用户名: 密码: 验证码:
基于肌电模式的中国手语识别研究及康复应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最常用的人体动作,手势动作以其丰富多变的含义和灵活方便的执行方式,被广泛用于人类生活的方方面面。手势识别是指利用计算机来检测、分析和解释人所执行的手势动作,从而用于判断动作意图并提供相应的服务。随着现代科技的发展和人们生活水平的提升,手势动作识别成为了人机交互、手语识别、康复训练、运动医学等领域的研究热点。
     神经系统通过命令和协调不同肌群的活动来完成不同的手势动作。人体肌肉活动的时候,从皮肤表面采集到的电信号即为表面肌电信号(Surface electromyogranphy, SEMG)。SEMG通过对不同肌群活动时电信号的捕获来反映肢体的伸屈状态、位置等信息,是一种重要的手势动作感知方式。同时,放置在上肢的加速计捕获到的加速度信号(Acceleration, ACC)也能反映手势的运动轨迹及姿态变化,是另一种感知手势动作的方式。
     本文对基于SEMG的手势动作检测与识别技术进行了深入研究,一方面融合SEMG和ACC信息提出词汇量可扩展的连续中国手语识别方案,旨在实现自然和谐的聋哑人与正常人之间的交流,提高聋哑人的生活质量。另一方面将基于SEMG的手势动作识别技术推广到康复工程领域,以手势动作的识别结果辅助神经肌肉疾病患者进行康复训练,具有重要的医学价值。本研究的主要工作内容和创新点包括:
     1.基于多通道表面肌电信号的中国手语字母手势动作识别研究。此研究的目标是提出基于SEMG的手语手势动作识别方案,并研究能提高手语字母语识别结果的动作执行规范方案。主要的研究内容有:1)利用SEMG对30类中国手语字母手势进行识别,提出一种包括信号采集、数据分割、特征提取和分类器设计的手势识别算法;2)通过对手势动作过程的分解和所涉及肌肉活动状态的分析,提出了对30类中国手语字母动作的执行规范方案。分别开展不同用户执行规范方案前后的动作识别实验,结果都表明动作规范后识别结果得到了较大的提高;3)提出了一种利用独立成分分析和自适应滤波相结合的去噪方法。利用该方法对掺杂了ECG的SEMG信号进行处理,结果显示信号中的ECG噪声得到了有效的去除。
     2.融合表面肌电信号和加速度信号的中国手语孤立词识别研究。初步探索了两类传感器信息融合的手势识别技术,分别利用SEMG捕获手指手腕等精细动作的肌肉活动信息以及利用ACC捕获不同运动轨迹的手臂挥划信息,提出了一种多流隐马尔科夫(Hidden Markov Model, HMM)分类器和多级决策树相结合的手语孤立词识别方案。以中国手语30类单手孤立词和121类双手孤立词为对象开展识别实验,结果表明:SEMG的瞬时能量可有效分割出两类信号的活动段数据,融合两类信息的识别结果较单一传感器信息的识别有大幅提升,同时多流HMM结合多级决策树的分类算法除了具有较好的识别效果还提升了计算速度。
     3.融合两类传感器信息词汇量可扩展的连续中国手语手势识别。此研究目的是希望利用有限种类的手语词数据得到对更多类别手语词的识别,并实现对连续中国手语手势的识别。依据两类传感器捕获的信息,将中国手语孤立词从执行构成角度拆分为手型、朝向和轨迹三类要素。提出利用要素的识别结果识别孤立词,再用孤立词识别结果识别手语词的连续手语识别方案,在一定程度上扩展可识别的词汇规模。实验结果表明,以120类中国手语双手孤立词组成的200个连续手语句子为对象,利用本方法可以得到很好的孤立词分类结果。同时以统计语言模型进行句子中前后孤立词的识别纠错,以句法模型进行句子整体架构检错,能实现连续句子的有效识别。
     4.探索基于SEMG的手势识别在康复领域的应用。此研究目标是以手势识别结果辅助神经肌肉系统疾病患者进行康复训练,是基于SEMG的手势识别技术在康复工程领域的初步探索。针对中风患者执行的20类手势动作,利用高密度肌电电极捕获患肢带有无意识肌肉痉挛干扰的SEMG信号,提出了一套包括特征提取、特征降维和分类器设计在内的有效的动作识别方案。同时,针对高密度电极资源占用多、佩戴繁琐的问题,通过选择空间滤波方式、电极通道的选取、SEMG信号分析窗长度、采样率和高通滤波截止频率,大大减少了数据的冗余,为实际的临床应用提供参考依据。
     本论文研究工作得到了国家863高科技研究发展计划“基于肌电传感器和加速计的手势交互设备研究”(2009AA01Z322)、国家自然科学基金项目“基于表面肌电的中国手语手势识别研究”(60703069)、NOKIA赫尔辛基研究中心及北京研究院合作项目,以及中国科学技术大学研究生创新基金的资助。
Hand gesture, as the most commonly used body gesture, is widely used in all aspects of human life due to its rich and varied meanings and flexible and convenient way of execution. Hand gesture recognition is known as the process that computer automatically capture, analyze and understand various types of gestures to determine human intentions and to provide the corresponding services. As the advance of modern technology and the improvement of human living standard, gesture recognition becomes a research focus in the fields of human computer interaction, sign language recognition (SLR), rehabilitation training and sports medicine etc..
     Arbitrary hand movements are completed by groups of muscles which are coordinated and work closely together under the control of the nervous system. The surface electromyographic (SEMG) signal is regarded as one kind of important bioelectric signals caused by muscular activities. SEMG sensor can capture the information of muscular activities, which not only reflect the state and strength of flexion and extension of the joints, but also reflect the information of limb postures and positions. The SEMG processing technologies provide us with important opportunities to capture hand gestures. At the same time, the accelerometer sensor placed on the limb can record the acceleration (ACC) signal, which reflects the position and the trajectory of the hand. The ACC processing technologies provide us another opportunity to capture hand gestures.
     This work investigates the detection and recognition of various kinds of hand gestures based on SEMG signals. On the one hand, a combined SEMG and ACC approach for large vocabulary continuous Chinese SLR is proposed, which provides a practical solution for the deaf and the health communication and improves the deaf living standard. On the other hand, the gesture recognition technology based on SEMG can be extended to the field of rehabilitation engineering. The recognition result of hand gesture can aid individuals with neuromuscular diseases in rehabilitation training. The main work and achievements of the dissertation focuses on the following aspects:
     1. Chinese sign language (CSL) alphabet gesture recognition based on the multi-channel SEMG. This study aims at realizing a SEMG-based hand gesture recognition method and exploring a set of gesture normalization schemes, which could improve the gesture recognition result. The main work are as follows:1) A SEMG-based hand gesture recognition framework including signal measurement, active segmentation, feature extraction and classification were proposed and used to classify30kinds of CSL alphabet gestures.2) According to the analysis of sign language gesture process and activities of relevant muscles, a set of gesture definition improvement and action normalization schemes were proposed.3) The results of user testing experiments showed that the average recognition accuracies of30CSL alphabets were improved after user learned the action normalization schemes.4) A novel signal filtering method combined with independent component analysis and adaptive filtering was proposed. The experiments demonstrated that this method can remove the noise of electrocardiography (ECG) from SEMG signals.
     2. CSL isolated word recognition based on the information fusion of SEMG and ACC. This study aiming at investigating the hand gesture recognition technique based on the SEMG and ACC signals. Considering the complementary characteristics of the two kinds of signals, a hand gesture recognition framework with joint multi-stream hidden markov model (HMM) and decision tree based on the information fusion of SEMG and ACC was presented. Classification tasks were conducted on30CSL one-hand isolated words and121CSL two-hand isolated words, and the experimental results demonstrated that the proposed method can shorten the train and recognition time and improve the recognition accuracy.
     3. Vocabulary scalable and continuous CSL recognition based on the SEMG and ACC information. The purpose of this work is to propose a vocabulary scalable CSL recognition method and to realize the recognition of continuous CSL, based on the SEMG and ACC data, three basic components can be extracted from each hand gesture. The three components are the hand shape, orientation and trajectory. The CSL isolated word can be recognized by fusing the components recognition results and the CSL sentence can be recognized by assemble the CSL isolated words. Experimental results on the recognition of200CSL sentences composed by120frequently used CSL isolated words demonstrated the CSL gestures could be well recognized by this component-based method. Statistical language model and syntactic model were used to detect and correct continuous CSL error in this study and got a good result.
     4. Exploration on the SEMG-based gesture recognition application in rehabilitation engineering. Gesture recognition results were used to aid individuals with neuromuscular diseases in rehabilitation training. A novel framework including feature extraction, feature dimensionality reduction and classification were proposed and used to classify20different arm, hand, and finger movements performed by stroke survivors. High gesture recognition accuracies were obtained using high-density SEMG sensors. A series of practical issues were investigated in this study for practical application. The issues include SEMG electrode configuration, channel reduction, and the appropriate choice of some SEMG signal conditioning and preprocessing parameters such as window length, sampling rate and high-pass cut-off frequency. The outcomes reported in this study can be regarded as guidelines for developing myoelectric control systems toward stroke rehabilitation.
     The research is supported by the National High Technology Research and Development Program of China (The863Program)"Research on the Gesture Input Devices Based on the Accelerometers and Surface EMG sensors"(2009AA01Z322), National Natural Science Foundation of China "Chinese Sign Language Recognition based on Surface Electromyogram"(60703069), cooperation projects with NOKIA Research Center (Helsinki&Beijing) and Graduate Innovation Foundation of USTC.
引文
蔡浩中.1994.简论聋人手势语的构成要素[J].现代特殊教育,1:11
    陈香,张旭,赵章琰,涂有强,杨基海.多类手势动作表面肌电信号模式识别研究.2007年中国生物医学工程联合学术年会(CBME’07),2007.
    陈伟婷.2008.基于熵的表面肌电信号特征提取研究[D].上海:上海交通大学
    奉国和,郑伟.2011.国内中文自动分词技术研究综述[J].图书情报工作,55(2):41-45
    高士濂,于频.1998.人体解剖图谱(修订版)[M].上海:上海科学技术出版社.
    高文,陈熙霖,马继勇等.2000.基于多模式接口技术的聋人与正常人交流系统[J].计算机学报,123(12):1253-1260
    何乐生.2006.基于肌电信号的人机接口技术的研究[D]:[博士].南京:东南大学.
    胡广书.2003.数字信号处理理论、算法与实现[M].北京:清华大学出版社.
    胡巍,赵章琰,路知远,陈香.2009.无线多通道表面肌电信号采集系统设计[J].电子测量与仪器学报,23(11):30-35姜丹.2004.信息论与编码[M].合肥:中国科学技术大学出版社.
    李强.2008.表面肌电信号的运动单位动作电位检测[D]:[博士].合肥:中国科学技术大学.
    刘磊,岳文浩.1983.神经肌电图原理[M].北京:科学出版社.
    刘群,张华平,张浩.2008.计算所汉语词性标注集[EB/OL]. http://ictclas.org/
    马金山,张宇,刘挺,等.2004.利用三元模型及依存分析查找中文文本错误[J].情报学报,23(06):723-728.
    茆诗松.1999.贝叶斯统计[M].北京:中国统计出版社.
    任海兵.2003.非特定人自然的人体动作识别[D]:[博士].北京:清华大学.
    阮迪云,寿天德.1992.神经生理学[M].合肥:中国科学技术大学出版社.
    苏菲,王丹力,戴国忠.2004.基于标记的规则统计模型与未登录词识别算法.计算机工程与应用,2004(15):43-45.
    孙才,罗振声.1997.汉语文本校对字词级查错处理的研究[C].第四届计算语言学会议论文集(语言工程).北京:清华大学出版社.319-324.
    孙茂松,黄昌宁,邹嘉彦,等.1997.利用汉字二元语法关系解决汉语自动分词中的交集型歧义.计算机研究与发展,34(5)332-339.
    汤晓芙.2002.神经病学-神经系统临床电生理学(下)(肌电图学及其他)[M].北京:人民军医出版社
    田建勋,陈香,李云,杨基海.2010.一种基于加速度与表面肌电信息融合和统计语言模型的连续手语识别方法,航天医学与医学工程,23(3):196-202.
    王春立,高文,马继勇,等.2003.基于词根的中国手语识别方法[J].计算机研究与发展,40(2):150-156.
    王达,崔蕊.2009.电脑知识与技术,5(17):4507-4509
    王飞,罗志增.2004.基于AR模型和BP网络的表面EMG信号模式分类[J].华中科技大学学报(自然科学版),32(增刊):100-102.
    席旭刚,李仲宁,罗志增.2008.基于相关性分析和支持向量机的手部肌电信号动作识别[J].电子与信息学报,30(10):2315-2319
    谢洪波,黄海,王志中.2005.表面肌电信息融合与动作分类[J].数据采集与处理, 20(4):390-393
    邢永康,马小平.2008.统计语言模型综述[J].计算机科学,30(9):22-26
    杨大鹏,赵京东,姜力,刘宏.三自由度仿人型假手及其肌电控制策略.哈尔滨工程大学学报,2009,30(7):804-810.
    杨军辉.2002.中国手语和汉语双语教育初探[J].中国特殊教育.(1):33
    姚天任,孙洪.1999.现代数字信号处理[M].武汉:华中理工大学出版社.
    于勐,姚天顺.1998.一种混合的中文文本校对方法[J].中文信息学报,12(2):31-36
    詹卫东.2000.面向中文信息处理的现代汉语短语结构规则研究[M].北京:清华大学出版社
    赵光宙.1989.利用AR模型提取控制用肌电信号的特征[J].北京生物医学工程,8(3):136-142.
    赵锡安.1989.手语--聋哑人的语言[M].中国矿业大学出版社.
    赵章琰,陈香,雷培源,杨基海.2009.阵列式表面肌电信号采集仪[J].电子测量与仪器学报,23(12):88-93.
    中国残疾人联合会教育就业部,中国聋人协会.2003.中国手语(修订本)[M].北京:华夏出版社.
    张良国,高文,陈熙霖,陈益强,王春立.2006.面向中等词汇量的中国手语视觉识别系统[J].计算机研究与发展,43(3):476-482
    Abney S.1996. Partial Parsing via Finite-State Cascades[C]. In Proceedings of the ESSLLI'96 Robust Parsing Workshop.
    Ahsan MR, Ibrahimy MI, Khalifa O. EMG Signal Classification for Human Computer Interaction: A Review[J].2009. European Journal of Scientific Research,33(3):480-501
    Aoe JI, Morimoto K.1992. An Efficient Implementation of Trie Structures[J]. Software:Practice and Experience, Vol.22(9),695-721
    Basmajian JV, De Luca CJ.1985. Muscles alive, their functions revealed by electromyography, 5th ed[M]. Baltimore:Williams & Wilkins.
    Bauer B, Kraiss KF.2002. Video-Based sign recognition using self-organizing subunits[J]. Pattern Recognition,2:434-437.
    Brashear H, Henderson V, Park KH, Hamilton H, Lee S, Starner T.2006. American sign language recognition in game development for deaf children[C]. Proceedings of the 8th international ACM SIGACCESS conference on Computers and accessibility, Portland, USA,79-86.
    Chan ADC, Englehart KB.2003. Continuous classification of myoelectric signals for powered prostheses using gaussian mixture models[C]. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1-4(25):2841-2844, 3878.
    Chan H., Tsai Y., Meng L., Wu T.,2010. The Removal of Ocular Artifacts from EEG Signals Using Adaptive Filters Based on Ocular Source Components, Annals of Biomedical Engineering,38(11):3489-3499.
    Chen SF, Goodman J.1998. An Empirical Study of Smoothing Techniques for Language Modeling.TR-10-98.Harvard University.1998-08
    Chen X, Zhang X, et al.2007. Hand gesture recognition research based on surface EMG sensors and 2D-accelerometers[C]. In Proceedings of 11th IEEE International Symposium on Wearable Computers,11-14.
    Chen X, Li Q, Yang J, Lantz V, Wang K.2008. Test-Retest Repeatability of Surface Electromyography Measurement for Hand Gesture[C]. Proc. of the 2nd Int. Conf. on Bioinformatics and Biomedical Engineering (ICBBE 2008), Shanghai, China:1923-1926.
    Cho I.Y., Sunwoo J., Son Y.K., Oh M.H., Lee C.H.2007. Development of a Single 3-Axis Accelerometer Sensor Based Wearable Gesture Recognition Band. Ubiquitous Intelligence and Computing,4611:43-52.
    Church KW, Gale WA.1991. A Comparison of the Enhanced Good-Turing and Deleted Estimation Methods for Estimating Probabilities of English Bigrams[J]. Computer Speech and Language,1991,(5):19-54.
    Chu JU, Moon I, Mun MS.2006. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand[J]. IEEE Transactions on Biomedical Engineering,53(11),2232-2239.
    Costanza E, Inverso SA, Allen R.2005. Toward subtle intimate interfaces for mobile devices using an EMG controller[C]. Proceedings of the SIGCHI conference on Human factors in computing systems (CHI 2005), Portland, USA,481-489.
    Daley H, Englehart K, Hargrove L, Kuruganti U.2012. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J Electromyogr Kinesiol,22(3):478-484.
    De Luca CJ.1979. Physiology and mathematics of myoelectric signals[J]. IEEE Transaction on Biomedical Engineering,26(3):313-25.
    De Luca C. J., Gilmore L.D., Kuznetsov M., Roy S.H.,2010. Filtering the surface EMG signal Movement artifact and baseline noise contamination, Journal of Biomechanics, (43):1573-1579.
    Deutsch J. E., Borbely M., Filler J., et al.2008. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy [J]. Physical therapy, 88(10):1196-1207.
    Ding, L. Y. and Martinez, A. M.2009. Modelling and recognition of the linguistic components in American Sign Language. Image and Vision Computing 27(12):1826-1844.
    Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N.2005. Customized interactive robotic treatment for stroke:EMG-triggered therapy. IEEE Trans Neural Syst Rehabil Eng.,13(3):325-334.
    Duda RO, Hart PE, Stork DG.2000. Pattern Classification (2nd Edition)[M]. Wiley-Interscience.
    Du Y C, Lin C H, Shyu L Y, et al. Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis[J]. Expert Systems with Applications,2010,37(6):4283-4291.
    Englehart K, Hudgins B.2003. A robust, real-time control scheme for multifunction myoelectric control[J]. IEEE Transactions on Biomedical Engineering,50(7):848-854.
    Englehart, K., Hudgins, B. and Parker, P. A.2001. A wavelet-based continuous classification scheme for multifunction myoelectric control. Ieee Transactions on Biomedical Engineering 48(3):302-311.
    FastICA:MATLAB Package[online]:http://www.cis.hut.fi/projects/ica/fastica
    Fang G, Gao W, Zhao D.2004. Large vocabulary sign language recognition based on fuzzy decision treesfJ]. IEEE Transaction on Systems, Man, and Cybernetics, Part A:System and Humans,34(3):305-314.
    Fleischer C, Wege A, Kondak K, Hommel G.2006. Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl).51(5-6):314-319.
    Fougner, A., Stavdahl, O., Kyberd, P. J., et al.2012. Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control-A Review. Ieee Transactions on Neural Systems and Rehabilitation Engineering 20(5):663-677.
    Fougner A.2013. Robust, Coordinated and Proportional Myoelectric Control of Upper-Limb Prostheses [D]. Norwegian University of Science and Technology.
    Fredkin E.1960. Trie Memory[J]. Communication of the ACM. Vol.3:9 (Sep 1960). pp.490-499.
    Fistre, J, Tanaka, A.2002. Real Time EMG Gesture Recognition for Consumer Electronics Device Control[EB/OL]. Sony CSL Paris Open House, http://www.csl.sonv.fr/-atau/gesture/
    Fugl-Meyer A. R., Jaasko L., et al, "The post-stroke hemiplegic patient-1. A method for evaluation of physical performance," Scand. J. Rehabil. Med., vol.7, pp.13-31,1975.
    Gao W, Ma JY, Shan SG, Chen XL, Zeng W, Zhang HM, Yan J, Wu JQ.2000. HandTalker:A Multimodal Dialog System Using Sign Language and 3-D Virtual Human. Int. Conf. Advances in Multimodal Interfaces, Beijing, China.564-571
    Geer, D.2004. Will gesture recognition technology point the way?. Computer,37(10),20-23.
    Good IJ.1953. The Population Frequencies of Species and the Estimation of Population Parameters[J]. Biometrika,40(3and):237-264.
    Gowland C. A., "Staging motor impairment after stroke," Stroke, vol.21, (Suppl. II), pp.19-21, Sep.1990.
    Grobel K., Assan M.1997. Isolated Sign Language Recognition using Hidden Markov Models. In Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics, Florida, USA, Oct.12-15.
    Graupe D, Magnussen J, Beex A.1978. A microprocessor system for multifunctional control of upper-limb via myoelectric signal identification[J]. IEEE Trans Automat Contr.,23(8):538-544
    Gurban M, Thiran JP, Drugman T, Dutoit T.2008. Dynamic modality weighting for multi-stream HMMs in audio-visual speech recognition[C], Proc. the 10th Int. Conf. Multimodal interfaces, Chania, Greece,237-240.
    Hahne JM, Graimann B, Muller KR.2012. Spatial filtering for robust myoelectric control. IEEE Trans Biomed Eng.,59(5):1436-1443.
    Hargrove LJ, Englehart K, Hudgins B.2007. A comparison of surface and intramuscular myoelectric signal classification[J]. IEEE Transactions on Biomedical Engineering,54(5): 847-853.
    Hargrove LJ, Li GL, Englehart KB, Hudgins BS.2009. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control[J], IEEE Transactions on Biomedical Engineering,56(5):1407-1414.
    Holte M B, Moeslund T B, Fihl P.2010. View-invariant gesture recognition using 3D optical flow and harmonic motion context[J]. Computer Vision and Image Understanding,114(12): 1353-1361.
    Hu X, Nenov V.2004. Multivariate AR modeling of electromyography for the classification of upper arm movements[J]. Clinical Neurophysiology,115(6):1276-1287.
    Hu XL, Tong KY, Song R, Zheng XJ, Lui KH, Leung WW, Ng S, Au-Yeung SS.2009. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyogr Kinesiol,19(4):639-650.
    Hu XL, Tong KY, Song R, Zheng XJ, Leung WW.2009. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair,23(8):837-846.
    Huang H, Zhou P, Li G, Kuiken TA.2008. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng.,16(1):37-45.
    Huang H, Zhou P, Li G, Kuiken TA.2009. Spatial filtering improves EMG classification accuracy following targeted muscle reinnervation. Ann Biomed Eng.,37(9):1849-1857.
    Huang YH, Englehart KB, Hudgins B, Chan ADC.2005. A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses[J]. IEEE Transactions on Biomedical Engineering,52(11),1801-1811.
    Hudgins B, Parker P, Scott RN.1993. A new strategy for multifunction myoelectric control[J]. IEEE Transactions on Biomedical Engineering,40(1),82-94.
    Hyavarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation,1997; 9(7):1483
    Hyvarinen A., Karhunen J., Oja E.2001. Independent Component Analysis, New York:John Wiley & Sons,
    Jaimes, A. and Sebe, N.2005. Multimodal human computer interaction:A survey. Computer Vision in Human-Computer Interaction, Proceedings 3766:1-15.
    Jelinek F, Mercer R L.1980. Interpolated Estimation of Markov Source Parameters from Sparse Data. Pattern Recognition in Practice. E. S. Gelsema and L. N. Kanal, Eds. Amsterdam: North-Holland
    Jiang N, Vest-Nielsen JL, Muceli S, Farina D.2012. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. J Neuroeng Rehabil., 9:42.
    Junior Costa J.D., Ferreira D.D., Nadal J., Miranda de Sa A.M.F.L.,2010. Reducing electrocardiographic artifacts from electromyogram signals with Independent Component Analysis,32nd Annual International Conference of the IEEE EMBS.
    Katz SM.1987. Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer[J]. IEEE Transaction on Acoustic, Speech and Signal Processing,1987, 35(3):400-401
    Ke Z, Yip SP, LiL, Zheng XX, Tong KY.2011. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery:A rat brain ischemia model. PLoS One,6(2), el6643:1-8.
    Kela J, Korpipaa P, Mantyjarvi J, Kallio S, Savino G, Jozzo L, Marca SD.2006. Accelerometer-based gesture control for a design environmen[J]. Personal and Ubiquitous Computing,10(5): 285-299.
    Kelly D., Delannoy J.R., et al. A Framework for Continuous Multimodal Sign Language Recognition. In Proceedings Special Interest Group on Computer-Human Interaction, USA, 2009, pp.351-358.
    Kosmidou VE, Hadjileontiadis LJ, Panas SM.2006. Evaluation of Surface EMG Features for the Recognition of American Sign Language Gestures[C]. Proc. of the 28th IEEE EMBS Annual Int. Conf., New York City, USA,153-158.
    Konrad P.,2005. The ABC of EMG [M]. Version 1.0. Noraxon. Inc. USA
    Kim J, Mastnik S, Andre E.2008. EMG-based hand gesture recognition for realtime biosignal interfacing[C]. Proceedings of the 13th international conference on Intelligent user interfaces, Gran Canaria, Spain,30-39.
    Kim J, Wagner J, et al.2008. Bi-channel Sensor Fusion for Automatic Sign Language Recognition[C].8th IEEE International Conference on Automatic Face & Gesture Recognition:647-652.
    Kim J. S., Jang W., Bien Z..1996. A dynamic gesture recognition system for the Korean sign language (KSL) [J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,26(2):354-359
    Kosmidou V.E., Petrantonakis PC, Hadjileontiadis L.J.2011. Enhanced Sign Language Recognition Using Weighted Intrinsic-Mode Entropy and Signer's Level of Deafness. IEEE Trans. Syst. Man Cybern. B:Cybern.,41(6):1531-1543.
    Kosmidou VE, Hadjileontiadis LJ.2009. Sign Language Recognition Using Intrinsic-Mode Sample Entropy on sEMG and Accelerometer Data[J]. IEEE Transactions on Biomedical Engineering,56(12):2879-2890.
    Krakauer JW.2006. Motor learning:Its relevance to stroke recovery and eurorehabilitation. Curr OpinNeurol,19(1):84-90.
    Lankton R, Fitzgibbon AW.2002. Real-Time gesture recognition using deterministic boosting[C] Proceeding of British Machine Vision Conference:817-826.
    Lee YH, Tsai CY.2009. Taiwan sign language(TSL)recognition based on 3D data and neural networks[J]. Expert Systems with Applications,36:1123-1128
    Lee HK, Kim JH.1999. An HMM-based threshold model approach for gesture recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,21(10):961-973.
    Lee SW, Wilson KM, Lock BA, Kamper DG.2011. Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans Neural Syst Rehabil Eng.,19(5):558-566.
    Lenzi, T., De Rossi, S. M. M., Vitiello, N., et al.2012. Intention-Based EMG Control for Powered Exoskeletons. Ieee Transactions on Biomedical Engineering 59(8):2180-2190.
    Li G, Li Y, Yu L, Geng Y.2011. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses. Ann Biomed Eng.,39(6):1779-1787.
    Li X., Suresh A., Zhou P., Rymer W.,2012. Alterations in the Spike Amplitude Distribution of the Surface Electromyogram Post-Stroke. IEEE Trans on Biomedical Engineering.
    Liang RH, Ouhyoung M.1995. A Real-time Continuous Alphabetic Sign Language to Speech Conversion VR system[J]. Computer Graphics Forum, Vol.14, No.3, UK.66-67
    Liang RH, Ouhyoung M.1998. A real-time continuous gesture recognition system for sign languagefC]. in Proceedings of the Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan, pp.558-565
    Lindner HYN, Linacre JM, Hermansson LMN.2009. Assessment of capacity for myoelectric control:Evaluation of construct and rating scale[J]. Journal of Rehabilitation Medicine,41(6), 467-474.
    Liu C, Wechsler H.2000. Robust coding schemes for indexing and retrieval from large face databases. IEEE Trans Image Processing,9(1):132-137.
    Liu J, Zhong L, Wickramasuriya J, et al.2009. uWave:Accelerometer-based personalized gesture recognition and its applications[J]. Pervasive and Mobile Computing,5(6):657-675.
    Lu G., Brittain J.S., Holland P., Yianni J., Green A.L., Steina J.F., Aziza T.Z., Wanga S., 2009.Removing ECG noise from surface EMG signals using adaptive filtering, Neuroscience Letters,462:14-19.
    Luo, Z. Z., Wang, F. and Ma, W. J.2006. Pattern classification of surface electromyography based on AR model and high-order neural network. Proceedings of the 2006 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications:358-363.
    Lum PS, Burgar CG, Kenney DE, Vander Loos HF.1999. Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng.,46(6):652-662.
    Mantyjarvi J, Kallio S, Korpipaa P, et al.2005. Gesture interaction for small handheld devices to support multimedia applications[J]. Journal of Mobile Multimedia,1(2):92-111.
    Manabe H, Zhang Z.2004. Multi-stream HMM for EMG-based speech recognition[C]. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,26:4389-4392.
    Mak J.N.F., Hu Y., Luk K.D.K.,2010. An automated ECG-artifact removal method for trunk muscle surface EMG recordings, Medical Engineering & Physics, (32):840-848.
    MarqueC, Bisch C., Dantas R., Elayoubi S., Brosse V, Perot C.,2OO5.Adaptive filtering for ECG rejection from surface EMG recordings, Journal of Electromyography and Kinesiology, (15):310-315.
    Merletti R, Parker P.2004. Electromyography:physiology, engineering, and noninvasive application[M]. Wiley-IEEE Press.
    Mitra S, Acharya T.2007. Gesture recognition:A survey[J], IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews,37(3):311-324.
    Miller LA, Stubblefield KA, Lipschutz RD, Lock BA, Kuiken TA.2008. Improved myoelectric prosthesis control using targeted reinnervation surgery:A case series[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,16(1),46-50.
    Moeslund TB, Granum E.2001. A survey of computer vision-based human motion capture[J], Computer Vision and Image Understanding,81(3):231-268.
    Mohandes M, Quadri S I, King M D.2007. Arabic sign language recognition an image-based approach[C]//IEEE 21st International Conference on Advanced Information Networking and Applications Workshops, AINAW'07,2007,1:272-276.
    Muceli S, Farina D.2012. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng.,20(3):371-378.
    Nadas A.1984. Estimation of Probabilities in the Language Model of the IBM Speech Recognition System[J]. IEEE Transactions on Acoustics, speech, and signal processing. VOL. ASSP-32. NO.4. August.859-861
    Nandy A, Prasad JS, Mondal S, Chakraborty P, Nandi GC.2010. Recognition of Isolated Indian Sign Language Gesture in Real Time[C]. International Conference on Recent Trends in Business Administration and Information Processing, pp.102-107
    Naik GR, Kumar DK, Singh VP, Palaniswami M.2006. Hand gestures for HCI using ICA of EMG[C]. Proceedings of the HCSNet workshop on Use of vision in human-computer interaction-Volume 56, Canberra, Australia,67-72.
    Nishikawa D, Yu W, Yokoi H, Kakazu Y.1999. EMG Prosthetic Hand Controller Discriminating Ten Motions using Real-time Learning Method[C]. International Conference On Intelligent Robots and Systems, pp.1592-1597
    Ong SCW, Ranganath S.2005. Automatic Sign Languge Analysis:A Survey and the Future beyond Lexical Meaning[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 27(6):873-891.
    Oskoei MA, Hu H.2007. Myoelectric control systems-Asurvey. Biomedical Signal Processing and Control,2(4):275-294.
    Parasuraman S, Oyong A W.2010. An EMG-driven musculoskeletal model for robot assisted stroke rehabilitation system using sliding mode control[C]//Mechatronics and its Applications (ISMA),7th International Symposium on. IEEE,1-6.
    Parker P, Englehart K, Hudgins B.2006, Myoelectric signal processing for control of powered limb prostheses[J]. Journal of Electromyography and Kinesiology,16(6):541-548.
    Pavlovic, V. I., Sharma, R. and Huang, T. S.1997. Visual interpretation of hand gestures for human-computer interaction:A review. Ieee Transactions on Pattern Analysis and Machine Intelligence 19(7):677-695.
    Peter K.2005. The ABC of EMG-A practical introduction to kinesiological electromyography [EB/OL]. Noraxon INC. USA. Http://www.noraxon.com/downloads/educational.php3
    Pylvanainen T.2005. Accelerometer based gesture recognition using continuous HMMs[C]. LNCS:Pattern Recognition and Image Analysis,3522/2005:639-646.
    Rabiner LR, Juang BH.1993. Fundamentals of speech recognition[M]. Englewood Cliffs: Prentice Hall.
    Redfern M.S., Hughes R.E., Chaffin D.B.,1993. High-pass filtering to remove electrocardiographic interference from torso EMG recordings, Clin Biomech,8:44-48.
    Ren Z, Meng J, Yuan J, et al.2011. Robust hand gesture recognition with kinect sensor[C]//Proceedings of the 19th ACM international conference on Multimedia. ACM,: 759-760.
    Rojas-Martinez M, Mafnanas MA, Alonso JF.2012. High-density surface EMG maps from upper-arm and forearm muscles. J Neuroeng Rehabil,9:85.
    Roy S.H., Cheng M.S., et al.2009. A combined sEMG and accelerometer system for monitoring functional activity in stroke. IEEE Trans Neural Syst Rehabil Eng.,17(6):585-594.
    Saponas TS, Tan DS, Morris D, Balakrishnan R.2008. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces[C]. Proceedings of the 26th Annual Conference on Human Factors in Computing Systems, Florence, Italy,515-524.
    Saponas TS, Tan DS, Morris D, Balakrishnan R, Turner J, Landay JA.2009. Enabling alwaysavailable input with muscle-computer interfaces[C]. Proceedings of the 22nd annual ACM symposium on User interface software and technology, Victoria, Canada,167-176.
    Saponas TS, Tan DS, Morris D, Turner J, Landay JA.2010. Making muscle-computer interfaces more practical[C]. Proceedings of the 28th international conference on Human factors in computing systems, Atlanta, USA,851-854.
    Sagawa H, Takeuchi M.2001. The Structure and evaluation of an Information Kiosk with a sign Language Recognition system[C]. International Conference on Intelligent User Interfaces, New Mexico,USA.
    Schlomer T, Poppinga B, Henze N, et al.2008. Gesture recognition with a Wii controller[C]//Proceedings of the 2nd international conference on Tangible and embedded interaction. ACM,:11-14.
    Shanableh T, Assaleh K, Al-Rousan M.2007. Spatio-Temporal Feature-Extraction Techniques for Isolated Gesture Recognition in Arabic Sign Language[J]. IEEE Transaction on Systems, Man, and Cybernetics, Part B:Cybernetics,37(3):641-650.
    Song R, Tong K, Hu X, Li L.2008. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. IEEE Trans Neural Syst Rehabil Eng., 16(4):371-379.
    Starner T, Weaver J, Pentland A,1998. Real-time american sign language recognition using desk and wearable computer based video[J]. IEEE Transaction, on Pattern Analysis and Machine Intelligence,20:1371-1375
    Stokoe W.1960. Sign Language Structure:An Outline of the Visual Communication System of the American Deaf[J]. Studies in Linguistics, Occasional papers 8(revised 1978), University of Buffalo:Linstok Press.
    Taylor DR, Finley FR.1974. Multiple-axis prosthesis control by muscle synergies[C]. The Control of Upper Extremity Prostheses and Orthoses, Springfield,181-189.
    Theodoridis S, Koutroubas K.2003. Pattern Recognition (3rd Edition)[M]. Academic Press.
    Vogler C, Metaxas D.2001. A framework for recognizing the simultaneous aspects of American Sign Language[J], Computer Vision and Image Understanding,81(3):358-384.
    Vuskovic M, Du SJ.2002. Classification of prehensile EMG patterns with simplified fuzzy artmap networks[C]. Proceeding of the 2002 International Joint Conference on Neural Networks, Vols 1-3:2539-2544,2934.
    Waldron MB, Kim S.1995. Isolated ASL sign recognition system for deaf persons[J], IEEE Trans. Rehabilitation Eng,3:261-271
    Wang C, Gao W, Shan S.2002. An approach based on phonemes to large vocabulary Chinese sign language recognition[C]. In:Proc. of the Int'l Conf. Automatic Face and Gesture Recognition. New York:ACM Press,393-398.Wang G, Wang ZZ, Chen WT, Zhuang J.2006. Classification of surface EMG signals using optimal wavelet packet method based on davies-bouldin criterion[J]. Medical & Biological Engineering & Computing,44(10):865-872.
    Wheeler, K. R. and Jorgensen, C. C.2003. Gestures as input:Neuroelectric joysticks and keyboards [C]. Ieee Pervasive Computing 2(2):56-61.
    Willigenburg N.W., Daffertshofer A., Kingma I., Dieen van J.H.,2012. Removing ECG contamination from EMG recordings:A comparison of ICA-based and other filtering procedures, Journal of Electromyography and Kinesiology,22(3):485-493.
    Wilson AW, Losier YG, Parker PA, Lovely DF.2011. A bus-based smart myoelectric electrode/amplifier-system requirements. IEEE Trans Instrum Meas,60(10):3290-3299.
    Wu J, Zheng F.2000. On Enhancing Katz-smoothing based back-off language model[C]. International Conference on Spoken Language Processing. Oct.16-20,2000.I-198-201
    Yang J., Sakai H.,2007. A New Adaptive Filter Algorithm for System Identification using Independent Component Analysis, IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, E90-A(8):1549-1554.
    Zafrulla Z, Brashear H, Starner T, et al.2011. American sign language recognition with the kinect[C]//Proceedings of the 13th international conference on multimodal interfaces. ACM. 279-286.
    Zeng, Z. H., Pantic, M., Roisman, G. I., et al.2009. A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. Ieee Transactions on Pattern Analysis and Machine Intelligence 31 (1):39-58.
    Zhang X, Chen X, et al.2007. An adaptive feature extractor for gesture SEMG recognition[C]. Medical Biometrics, Proceedings.4901:83-90.
    Zhang X., Zhou P.,2012. Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes, Journal of Electromyography and Kinesiology,22:901-907.
    Zhang Xu, Chen Xiang, Wang Wenhui, et al.2009. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors [C]//Proceedings of the 13th International Conference on Intelligent User Interfaces. New York:Association for Computing Machinery,401-405.
    Zhang X, Zhou P.2012. High density myoelectric pattern recognition towards improved stroke rehabilitation. IEEE Trans Biomed Eng.,59(6):1649-1657.
    Zhou P, Lowery MM, Englehart KB, Huang H, Li G, Hargrove L, Dewald JP, Kuiken TA.2007. Decoding a new neural machine interface for control of artificial limbs. J Neurophysiol,98(5): 2974-2982.
    Zhou P., Barkhaus P.E., Zhang X., Rymer W.Z.,2011. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy, Journal of Neural Engineering,8(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700