用户名: 密码: 验证码:
腺苷A2A受体在实验性自身免疫性重症肌无力中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1、揭示A2AR在实验性自身免疫性重症肌无力(ExperimentalAutoimmune Myasthenia Gravis,EAMG)发生、发展中的作用;2、证实A2AR是通过作用于EAMG病理性T细胞进而影响EAMG的发病过程;3、探讨激活A2AR调节EAMG疾病进程的具体分子机制。
     方法:1、通过主动免疫建立大鼠EAMG动物模型;2、组织病理学实验技术检测A2AR的表达和相关病理学改变;3、FACS方法检测A2AR在CD4+T细胞、CD8+T细胞和B细胞上的分布;4、体外加入A2AR激动剂CGS21680、A2AR拮抗剂SCH58261、ZM241385,cAMP拮抗剂H-89后ELISA方法检测细胞培养上清中anti-AChR IgG的分泌情况、3H标记技术检测淋巴细胞增殖能力、FACS方法检测Th1、Th2、Th17及Treg四种亚型的改变;5、免疫磁珠法分选细胞获得B细胞加入CGS21680后ELISA方法检测细胞培养上清中anti-AChR IgG的分泌情况、3H标记技术检测B淋巴细胞增殖能力;6、于一次免疫前一天和二次免疫前一天分别给予CGS21680,观察老鼠体重和ELISA方法检测血清中anti-AChR IgG的分泌情况、FACS方法检测Th1、Th2、Th17及Treg四种亚型的改变。
     结果:1、免疫组化结果显示,与CFA组相比较,EAMG组大鼠脾和淋巴结中A2AR的表达下降,差异显著(P脾<0.001,P淋巴结<0.05);2、流式结果显示,与CFA组比较,EAMG大鼠CD4+T细胞、CD8+T细胞和B细胞上A2AR的表达均下降,差异显著(P脾CD4+T细胞<0.001,P脾CD8+T细胞<0.05,P脾B细胞<0.01,P淋巴结CD4+T细胞<0.001,P淋巴结CD8+T细胞<0.01,P淋巴结B细胞<0.05);3、ELISA结果显示,用A2AR激动剂CGS21680体外激活AChR特异性淋巴细胞上面的A2AR受体,能够抑制AChR特异性淋巴细胞anti-AChR IgG的分泌,具有统计学意义(PCGS21680<0.001),并且这种抑制作用能够被A2AR拮抗剂SCH58261、ZM241385和PKA拮抗剂H-89所阻断,具有统计学意义(PSCH58261<0.05,PZM241385<0.05, PH-89<0.05);4、3H胸腺嘧啶插入实验结果显示,体外激活AChR特异性淋巴细胞上面的A2AR受体,能够抑制AChR特异性淋巴细胞增殖能力,具有统计学意义(P <0.05);5、体外激活AChR特异性B淋巴细胞上面的A2AR受体,对B淋巴细胞anti-AChR IgG分泌能力和增殖能力影响较小;6、一次免疫前一天预防性治疗给予CGS21680发现,和EAMG模型鼠比较,预防性给药组老鼠体重降低变轻(P<0.001)、症状缓解(P<0.001)、血清中anti-AChR IgG分泌减少(P<0.001),AChR特异性淋巴细胞增殖能力变弱(P<0.001),Th四种细胞亚群失衡得以缓解;7、二次免疫前一天治疗性给予CGS21680发现,和EAMG模型鼠比较,治疗性给药组老鼠体重降低变轻(P <0.05)、症状缓解(P<0.05)、血清中anti-AChR IgG分泌减少(P <0.05),AChR特异性淋巴细胞增殖能力变弱(P<0.05)。
     结论:1、EAMG发生发展过程中伴随着保护性受体A2AR的表达数量的下降;2、A2AR特异性激动剂CGS21680激活A2AR后对EAMG的疾病进程具有缓解作用;3、A2AR特异性激动剂CGS21680激活A2AR能够抑制AChR特异性T细胞的功能;4、A2AR特异性激动剂CGS21680激活A2AR对AChR特异性B细胞的功能影响较小;5、激活A2AR后能够逆转EAMG中Th1/Th2/Th17/Treg四种辅助性T细胞亚群的功能失衡状态。
Objective: To investigate the relationship between Adenosine A2A receptor (A2AR)and Experimental Autoimmune Myasthenia Gravis (EAMG); to investigate whetherA2AR activation holds the potential for impacting the severity of EAMG; toinvestigate whether A2AR could impact EAMG severity through impact the banlancebetween four AChR-specific Th subsets.
     Methods: EAMG were induced following immunization of Lewis rats with theacetylcholine receptor (AChR) R97–116peptide. We used immunohistochemistry totest the A2AR expression in spleen and lymph node. The expression of A2AR onCD4+T cells, CD8+T cells and B cells were detected by FACs analysis. ELISAmethod was used to detect the secretion of anti-AChR antibody in supernatant afterincubation with A2AR agonist CGS21680, A2AR antagonist SCH58261, ZM241385and cAMP antagonist H-89, then the proliferative ability of T lymphocytes wasdetected by3H incorporation. Th subsets distribution was meseasured by FACsanalysis.
     Results: Compared with CFA control group, the EAMG rats showed lower lever ofA2AR expression in both spleen and lymph node in immunohistochemistryexperiment (Pspleen<0.001, Plymph node<0.05); FACs analysis results turned out thatthe expression of A2AR of EAMG rats were significantly decreased in all CD4+Tcells, CD8+T cells and B cells comprared with CFA group (Pspleen CD4+T cells<0.001, Pspleen CD8+T cells<0.05, PspleenB cells<0.01, Plymph nodeCD4+T cells<0.001, Plymph nodeCD8+T cells<0.01, Plymph nodeB cells<0.05); the secretion of anti-AChR antibody was significantlydecreased after incubation with A2AR agonist CGS21680and this inhibition can beblocked by A2AR antagonist SCH58261, ZM241385and cAMP antagonist H-89 (PCGS21680<0.001, PSCH58261<0.05, PZM241385<0.05, PH-89<0.05). Besides, A2ARactivation could inhibit the proliferation ability of AChR-specific T cells (P <0.05).However A2AR activation had little effect on B cells. We also determined that thedevelopment of EAMG was accompanied by a T helper cell imbalance that could berestored following A2AR stimulation that resulted in increased Treg levels and areduction in Th1, Th2and Th17cell subtypes. An EAMG preventive treatmentregimen was established that consisted of CGS21680(A2AR agonist) administration1day prior to EAMG induction. Administration of CGS2168029days post EAMGinduction (therapeutic treatment) also ameliorated disease severity.
     Conclusion: A2AR expression is decreased in EAMG progression; A2AR activationhold the potential for impacting the severity of EAMG; A2AR activation hold thepotential for inhibiting AChR-sepecific T cells proliferation and function; A2ARactivation had little effect on B cells and A2AR activation can reversed theimbanlance between Th1/Th2/Th17/Treg subsets. We concluded that A2AR agonistsmay represent a new class of compounds that can be developed for use in thetreatment of MG or other T cell-and B cell-mediated autoimmune diseases.
引文
1. Dwyer DS, Bradley RJ, Urquhart CK, and Kearney JF, Naturally occurringanti-idiotypic antibodies in myasthenia gravis patients. Nature.1983;301(5901):611-4.
    2. Soltys J, Halperin JA, and Xuebin Q, DAF/CD55and Protectin/CD59modulateadaptive immunity and disease outcome in experimental autoimmune myastheniagravis. J Neuroimmunol.2012.
    3. Moiola L, Galbiati F, Martino G, Amadio S, Brambilla E, Comi G, Vincent A,Grimaldi LM, et al., IL-12is involved in the induction of experimentalautoimmune myasthenia gravis, an antibody-mediated disease. Eur J Immunol.1998;28(8):2487-97.
    4. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, and Murphy KM,Development of TH1CD4+T cells through IL-12produced by Listeria-inducedmacrophages. Science.1993;260(5107):547-9.
    5. Milani M, Ostlie N, Wang W, and Conti-Fine BM, T cells and cytokines in thepathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci.2003;998:284-307.
    6. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, GiuntiD, Ceravolo A, et al., Mesenchymal stem cells ameliorate experimentalautoimmune encephalomyelitis inducing T-cell anergy. Blood.2005;106(5):1755-61.
    7. Kong QF, Sun B, Wang GY, Zhai DX, Mu LL, Wang DD, Wang JH, Li R, et al.,BM stromal cells ameliorate experimental autoimmune myasthenia gravis byaltering the balance of Th cells through the secretion of IDO. Eur J Immunol.2009;39(3):800-9.
    8. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M,Gualandi F, et al., Human mesenchymal stem cells modulate B-cell functions.Blood.2006;107(1):367-72.
    9. Patrick J and Lindstrom J, Autoimmune response to acetylcholine receptor.Science.1973;180(88):871-2.
    10. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, and Dilloo D, Humanbone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine2,3-dioxygenase-mediated tryptophan degradation. Blood.2004;103(12):4619-21.
    11. Nicolas Floquet SP, Laurent Ramont, The Antitumor Properties of the3(IV)-(185-203) Peptide from the NC1Domain of Type IV Collagen (Tumstatin)Are Conformation-dependent. J. Biol. Chem.2004;279(3):2091-2100.
    12. Brigida Bochicchio NF, Dissection of Human Tropoelastin: Solution Structure,Dynamics and Self-Assembly of the Exon5Peptide. Chemistry-A EuropeanJournal.2004;10(13):3166-3176.
    13. Baggi F, Annoni A, Ubiali F, Milani M, Longhi R, Scaioli W, Cornelio F,Mantegazza R, et al., Breakdown of tolerance to a self-peptide of acetylcholinereceptor alpha-subunit induces experimental myasthenia gravis in rats. JImmunol.2004;172(4):2697-703.
    14. Mori S, Kubo S, Akiyoshi T, Yamada S, Miyazaki T, Hotta H, Desaki J, Kishi M,et al., Antibodies against muscle-specific kinase impair both presynaptic andpostsynaptic functions in a murine model of myasthenia gravis. Am J Pathol.2012;180(2):798-810.
    15. Wu B, Goluszko E, Huda R, Tuzun E, and Christadoss P, Experimentalautoimmune myasthenia gravis in the mouse. Curr Protoc Immunol.2011;Chapter15:Unit1523.
    16. Luo J and Lindstrom J, Myasthenogenicity of the main immunogenic region andendogenous muscle nicotinic acetylcholine receptors. Autoimmunity.2012;45(3):245-52.
    17. Krolick KA, Zoda TE, and Thompson PA, Examination of characteristics thatmay distinguish disease-causing from benign AChR-reactive antibodies inexperimental autoimmune myasthenia gravis. Adv Neuroimmunol.1994;4(4):475-93.
    18. Tuzun E, Huda R, and Christadoss P, Complement and cytokine basedtherapeutic strategies in myasthenia gravis. J Autoimmun.2011;37(2):136-43.
    19. Mu L, Sun B, Kong Q, Wang J, Wang G, Zhang S, Wang D, Liu Y, et al.,Disequilibrium of T helper type1,2and17cells and regulatory T cells duringthe development of experimental autoimmune myasthenia gravis. Immunology.2009;128(1Suppl):e826-36.
    20. Adikari SB, Lian H, Link H, Huang YM, and Xiao BG,Interferon-gamma-modified dendritic cells suppress B cell function andameliorate the development of experimental autoimmune myasthenia gravis. ClinExp Immunol.2004;138(2):230-6.
    21. Allman W, Saini SS, Tuzun E, and Christadoss P, Characterization of peripheralblood acetylcholine receptor-binding B cells in experimental myasthenia gravis.Cell Immunol.2011;271(2):292-8.
    22. Wang W, Ostlie NS, Conti-Fine BM, and Milani M, The susceptibility toexperimental myasthenia gravis of STAT6-/-and STAT4-/-BALB/c micesuggests a pathogenic role of Th1cells. J Immunol.2004;172(1):97-103.
    23. Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, and SarvetnickN, Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholinereceptor-induced clinical experimental autoimmune myasthenia gravis in mice. JExp Med.1997;186(3):385-91.
    24. Tran GT, Hodgkinson SJ, Carter NM, Verma ND, Plain KM, Boyd R, RobinsonCM, Nomura M, et al., Interleukin-5(IL-5) promotes induction of antigenspecific CD4+CD25+T regulatory cells that suppress autoimmunity. Blood.
    2012.
    25. Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J,and Hori S, Plasticity of Foxp3(+) T Cells Reflects Promiscuous Foxp3Expression in Conventional T Cells but Not Reprogramming of Regulatory TCells. Immunity.2012.
    26. Dong C, Diversification of T-helper-cell lineages: finding the family root ofIL-17-producing cells. Nat Rev Immunol.2006;6(4):329-33.
    27. Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J,Manel N, et al., Digoxin and its derivatives suppress TH17cell differentiation byantagonizing RORgammat activity. Nature.2011;472(7344):486-90.
    28. Wang DD, Zhao YF, Wang GY, Sun B, Kong QF, Zhao K, Zhang Y, Wang JH, etal., IL-17potentiates neuronal injury induced by oxygen-glucose deprivation andaffects neuronal IL-17receptor expression. J Neuroimmunol.2009;212(1-2):17-25.
    29. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, and TateCG, Agonist-bound adenosine A2A receptor structures reveal common featuresof GPCR activation. Nature.2011;474(7352):521-5.
    30. Rickles RJ, Pierce LT, Giordano TP,3rd, Tam WF, McMillin DW, Delmore J,Laubach JP, Borisy AA, et al., Adenosine A2A receptor agonists and PDEinhibitors: a synergistic multitarget mechanism discovered through systematiccombination screening in B-cell malignancies. Blood.2010;116(4):593-602.
    31. Barletta KE, Ley K, and Mehrad B, Regulation of neutrophil function byadenosine. Arterioscler Thromb Vasc Biol.2012;32(4):856-64.
    32. Warren CA, Calabrese GM, Li Y, Pawlowski SW, Figler RA, Rieger J, Ernst PB,Linden J, et al., Effects of adenosine A2A receptor activation andalanyl-glutamine in Clostridium difficile toxin-induced ileitis in rabbits andcecitis in mice. BMC Infect Dis.2012;12(1):13.
    33. Singh S, Zhang M, Bertheleme N, Strange PG, and Byrne B, Purification of thehuman G protein-coupled receptor adenosine A(2a)R in a stable and functionalform expressed in Pichia pastoris. Curr Protoc Protein Sci.2012; Chapter29:Unit294.
    34. Scott RT, Jr., Illions EH, Carey KD, and Navot D, Gonadotropin-releasinghormone antagonist administration enhances gonadotrope responsiveness atdoses inadequate to suppress immunoassayable gonadotropin levels. Fertil Steril.1994;62(5):1069-71.
    35. Drury AN and Szent-Gyorgyi A, The physiological activity of adeninecompounds with especial reference to their action upon the mammalian heart. JPhysiol.1929;68(3):213-37.
    36. diMarco JP, Sellers TD, Lerman BB, Greenberg ML, Berne RM, and BelardinelliL, Diagnostic and therapeutic use of adenosine in patients with supraventriculartachyarrhythmias. J Am Coll Cardiol.1985;6(2):417-25.
    37. Travain MI and Wexler JP, Pharmacological stress testing. Semin Nucl Med.1999;29(4):298-318.
    38. Fredholm BB, Chern Y, Franco R, and Sitkovsky M, Aspects of the generalbiology of adenosine A2A signaling. Prog Neurobiol.2007;83(5):263-76.
    39. van Calker D, Muller M, and Hamprecht B, Adenosine regulates via twodifferent types of receptors, the accumulation of cyclic AMP in cultured braincells. J Neurochem.1979;33(5):999-1005.
    40. Bruns RF, Lu GH, and Pugsley TA, Characterization of the A2adenosinereceptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol.1986;29(4):331-46.
    41. Jin X, Shepherd RK, Duling BR, and Linden J, Inosine binds to A3adenosinereceptors and stimulates mast cell degranulation. J Clin Invest.1997;100(11):2849-57.
    42. Heyn J, Ledderose C, Hinske LC, Limbeck E, Mohnle P, Lindner HA, and KrethS, Adenosine A2A receptor upregulation in human PMNs is controlled bymiRNA-214, miRNA-15, and miRNA-16. Shock.2012;37(2):156-63.
    43. Kitta T, Chancellor MB, de Groat WC, Kuno S, Nonomura K, and Yoshimura N,Suppression of Bladder Overactivity by Adenosine A2A Receptor Antagonist in aRat Model of Parkinson Disease. J Urol.2012.
    44. Hasko G, Linden J, Cronstein B, and Pacher P, Adenosine receptors: therapeuticaspects for inflammatory and immune diseases. Nat Rev Drug Discov.2008;7(9):759-70.
    45. Stone TW, Adenosine, neurodegeneration and neuroprotection. Neurol Res.2005;27(2):161-8.
    46. Zezula J and Freissmuth M, The A(2A)-adenosine receptor: a GPCR with uniquefeatures? Br J Pharmacol.2008;153Suppl1:S184-90.
    47. Fresco P, Diniz C, and Goncalves J, Facilitation of noradrenaline release byactivation of adenosine A(2A) receptors triggers both phospholipase C andadenylate cyclase pathways in rat tail artery. Cardiovasc Res.2004;63(4):739-46.
    48. Mandler R, Birch RE, Polmar SH, Kammer GM, and Rudolph SA, Abnormaladenosine-induced immunosuppression and cAMP metabolism in T lymphocytesof patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A.1982;79(23):7542-6.
    49. Sevigny CP, Li L, Awad AS, Huang L, McDuffie M, Linden J, Lobo PI, andOkusa MD, Activation of adenosine2A receptors attenuates allograft rejectionand alloantigen recognition. J Immunol.2007;178(7):4240-9.
    50. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, AirasL, and Bynoe MS, CD73is required for efficient entry of lymphocytes into thecentral nervous system during experimental autoimmune encephalomyelitis. ProcNatl Acad Sci U S A.2008;105(27):9325-30.
    51. Niemela J, Ifergan I, Yegutkin GG, Jalkanen S, Prat A, and Airas L, IFN-betaregulates CD73and adenosine expression at the blood-brain barrier. Eur JImmunol.2008;38(10):2718-26.
    52. Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, and Bruce IN,Polymorphisms within the adenosine receptor2a gene are associated withadverse events in RA patients treated with MTX. Rheumatology (Oxford).2008;47(8):1156-9.
    53. Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, and BrooksDJ, Adenosine2A receptor availability in dyskinetic and nondyskinetic patientswith Parkinson disease. Neurology.2011;76(21):1811-6.
    54. Dal Ponte C, Alchera E, Follenzi A, Imarisio C, Prat M, Albano E, and Carini R,Pharmacological postconditioning protects against hepatic ischemia/reperfusioninjury. Liver Transpl.2011;17(4):474-82.
    55. Ohta A and Sitkovsky M, Role of G-protein-coupled adenosine receptors indownregulation of inflammation and protection from tissue damage. Nature.2001;414(6866):916-20.
    56. Yu L, Huang Z, Mariani J, Wang Y, Moskowitz M, and Chen JF, Selectiveinactivation or reconstitution of adenosine A2A receptors in bone marrow cellsreveals their significant contribution to the development of ischemic brain injury.Nat Med.2004;10(10):1081-7.
    57. Himer L, Csoka B, Selmeczy Z, Koscso B, Pocza T, Pacher P, Nemeth ZH,Deitch EA, et al., Adenosine A2A receptor activation protects CD4+Tlymphocytes against activation-induced cell death. Faseb J.2010;24(8):2631-40.
    58. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW,Klinkert WE, Flugel-Koch C, et al., Effector T cell interactions with meningealvascular structures in nascent autoimmune CNS lesions. Nature.2009;462(7269):94-8.
    59. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, BoniA, et al., Wnt signaling arrests effector T cell differentiation and generates CD8+memory stem cells. Nat Med.2009;15(7):808-13.
    60. Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM,Oliveira CR, and Cunha RA, Adenosine A2A receptor blockade preventssynaptotoxicity and memory dysfunction caused by beta-amyloid peptides viap38mitogen-activated protein kinase pathway. J Neurosci.2009;29(47):14741-51.
    61. Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, andErnst PB, Cutting edge: Critical role for A2A adenosine receptors in the Tcell-mediated regulation of colitis. J Immunol.2006;177(5):2765-9.
    62. Lappas CM, Rieger JM, and Linden J, A2A adenosine receptor induction inhibitsIFN-gamma production in murine CD4+T cells. J Immunol.2005;174(2):1073-80.
    63. Csoka B, Himer L, Selmeczy Z, Vizi ES, Pacher P, Ledent C, Deitch EA,Spolarics Z, et al., Adenosine A2A receptor activation inhibits T helper1and Thelper2cell development and effector function. Faseb J.2008;22(10):3491-9.
    64. Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, and FowlerDH, Activation of Th1and Tc1cell adenosine A2A receptors directly inhibitsIL-2secretion in vitro and IL-2-driven expansion in vivo. Blood.2005;105(12):4707-14.
    65. Opferman JT and Zambetti GP, Translational research? Ribosome integrity and anew p53tumor suppressor checkpoint. Cell Death Differ.2006;13(6):898-901.
    66. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, EnjyojiK, et al., Adenosine generation catalyzed by CD39and CD73expressed onregulatory T cells mediates immune suppression. J Exp Med.2007;204(6):1257-65.
    67. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, and Mosmann TR, Tregulatory and primed uncommitted CD4T cells express CD73, whichsuppresses effector CD4T cells by converting5'-adenosine monophosphate toadenosine. J Immunol.2006;177(10):6780-6.
    68. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, GiomettoR, Hopner S, Centonze D, et al., Expression of ectonucleotidase CD39byFoxp3+Treg cells: hydrolysis of extracellular ATP and immune suppression.Blood.2007;110(4):1225-32.
    69. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, Drake CG,and Powell JD, A2A receptor signaling promotes peripheral tolerance byinducing T-cell anergy and the generation of adaptive regulatory T cells. Blood.2008;111(1):251-9.
    70. Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, and WilsonIA, Structural basis for CD1d presentation of a sulfatide derived from myelin andits implications for autoimmunity. J Exp Med.2005;202(11):1517-26.
    71. Lappas CM, Day YJ, Marshall MA, Engelhard VH, and Linden J, AdenosineA2A receptor activation reduces hepatic ischemia reperfusion injury byinhibiting CD1d-dependent NKT cell activation. J Exp Med.2006;203(12):2639-48.
    72. Mu L, Zhang Y, Sun B, Wang J, Xie X, Li N, Zhang J, Kong Q, et al., Activationof the receptor for advanced glycation end products (RAGE) exacerbatesexperimental autoimmune myasthenia gravis symptoms. Clin Immunol.2012;141(1):36-48.
    73. Qi H, Li J, Allman W, Saini SS, Tuzun E, Wu X, Estes DM, and Christadoss P,Genetic deficiency of estrogen receptor alpha fails to influence experimentalautoimmune myasthenia gravis pathogenesis. J Neuroimmunol.2012;234(1-2):165-7.
    74. Hasko G, Receptor-mediated interaction between the sympathetic nervous systemand immune system in inflammation. Neurochem Res.2001;26(8-9):1039-44.
    75. Huang S, Apasov S, Koshiba M, and Sitkovsky M, Role of A2a extracellularadenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cellactivation and expansion. Blood.1997;90(4):1600-10.
    76. Genovese T, Melani A, Esposito E, Mazzon E, Di Paola R, Bramanti P, Pedata F,and Cuzzocrea S, The selective adenosine A2A receptor agonist CGS21680reduces JNK MAPK activation in oligodendrocytes in injured spinal cord. Shock.2009;32(6):578-85.
    77. Wu B, Deng C, Goluszko E, and Christadoss P, Tolerance to a dominant T cellepitope in the acetylcholine receptor molecule induces epitope spread andsuppresses murine myasthenia gravis. J Immunol.1997;159(6):3016-23.
    78. Gomez AM, Vrolix K, Martinez-Martinez P, Molenaar PC, Phernambucq M, vander Esch E, Duimel H, Verheyen F, et al., Proteasome inhibition with bortezomibdepletes plasma cells and autoantibodies in experimental autoimmunemyasthenia gravis. J Immunol.2011;186(4):2503-13.
    79. Vincent A, Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol.2002;2(10):797-804.
    80. Aricha R, Mizrachi K, Fuchs S, and Souroujon MC, Blocking of IL-6suppressesexperimental autoimmune myasthenia gravis. J Autoimmun.2011;36(2):135-41.
    81. Shi FD, Bai XF, Li HL, Huang YM, Van der Meide PH, and Link H, Nasaltolerance in experimental autoimmune myasthenia gravis (EAMG): induction ofprotective tolerance in primed animals. Clin Exp Immunol.1998;111(3):506-12.
    82. Aricha R, Feferman T, Scott HS, Souroujon MC, Berrih-Aknin S, and Fuchs S,The susceptibility of Aire(-/-) mice to experimental myasthenia gravis involvesalterations in regulatory T cells. J Autoimmun.2011;36(1):16-24.
    83. Liu R, Zhou Q, La Cava A, Campagnolo DI, Van Kaer L, and Shi FD, Expansionof regulatory T cells via IL-2/anti-IL-2mAb complexes suppresses experimentalmyasthenia. Eur J Immunol.2010;40(6):1577-89.
    84. Liu R, Hao J, Dayao CS, Shi FD, and Campagnolo DI, T-bet deficiencydecreases susceptibility to experimental myasthenia gravis. Exp Neurol.2009;220(2):366-73.
    85. Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, and Conti-FineBM, C57BL/6mice genetically deficient in IL-12/IL-23and IFN-gamma aresusceptible to experimental autoimmune myasthenia gravis, suggesting apathogenic role of non-Th1cells. J Immunol.2007;178(11):7072-80.
    86. O'Garra A, Cytokines induce the development of functionally heterogeneous Thelper cell subsets. Immunity.1998;8(3):275-83.
    87. Zhang GX, Navikas V, and Link H, Cytokines and the pathogenesis ofmyasthenia gravis. Muscle Nerve.1997;20(5):543-51.
    88. Lukashev DE, Smith PT, Caldwell CC, Ohta A, Apasov SG, and Sitkovsky MV,Analysis of A2a receptor-deficient mice reveals no significant compensatoryincreases in the expression of A2b, A1, and A3adenosine receptors in lymphoidorgans. Biochem Pharmacol.2003;65(12):2081-90.
    89. Linden J, Molecular approach to adenosine receptors: receptor-mediatedmechanisms of tissue protection. Annu Rev Pharmacol Toxicol.2001;41:775-87.
    90. Fredholm BB, AP IJ, Jacobson KA, Klotz KN, and Linden J, International Unionof Pharmacology. XXV. Nomenclature and classification of adenosine receptors.Pharmacol Rev.2001;53(4):527-52.
    91. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, OhtaA, and Thiel M, Physiological control of immune response and inflammatorytissue damage by hypoxia-inducible factors and adenosine A2A receptors. AnnuRev Immunol.2004;22:657-82.
    92. Hoskin DW, Butler JJ, Drapeau D, Haeryfar SM, and Blay J, Adenosine actsthrough an A3receptor to prevent the induction of murine anti-CD3-activatedkiller T cells. Int J Cancer.2002;99(3):386-95.
    93. Fredholm BB, Battig K, Holmen J, Nehlig A, and Zvartau EE, Actions ofcaffeine in the brain with special reference to factors that contribute to itswidespread use. Pharmacol Rev.1999;51(1):83-133.
    94. Yegutkin GG, Nucleotide-and nucleoside-converting ectoenzymes: Importantmodulators of purinergic signalling cascade. Biochim Biophys Acta.2008;1783(5):673-94.
    95. Hasko G and Cronstein BN, Adenosine: an endogenous regulator of innateimmunity. Trends Immunol.2004;25(1):33-9.
    96. Fredholm BB, Irenius E, Kull B, and Schulte G, Comparison of the potency ofadenosine as an agonist at human adenosine receptors expressed in Chinesehamster ovary cells. Biochem Pharmacol.2001;61(4):443-8.
    97. Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, and Evoli A,Circulating and thymic CD4CD25T regulatory cells in myasthenia gravis: effectof immunosuppressive treatment. Immunology.2005;116(1):134-41.
    98. DiPaolo RJ, Glass DD, Bijwaard KE, and Shevach EM, CD4+CD25+T cellsprevent the development of organ-specific autoimmune disease by inhibiting thedifferentiation of autoreactive effector T cells. J Immunol.2005;175(11):7135-42.
    99. Murphy KM and Stockinger B, Effector T cell plasticity: flexibility in the face ofchanging circumstances. Nat Immunol.2010;11(8):674-80.
    100. Shin MS, Lee N, and Kang I, Effector T-cell subsets in systemic lupuserythematosus: update focusing on Th17cells. Curr Opin Rheumatol.2011;23(5):444-8.
    101. Zuckerman NS, Howard WA, Bismuth J, Gibson K, Edelman H, Berrih-Aknin S,Dunn-Walters D, and Mehr R, Ectopic GC in the thymus of myasthenia gravispatients show characteristics of normal GC. Eur J Immunol.2010;40(4):1150-61.
    102. Yang B, McIntosh KR, and Drachman DB, How subtle differences in MHC classII affect the severity of experimental myasthenia gravis. Clin ImmunolImmunopathol.1998;86(1):45-58.
    103.Baggi F, Andreetta F, Caspani E, Milani M, Longhi R, Mantegazza R, Cornelio F,and Antozzi C, Oral administration of an immunodominant T-cell epitopedownregulates Th1/Th2cytokines and prevents experimental myasthenia gravis.J Clin Invest.1999;104(9):1287-95.
    104. Pellegatti P, Falzoni S, Donvito G, Lemaire I, and Di Virgilio F, P2X7receptordrives osteoclast fusion by increasing the extracellular adenosine concentration.Faseb J.2011;25(4):1264-74.
    105. Koshiba M, Rosin DL, Hayashi N, Linden J, and Sitkovsky MV, Patterns of A2Aextracellular adenosine receptor expression in different functional subsets ofhuman peripheral T cells. Flow cytometry studies with anti-A2A receptormonoclonal antibodies. Mol Pharmacol.1999;55(3):614-24.
    106. Oh S, Rankin AL, and Caton AJ, CD4+CD25+regulatory T cells in autoimmunearthritis. Immunol Rev.2011;233(1):97-111.
    107. Nikolova M, Carriere M, Jenabian MA, Limou S, Younas M, Kok A, Hue S,Seddiki N, et al., CD39/adenosine pathway is involved in AIDS progression.PLoS Pathog.2011;7(7):e1002110.
    108. Giannattasio G, Ohta S, Boyce JR, Xing W, Balestrieri B, and Boyce JA, Thepurinergic G protein-coupled receptor6inhibits effector T cell activation inallergic pulmonary inflammation. J Immunol.2011;187(3):1486-95.
    109. Aruna BV, Sela M, and Mozes E, Down-regulation of T cell responses to AChRand reversal of EAMG manifestations in mice by a dual altered peptide ligandvia induction of CD4+CD25+regulatory cells. J Neuroimmunol.2006;177(1-2):63-75.
    110. Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PW, Jones G, and CollMG, The in vitro pharmacology of ZM241385, a potent, non-xanthine A2aselective adenosine receptor antagonist. Br J Pharmacol.1995;115(6):1096-102.
    111. Lindstrom K, Ongini E, and Fredholm BB, The selective adenosine A2A receptorantagonist SCH58261discriminates between two different binding sites for[3H]-CGS21680in the rat brain. Naunyn Schmiedebergs Arch Pharmacol.1996;354(4):539-41.
    112. Skalhegg BS and Tasken K, Specificity in the cAMP/PKA signaling pathway.Differential expression,regulation, and subcellular localization of subunits ofPKA. Front Biosci.2000;5:D678-93.
    113. Ivanov, II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ,and Littman DR, The orphan nuclear receptor RORgammat directs thedifferentiation program of proinflammatory IL-17+T helper cells. Cell.2006;126(6):1121-33.
    114. Lohr J, Knoechel B, Wang JJ, Villarino AV, and Abbas AK, Role of IL-17andregulatory T lymphocytes in a systemic autoimmune disease. J Exp Med.2006;203(13):2785-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700