology,2005,36(5-6):725-8.
    [85] Lo SK, Baharin BS, Tan CP, Lai OM. Lipase‐catalysed production and chemicalcomposition of diacylglycerols from soybean oil deodoriser distillate [J]. EuropeanJournal of Lipid Science and Technology,2004,106(4):218-24.
    [86] Watanabe T, Sugiura M, Sato M, Yamada N, Nakanishi K. Diacylglycerol production in apacked bed bioreactor [J]. Process Biochemistry,2005,40(2):637-43.
    [87] Lo S-K, Arifin N, Cheong L-Z, et al. Response surface modeling of1-stearoyl-3(2)-oleoyl glycerol production in a pilot packed-bed immobilizedRhizomucormiehei lipase reactor [J]. Journal of Molecular Catalysis B: Enzymatic,2009,57(1-4):136-44.
    [88] Fiametti KG, Sychoski MM, De Cesaro A, et al. Ultrasound irradiation promotedefficient solvent-free lipase-catalyzed production of mono-and diacylglycerols fromolive oil [J]. Ultrasonics sonochemistry,2011,18(5):981-7.
    [89] Guo Z, Sun Y. Solvent-free production of1,3-diglyceride of CLA: Strategy considerationand protocol design [J]. Food Chemistry,2007;100(3):1076-84.
    [90] Jin J, Li D, Zhu XM, et al. Production of diacylglycerols from glycerol monooleate andethyl oleate through free and immobilized lipase-catalyzed consecutive reactions [J]. Newbiotechnology,2011;28(2):190-5.
    [91] Chang M K. Production of Cocoa Butter-like Fatfrom Interesterification of VegetableOils [J]. Journal of the American Oil Chemists' Society,1990,67(11):832-834.
    [92]唐传核,彭志英.酯交换技术及其在油脂工业中的应用[J].中国油脂,2002,27(2):59-62.
    [93] Torres CF., Lin B., Lessard LP., et al. Lipase mediated transesterification of menhaden oilwith the ethyl ester of conjugated linoleic acid: multi-response kinetics [J]. BiochemicalEngineering Journal,2005,23(2):107–116
    [94] Torres CF., Lin B., Lessard LP. Lipase-Catalyzed Interesterification Reaction BetweenMenhaden Oil and the Ethyl Ester of CLA: Uniresponse Kinetics [J]. Journal of theAmerican Oil Chemists' Society,2003,80(9):873-880
    [95] Zainal Z., Yusoff M. Enzymatic interesterification of palm stearin and palm kernel olein[J]. Journal of the American Oil Chemists' Society,1999,76:1003–1008.
    [96] Sharma R., Chisti Y., Banerjee UC. Production, purifi cation, characterization, andapplications of lipases [J]. Biotechnology Advances,2001,19:627–662.
    [97]吴伟亮.固定化脂肪酶促酯交换反应制备低能量可可脂的研究[D].广州,华南理工大学,2012.
    [98] Coleman MH., Macrae AR. Fat process and composition [P]. UK Patent:1-577933,1980.
    [99] Matsuo T., Sawamura N., HashimotoY., et al. Method for enzymatic transesterification oflipid and enzyme used there in [P]. European Patent:0-035883,1981.
    [100] Liu KJ., Cheng HM., Chang RC., et al. Synthesis of cocoa butter equivalent bylipase-catalyzed interesterification in supercritical carbon dioxide [J]. Journal of theAmerican Oil Chemists' Society,1997,74(11):1477-1482.
    [101] Kanjilal S., Prasad R.B.N., Kaimal T.N.B., et al. Synthesis and estimation of calorificvalue of a structured lipid-potential reduced calorie fat [J]. Lipids,1999,34(10):1045-1055.
    [102] Mangos TJ., Jones KC.,. Foglia TA. Lipase-Catalyzed Synthesis of StructuredLow-Calorie Triacylglycerols [J]. Journal of the American Oil Chemists' Society,1999,76(10):1127-1132.
    [103] Foglia TA., Villeneuve P. Carica papaya Latex-Catalyzed Synthesis of StructuredTriacylglycerols [J]. Journal of the American Oil Chemists' Society,1997,74(11):1447-1450.
    [104] Yang T.H., Jang Y., Han J.J., et al. Enzymatic synthesis of novel structured lipids inasolvent-free system [J]. Journal of the American Oil Chemists' Society,2001,78(3):291-296.
    [105] Huang K.H., Akoh C.C. Enzymatic synthesis of structured lipids: transesterification oftriolein and caprylic acid ethyl ester [J]. Journal of the American Oil Chemists' Society,1996,72(2):245-250.
    [106] Lu Han, Zijian Xu, Jianhua Huang,Enzymatically Catalyzed Synthesis of Novelstructured lipid in a Solvent-free System: Optimization by Response SurfaceMethodology [J]. Journal of Agricultural and Food Chemistry,2011,59,12635–12642
    [107] Irimescu R., Hata K., Iwasaki Y., et al. Comparison of acyl donors for lipase-catalyzedproduction of1,3-dicapryloyl-2-eicosapentaenoylglycerol [J]. Journal of the AmericanOil Chemists' Society,2001,78(1):65-70.
    [108] Fomuso L.B., Akoh C.C. Enzymatic modification of triolein: incorporation of caproicand butyric acids to produce reduced-calorie structure lipids [J]. Journal of the AmericanOil Chemists' Society,1997,74(3):269-272.
    [109] Yang T., Xu X., He C., et al. Lipase-catalyzed modification of lard to produce hum anmilk fat substitutes [J]. Food Chemistry,2003,80:473-481.
    [110] Shimada Y., Nagao T., Hamasaki Y., et al. Enzymatic synthesis of structured lipidcontainingarachidonic and palmitic acids [J]. Journal of the American Oil Chemists'Society,2000,77:89–93.
    [111] Fomuso BL., Akoh CC. Lipasecatalyzed acidolysis of olive oil and caprylic acid in abench-scale packed bed bioreactor [J]. Food Research International,2002,35:15-21.
    [112] Ozturk T., Ustun G,. Aksoy H. Production of medium-chain triacylglycerols from cornoil: optimization by response surface methodology [J]. Bioresource Technology,2010,101:7456–7461.
    [113] Huang KS., Akoh CC. Enzymatic synthesis of structured lipids: transesterifi cation oftriolein and caprylic acid ethyl ester [J]. Journal of the American Oil Chemists' Society,1996,73:245-250.
    [114] Lai OM., Low CT., Akoh CC. Lipase catalyzed acidolysis of palm olein and caprylicacid in a continuous bench-scale packed bed bioreactor [J]. Food Chemistry,2005,92:527-533.
    [115] Lee KT, Akoh CC (1998) Structured lipids: synthesis and applications [J]. FoodReviews International,1998,14:17-34.
    [116] Jennings BH., Akoh CC. Lipase catalyzed modifi cation of rice bran oil to incorporatecapric acid [J]. Journal of the American Oil Chemists' Society,2000,48:4439-4443.
    [117] Irimescu R., Furihata K., Hata Y., et al. Utilization of reaction medium-dependentregiospecificity of C. antarctica lipase (Novozym435) for the synthesis of1,3-dicapryloyl-2-docosahexanoyl (or eicosapentanoyl) glycerol [J]. Journal of theAmerican Oil Chemists' Society,2001,78:285-9.
    [118] Camacho Páez B., RoblesMedina A., CamachoRubio F., et al. Production of structuredtriglycerides rich in n-3polyunsaturated fatty acids by the acidolysis of cod liver oil andcaprylic acid in a packed-bed reactor: equilibrium and kinetics [J]. Chemical EngineeringScience,2002,57:1237-49.
    [119] Schmid U., Bornscheuer UT., Soumanou MM., et al. Optimization of the reactionconditions in the lipase-catalyzed synthesis of structured triglycerides [J]. Journal of theAmerican Oil Chemists' Society,1998,75:1527-31.
    [120] Torres CF., Nettekoven TJ., Hill Jr CG. Preparation of purified acylglycerols ofeicosapentaenoic acid and docosahexaenoic acid and their re-esterification withconjugated linolenic acid [J]. Enzyme and Microbial Technology,2003,32:49-58.
    [121] Soumanou MM., Bornscheuer UT., Schmid RD. Two-step enzymatic reaction for thesynthesis of pure structured triacylglycerides [J]. Journal of the American Oil Chemists'Society,1998,75:703-10.
    [122] Irimescu R., Furihata K., Hata Y., et al. Two-step enzymatic synthesis ofdocosahexaenoic acid-rich symmetrically structured triacylglycerols via2-monoacylglycerols [J]. Journal of the American Oil Chemists' Society,2001,78:743-8.
    [123] Schmid U., Bornscheuer U., Soumanou MM., et al. Highly selective synthesis of1,3–oleoyl–2–palmitoylglycerol by lipase catalysis [J]. Biotechnology andBioengineering,1999,64:678–684
    [124] Vu PL., Park RK., Lee YJ., et al. Two-Step Production of Oil Enriched in ConjugatedLinoleic Acids and Diacylglycerol [J]. Journal of the American Oil Chemists' Society,2007,84:123-128.
    [125] Mariadel MM., Robles A., Esteban L., et al. Synthesis of structured lipids by twoenzymatic steps: Ethanolysis of fish oils and esterification of2-monoacylglycerols [J].Process Biochemistry,2009,44:723-730.
    [126] Wang T., Johnson L.A. Refining high-free fatty acid wheat germ oil [J]. Journal of theAmerican Oil Chemists' Society,2001,78(1):71-76.
    [127] Kim S.K., Kim C.J., Cheigh H.S., et al. Effect of caustic Refining, solvent refining andsteam refining on the deacidification and color of rice bran oil [J]. Journal of theAmerican Oil Chemists' Society,1985,62(10):1492-1495.
    [128]孙登文,湛日景.用溶剂结晶法分离单脂肪酸甘油脂的工艺[P]: CN107489A,1993-08-04.
    [129] Shah K.J., Venkalesan T.K. Aqueous isopropyl alcohol for extraction of free fatty acidsfrom oils [J]. Journal of the American Oil Chemists' Society,1989,66(6):783-787.
    [130] Türkay S., Civelekoglu H. Deacidification of sulfur olive oil. I. Single-stageliquid-liquid extraction of miscella with ethyl alcohol [J]. Journal of the American OilChemists' Society,1991,68(2):83-86.
    [131] Türkay S., Civelekoglu H. Deacidification of sulfur olive oil. II. Multi-stageliquid-liquid extraction of miscella with ethyl alcohol [J]. Journal of the American OilChemists' Society,1991,68(11):818-821.
    [132] Apelblat A., Zaharoskin T., Wisniak J., et al. Extraction of oleic acid from soybean oiland jojoba oil phase diagrams [J]. Journal of the American Oil Chemists' Society,1996,73:39-244.
    [133] Kale V., Katikaneni, S.P.R., Cheryan M. Deacidifying rice bran oil by solvent extractionand membrane technology [J]. Journal of the American Oil Chemists' Society,1999,76(6):723-727.
    [134] Rodrigues C.E.C., Gon alves C.B., Batista E., et al. Deacidification of vegetable oils bysolvent extraction [J]. Recent Patents on Engineering,2007,1:95-102.
    [135]邢爱玲,柏子龙,马宏燎等.柱层析法分离纯化碳酸甘油酯[J].广东化工,2010,37(2):39-40.
    [136] Gamcedo J.C.B., González M.M.P., Bernat J.X., et al. Application of two heatingmethods in physical refining of high FA olive and sunflower oil [J]. Journal of theAmerican Oil Chemists' Society,2002,79(3):209-214.
    [137] Decap P. Braipson-Danthine S., Vanbrabant B., et al. Comparison of steam and nitrogenin the physical deacidification of soybean oil [J]. Journal of the American Oil Chemists'Society,2004,81(6):611-617.
    [138] Prieto González M.M., Bada J.C., Graciani E. Temperature effects on thedeacidification of mixtures of sunflower oil and oleic acid [J]. Journal of the AmericanOil Chemists' Society,2007,84:473-478.
    [139] Prieto González M.M., Bada J.C., León M., et al. Optimization of deacidification ofmixtures of sunflower oil and oleic acid in a continuous process [J]. Journal of theAmerican Oil Chemists' Society,2007,84:479-487.
    [140] Detwiler S B, JR., Bull W C, Wheeler D H. Molecular distillation of a crude soybean oil[J]. Journal of theAmerican oil Chemists’Society,1943,20(6):108-122.
    [141] Xu X.B., Jacobsen C., Nielsen N.S., et al. Purification and deodorization of structuredlipids by short path distillation [J]. European Journal of Lipid Science and Technology,2002,104:745-755.
    [142] Yu ZR., Bhajmohan S., Rizvi SSH. Solubilities of fatty acids, fatty acid esters,triglycerides, and fats and oils in supercritical carbondioxide [J]. Supercrit.Fluits,1994,7(1):51-59.
    [143]张建立,李公春.超临界CO2萃取姜油树脂的工艺研究[J].安徽农业科学,2011,39(16):9827-9828.
    [144]杨村,于宏奇,冯武文分子蒸馏技术[M].北京:化学工业出版社,2003:1-58.
    [145]李鑫钢.现代蒸馏技术[M].北京:化学工业出版社,2009:170-197.
    [146] Szelag H., Zwierzykowski W. The application of molecular distillation to obtain highconcentration of monoglycerides [J]. Fette Seifen Anstrichmittel,1983,85:443-446.
    [147] Batistella CB., Wolf-Maciel MR. Recovery of carotenoids from palm oil by moleculardistillation [J]. Computers&Chemical Engineering,1998,22: S53-S60.
    [148] Jennings BH., Akoh CC. Characterization of a rice bran oil structured lipid [J]. Journalof Agricultural and Food Chemistry,2009,57(8):3346-3350.
    [149] Masanobu H., Youko S., Rika Y. The Short-Term Effect of Diacylglycerol OilConsumption on Total and Dietary Fat Utilization in Overweight Women [J]. IntegrativePhysiology,2011,19(3):536-540.
    [150] Gabriele R., Lutgarda B., Giovanni A. Postprandial lipid metabolism [J]. ScandinavianJournal of Food and Nutrition,2006,50(S2):99-106.
    [151] Shuichi K., Hitomi T., Hiroko I. Effects of Dietary Diacylglycerol on the EnergyMetabolism [J]. International Journal for Vitamin and Nutrition Research,2006,76(2):75–79.
    [152] Yutaka M., Hideaki N., Hidehiko K. Dietary diacylglycerol reduces postprandialhyperlipidemia and ameliorates glucose intolerance in Otsuka Long-Evans TokushimaFatty (OLETF) rats [J]. Nutrition,2005,21:933–939.
    [153] Finley J.W., Leveille G.A., Klemann L.P., et al. Growth method for estimating thecaloric availability of fats and oils [J]. Journal of Agriculture and Food Chemistry,1994,42,489-494.
    [154] Meng XH., Zou DY., Shi ZP., et al. Dietary Diacylglycerol Prevents High-FatDiet-Induced Lipid Accumulation in Rat Liver and Abdominal Adipose Tissue [J]. Lipids,2004,39(1):37-41.
    [155] Hiroyuki T., Toshiko O., Tomonori N., et al. Dietary diacylglycerol suppresses high fatdiet-induced hepatic fat accumulation and microsomal triacylglycerol transfer proteinactivity in rats [J]. Journal of Nutritional Biochemistry,2002,13:678–683.
    [156] Murali G., Milne GL., Webb CD., et al. Fish Oil and Indomethacin in CombinationPotently Reduce Dyslipidemia and Hepatic Steatosis in LDLR-/-Mice [J]. The Journal ofLipid Research,2012,53:2186-2197.
    [157] Yang TH., Jang Y., Han JJ., Rhee JS. Enzymatic synthesis of novel structured lipids in asolvent-free system [J]. Journal of the American Oil Chemists' Society,2000,78:291–296.
    [158] Han JJ., Yamamoto T.Enhancement of both reaction yield and rate of synthesis ofstructured triacylglycerol containing eicosapentaentaenoic acid uder vacuum with wateractivity control [J]. Lipids,1999,34:989–955.
    [159] Jensen MM., Christensen MS., H y C-E. Intestinal absorption of octanoic, decanoic,and linoleic acids: effect of triglyceride structure [J]. Annals of Nutrition and Metabolism,1994,38:104-16.
    [160] Bloomer S., Adlercreutz P., Mattiasson B. Triglyceride interesterification by lipases.2.Reaction parameters for the reduction of trisaturate impurities and diglycerides in batchreactions [J]. Biocatalysis and Biotransformation,1991,5:145–162.
    [161] Xu X., Balchen S., H y CE., et al. Pilot batch production of specific-structured lipids bylipase-catalyzed interesterification: preliminary study on incorporation and acyl migration[J]. Journal of the American Oil Chemists' Society,1998,75:301–308.
    [162] Stirton AJ. Bailey's industrial oil and fat products,3rd Edition [M], New York,1964:948–951.
    [163] Robert G.., Harfmann, Samir JH., J. Cortes. Instability of hexane–acetonitrile mobilephases used for the chromatographic analysis of triacylglycerides [J]. Journal ofSeparation Science,2008,31:915-920.
    [164] Christopherson SW., Glass RL. Preparation of Milk Fat Methyl Esters by Alcoholysis inan Essentially Nonalcoholic Solution [J]. Journal of Dairy Science,1969,52:1289-1290.
    [165] Becker CC., Rosenquist A., Holmer G.. Regiospecific Analysis of TriacylglycerolsUsing Allyl Magnesium Bromide [J]. Lipids,1993,28:147-149.
    [166] Yomi W., Toshihiro N., Yuji S. Control of the regiospecificity of Candida antarcticalipase by polarity [J]. New Biotechnology,2009,26(1/2):23-28.
    [167] Shimada Y., Ogawa J., Watanabe Y., et al. Regiospecific analysis by ethanolysis of oilwith immobilized Candida antarctica lipase [J]. Lipids,2003,38:1281–1286.
    [168] Tsuzuki W. Acidolysis between triolein and short-chain fatty acid by lipase in organicsolvents [J]. Bioscience Biotechnology and Biochemistry,2005,69:1256–1261.
    [169] Stolyhwo A., Colin H., Guiochon G. Analysis of triglycerides in oils and fats by liquidchromatography with the laser light scattering detector [J]. Analytical Chemistry,1985,57:1342-1354.
    [170] Buchgraber M., Ulberth F., Anklam E. Comparison of HPLC and GLC Techniques forthe determination of the triglyceride profile of cocoa butter [J]. Journal of Agriculture andFood Chemistry,2000,48(8):3359-3363.
    [171] Dionisi F., Golay, P.A., Hug B., et al. Triacylglycerol analysis for the quantification ofcocoa butter equivalents (CBE) in chocolate: feasibility study and validation [J]. Journalof Agriculture and Food Chemistry,2004,52(7):1835-1841.
    [171] Ruiz-Gutiérrez, V., Barron LJR. Methods for the Analysis of Triacylglycerols [J].Journal of Chromatography,1995,671:133–168.
    [172] Mu, H., Kalo P., Xu X., H y CE. Chromatographic Methods in the Monitoring ofLipase-Catalyzed Interesterification [J]. European Journal of Lipid Science andTechnology,2000,102:202–211.
    [173] Hierro MT., MC. Tomás, Fernández-Martín F., Santa-María G., Determination of theTriglyceride Composition of Avocado Oil by High-Performance Liquid ChromatographyUsing a Light-Scattering Detector [J]. Journal of Chromatography,1992,607:329–338.
    [174] Hersl f B., G. Kindmard. HPLC of Triglycerides with Gradient Elution and MassDetection [J]. Lipids,1985,20:783–790.
    [175] Esteban CL., Robles MA., Giménez GA., et al. Synthesis of polyunsaturated fattyacid-enriched triglycerides by lipase-catalyzed esterification [J]. Journal of theAmerican Oil Chemists' Society,1998,75:1329-37.
    [176] Robles MA., Esteban CL., Giménez GA., et al. Lipase-catalyzed esterification ofglycerol and polyunsaturated fatty acids from fish and microalgae oils [J]. Journalof Biotechnology,1999,70:379-91.
    [177] Xu X., Mu H., H y CE., et al. Production of specifically structured lipids by enzymaticinteresterification in a pilot enzyme bed reactor: process optimization by response surfacemethodology [J]. Fett-Lipid,1999,101(6):207-14.
    [178] Xu X., Fomuso L., Akoh C. Synthesis of structured triacylglycerols by lipase-catalyzedacidolysis in a packed bed bioreactor [J]. The Journal of Agricultural and Food Chemistry,2000,48:3-10.
    [179] Goh SH., Yeong SK., Wang CW. Transesterification of Cocoa Butter by Fungal Lipases:Effect of Solvent on1,3-Specificity [J]. Journal of the American Oil Chemists' Society,1993,70:567-570.
    [180] Bloomer, S., Adlercreutz P., Mattiasson B., Triacylglycerol Interesterification byLipases.2. Reaction Parameters for the Reduction of Trisaturated Impurities andDiacylglycerols in Batch Reactions [J]. Biocatalysis,1991,5:145-162.
    [181] Sahin N., Akoh CC., Karaali A. Lipase-catalyzed acidolysis of tripalmitin with hazelnutoil fatty acids and stearic acid to produce human milk fat substitutes [J]. Journal ofAgricultural and Food Chemistry,2005,53(14):5779-5783.
    [182] Yankah VV., Akoh CC. Lipase-catalyzed acidolysis of tristearin with oleic or caprylicacids to produce structured lipids [J]. Journal of the American Oil Chemists' Society,2000,77(5):495-500.
    [183] Mu H., Porsgaard T. Progress The metabolism of structured triacylglycerols [J].Progress in Lipid Research,2005,44:430-448.
    [184] Shimada Y., Sugihara A., Maruyama K., et al. Production of structured lipidscontaining docosahexaenoic and caprylic acids using immobilized Rhizopus delemarlipase [J]. Journal of Fermentation and Bioengineering,1996,81:299-303.
    [185] González Moreno PA., Robles MA., Camacho RF., et al. Production of structuredtriacylglycerols in an immobilised lipase packed bed reactor: batch mode operation [J].Journal of Chemical Technology and Biotechnology,2005,80:35-43.
    [186] Shimada Y., Suenaga M., Sugihara A., et al. Continuous production of structured lipidcontaining g-linolenic and caprylic acids by immobilized Rhizopus delemar lipase [J].Journal of the American Oil Chemists' Society,1999,76:189-93.
    [187] Hita E., Robles A., Camacho B., et al. Production of structured triacylglycerols (STAG)rich in docosahexaenoic acid (DHA) in position2by acidolysis of tuna oil catalyzed bylipases [J]. Process Biochemistry,2007,42:415-22.
    [188]易路遥,郑为完,廖和箐,气质联用法测定丁酸单甘酯[J].食品科学,2010.31(20):402-405
    [189]易路遥,丁酸单双甘油酯的合成与监测分析[D].江西:南昌大学,2011.
    [190] Watanabe Y., Shimada Y., Sugihara A., et al. Stepwise Ethanolysis of Tuna Oil UsingImmobilized Candida antarctica Lipase [J]. Journal of Bioscience and Bioengineering,1999,88:622–-626.
    [191]张若梅.油脂抗氧化稳定性测试[J].粮油食品科技,2001,4(9):13-14.
    [192]李彦萍.乌桕类可可脂氧化稳定性机理的研究[D].南昌:南昌大学,2002.
    [193] Takano H., Itabashi Y. Molecular species analysis of1,3-diacylglycerols in edible oilsby HPLC/ESI-MS [J]. Bunseki Kagaku,2002,51:437-442.
    [194] Sedarevich B. Glyceride isomerisation in lipid chemistry [J]. Journal of the AmericanOil Chemists’ Society,1967,44:381-393.
    [195] Lo SK., Tan CP., Long K., et al. Diacylglycerol Oil—Properties, Processes andProducts: A Review [J]. Food and Bioprocess Technology,2008,1:223-233.
    [196] Carey V., Walters E。, Colditz G., et al. Body fat distribution and risk ofnon-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study [J].The American Journal of Epidemiology,1997,145:614-619.
    [197] Lamon-Fava S., Wilson P., Schaefer E. Impact of body mass index on coronary heartdisease risk factors in men and women. The Framingham Offspring Study [J]. Circulation,1996,16:1509-1515.
    [198] Rimm E., Stampfer M., Giovannucci E., et al. Body size and fat distribution aspredictors of coronary heart disease among middle-aged and older US men [J].The American Journal of Epidemiology,1995,141:1117-1127.
    [199] Mattson F.H., Beck LW. The specificity of pancreatic lipase for the primary hydroxylgroups of glycerides [J]. Journal of Biological Chemistry,1956,219:735-740.
    [200] Morley NH., Kuksis A., Buchnea D. Hydrolysis of synthetic triacylglycerols bypancreatic and lipoprotein lipase [J]. Lipids,1973,9:481-488.
    [201] Mattson FH., Volpenhein RA. The digestion and absorption of triglycerides [J]. Journalof Biological Chemistry,1964,239:2772-2777.
    [202] Kondo H., Hase T., Murase T., et al. Digestion and assimilation features of dietaryDAG in the rat small intestine [J]. Lipids,2003,38:25-30.
    [203] Stirton AJ. Bailey's industrial oil and fat products,3rd Edition [M]. New York,1964:948-951.
    [204] Tada N., Yoshida H. Diacylglycerol on lipid metabolism [J]. Current Opinion inLipidology,2003,14:29-33.
    [205] Hara K., Onizawa K., Honda H., et al. Dietary Diacylglycerol-Dependent Reduction inSerum Triacylglycerol Concentration in Rats [J], Annals of Nutrition and Metabolism,1993,37:185-191.
    [206] Murata M., Hara K., Ide T. Alteration by Diacylglycerols of the Transport and FattyAcid Composition of Lymph Chylomicrons in Rats [J], Bioscience Biotechnologyand Biochemistry,1994,58:1416-1419.
    [207] Ntanios FY., Jones PJ. Dietary sitostanol reciprocally influences cholesterol absorptionand biosynthesis in hamsters and rabbits [J]. Atherosclerosis,1999,143:341-351.
    [208] Heek M., Farley C., Compton DS., et al. Ezetimibe selectively inhibits intestinalcholesterol absorption in rodents in the presence and absence of exocrine pancreaticfunction [J]. British Journal of Pharmacology,2001,134:409-417.
    [209]彭蕾,顾振纶,薛仁宇等.黄岑素对大鼠高脂血症性脂肪肝的防治作用研究[J].中成药,2011,33(3):414-418.
    [210]王威,江海涛,李玉红等.小鼠、大鼠高甘油三脂血症、脂肪肝模型的比较[J].天津中医药,2006,23(3):192-194.
    [211] Moorhead JF., Chan MK., EL-Nahas M., et al. Lipid nephrotoxicity in chronicprogressive glomerular and tubule-intertitial disease [J]. Lancet,1982,2:1309-1311.
    [212] Al-shebeb T., Frohlich J., Magil AB. Glomerular disease in hypercholesterolemicguinea pigs: A pathogenetic study [J]. Kidney International,1988,33:498-507
    [213] Grone HJ., Walli A., Grone E., et al. Induction of glomerulosclerosis by dietary lipids:A functional and morphologic study in the rat [J]. Laboratory Investigation,1989,60:433-446.
    [214] Asiske BL., O′Donnell MP., Schmitz PG., et al. Renal injury of diet-inducedhypercholesterolemia in rats [J]. Kidney International,1990,37:880-891.
    [215]何永成,廖履坦,陈宇翔等.高胆固醇血症对健康大鼠肾脏形态学的影响[J].脏病与透析肾移植杂志,2009,9(1):34-38.
    [216]张娟,刘颖,礼广森等,超声背向散射积分技术评价高血脂大鼠深损害的研究[J].中国超声医学杂志,2007,23(3):176-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700