用户名: 密码: 验证码:
北京地区汉族绝经后妇女MATN3基因多态性与骨质疏松表型的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:MATN3基因编码胞外基质蛋白,并可能对软骨分化过程起调控作用。本研究的目的是探讨MATN3基因多态性与绝经后妇女骨密度、骨折、椎体骨折、骨转换标志物和25(OH)VitD的关系。
     方法:在北京地区随机抽样收集1488名汉族绝经后妇女作为研究对象,通过问卷调查及胸腰椎X线片阅读分别确定骨折及椎体骨折表型。以双能X线吸收仪检测腰椎(L2-4)、股骨颈和全髋的骨密度,以罗氏自动检测仪采用电化学发光免疫测定法检测血清β-CTX、P1NP和25(OH)VitD水平。使用TaqMan基因分型技术检测MATN3基因4个标签SNP的多态性。采用logistic回归等统计学方法分析SNP位点基因型和单体型与各骨质疏松表型的关系,以相关分析等方法分析骨转换标志物和25(OH)VitD与年龄、骨密度、骨折和椎体骨折的关系。
     结果:
     1. MATN3基因rs11096633位点和rs6734005位点的多态性与全髋骨密度显著相关(P值分别为0.000-0.032和0.005-0.026),并且这种显著性经过对多重检验的校正后仍然存在。其中rs6734005位点的少见等位基因A对髋部骨密度起保护作用。rs10178256位点与全髋骨密度的相关性也具有提示意义(p=0.009-0.037)。单体型6AC与全髋骨密度显著相关(p=0.005-0.023),对髋部骨密度起保护作用,其显著性经过对多重检验校正后仍有统计学意义。
     2. MATN3基因多态性与β-CTX、P1NP和25(OH)VitD水平无关。
     3.绝经后妇女β-CTX和P1NP水平随年龄增长呈现先下降后上升的趋势,并与腰椎、股骨颈和全髋的骨密度呈显著负相关。北京地区绝经后妇女的血清25(OH)VitD水平明显偏低(13.10±5.37ng/ml),25(OH)VitD水平随着年龄的增长而逐渐下降。本研究未发现β-CTX、P1NP和25(OH)VitD与骨折、椎体骨折存在相关性。
     结论:本研究首次揭示MATN3基因多态性可能影响绝经后妇女全髋骨密度的变异,而与骨转换标志物和维生素D水平没有相关性。
Objective:MATN3encodes extracellular matrix proteins, and might modulate chondrocyte differentiation. The aim of this study is to explore if MATN3polymorphisms influence bone mineral density (BMD), fracture, vertebral fracture, bone turnover and25(OH)VitD in postmenopausal women.
     Methods:1488postmenopausal women of Han nationality were randomly selected in Beijing. Fracture and vertebral fracture phenotypes were accertained by questionnaire and vertebral X-ray reading. BMD of lumber spine (L2-4), femoral neck (FN) and total hip were measured by dual energy X-ray absorptiometry (DXA). An automated Roche electrochemiluminescence system was used to test serum bone turnover and25(OH)VitD. Four tagging single nucleotide polymorphisms (tagSNPs) in MATN3were determined by TaqMan Pre-Designed SNP Genotyping Assays in Real-Time PCR System. We used multiple statistic methods to test the associations between SNP genotypes, haplotypes and osteoporosis phenotypes. We also analyzed correlations among bone turnover,25(OH)VitD, age, BMD, fracture and vertebral fracture.
     Results:
     1. Polymorphisms of rs1109663and rs6734005were significantly associated with total hip BMD (p=0.000-0.032and0.005-0.026, respectively), and the significance persisted even after correction to-multiple testing. The minor allele of rs6734005had protective effects for total hip BMD. The association of rs10178256and total hip BMD was also suggestive (p=0.009-0.037).Consistent with these results, haplotype GAC was significantly associated with total hip BMD (p=0.005-0.023), and p value remained significant after correction to multiple testing. GAC also exerted protective influence against hip osteoporosis.
     2. MATN3polymorphisms were not associated with β-CTX, P1NP or25(OH)VitD.3. The serum concentration of β-CTX and P1NP declined with aging and then rose up in postmenopausal women, and they were negatively correlated with BMD of lumber spine, FN and total hip. Serum25(OH)VitD level of postmenopausal women in Beijing was remarkably low (13.10±5.37ng/ml), and decreased with aging. We did not find correlation between bone turnover,25(OH)VitD and fracture or vertebral fracture.
     Conclusion:This study suggested for the first time that MATN3polymorphisms might influence total hip BMD variation in postmenopausal women, and it was not related to bone turnover or25(OH)VitD.
引文
[1]Consensus development conference. Prophylaxis and treatment of osteoporosis. Osteoporos Int 1991;1:114-117.
    [2]章振林.骨质疏松流行病学现状.中华医学杂志2009;89:2953-2955.
    [3]Handa R, Kalla AA. Maalouf G. Osteoporosis in developing countries. Best Pract Res Clin Rheumatol 2008;22(4):693-708.
    [4]Liao EY, Wu XP. Deng XG, et al. Age-related bone mineral density, accumulated bone loss rate and preyalenee of osteoporosis at multiple skeletal sites in Chinese women. Osteoporos Int 2002; 13:669-676.
    [5]Cole ZA, Dennison EM, Cooper C. Osteoporosis epidemiology update. Curr Rheumatol Rep 2008; 10: 92-96.
    [6]Holroyd C. Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab 2008;22(5):671-685.
    [7]Cooper C. Atkinson EJ, Jacobsen SJ, et al. Population-based study of survival after osteoporotic fractures. Am J Epidemiol 1993;137:1001-1005.
    [8]Harvey N. Dennison E, Cooper C. Osteoporosis:impact on health and economics. Nat Rev Rheumatol 2010;6(2):99-105.
    [9]Johnell O. The socioeconomic burden of fractures:today and in the 21st century. Am J Med 1997;103(Suppl.2A):S25-S26.
    [10]Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States,2005-2025. J Bone Miner Res 2007;22:465-475.
    [11]Cooper C, Campion G, Melton LJ. Hip fractures in the elderly:a world-wide projection. Osteoporos Int 1992;2(6):285-289.
    [12]Arden NK, Baker J, Hogg C, et al. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length:a study of postmenopausal twins. J Bone Miner Res 1996;11:530-534.
    [13]Kannus P, Palvanen M, Kaprio J, et al. Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Fannish twins. BMJ 1999;319:1334-1337.
    [14]Harris M, NgugenTV, Howard GM, et al. Genetic and environmental correlations between bone formation and bone mineral density:atwin study. Bone 1998;22:141-145.
    [15]Pocock NA, Eisman JA, Hopper JL, et al. Genetic determinants of bone mass in adults. A twin study. J Clin Invest 1987;80:706-710.
    [16]Slemenda CW, Christian JC, Williams CJ, et al. Genetic determinants of bone mass in adult women:a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 1991;6:561-567.
    [17]Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res 1993;8:1-9.
    [18]Gueguen R. Jouanny P, Guillemin F, et al. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 1995;10:2017-2022.
    [19]Duncan EL, Cardon LR, Sinsheimer JS, et al. Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 2003; 18:1531-1538.
    [20]Huang QY, Kung AWC. Genetics of osteoporosis. Mol Genet Metab 2006;88:295-306.
    [21]Li WF, Hou SX, Yu B, et al. Genetics of osteoporosis:accelerating pace in gene identification and validation. Hum Genet 2010; 127:249-285.
    [22]Kiel DP, Demissie S, Dupuis J, et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 2007;8:S14.
    [23]Styrkarsdottir U. Halldorsson BV. Gretarsdottir S, et al. New sequence variants associated with bone mineral density. Nat Genet 2009;41:15-17.
    [24]Timpson NJ, Tobias JH, Richards JB, et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum Mol Genet 2009;18:1510-1517.
    [25]Liu YZ, Pei YF, Liu JF, et al. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009;4:e6827.
    [26]Rivadeneira F, Styrkarsdottir U, Estrada K, et al. Twenty bone-mineral-density loci identiWed by large-scale meta-analysis of genome-wide association studies. Nat Genet 2009;41:1199-1206.
    [27]Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-534.
    [28]Xiong DH, Liu XG, Guo YF, et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 2009;84:388-398.
    [29]Styrkdrsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med 2008;358:2355-2365.
    [30]Jiang R, Duan J, Windermuth A, et al. Genome-wide evaluation of the public SNP database. Pharmacogenomics 2003;4(6):779-789.
    [31]Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet 2001;29(2):229-232.
    [32]李梅,聂敏.骨质疏松症的遗传学研究进展及对相关问题的思考.基础医学与临床2007;27(10):1101-1108.
    [33]Morton NE. LODs past and present. Genetics 1995;140(1):7-12.
    [34]Risch N. The effects of reduced fertility, method of ascertainment, and a second unlinked locus on affected sib-pair marker allele sharing. Am J Med Genet 1983; 16(2):243-259.
    [35]Brown DL, Gorin MB, Weeks DE. Efficient strategies for genomic searching using the affected-pedigree-member method of linkage analysis. Am J Hum Genet 1994;54(3):544-552.
    [36]Joel NH, Mark JD. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108.
    [37]Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273(5281):1516-1517.
    [38]Styrkarsdottir U, Cazier JB, Kong A, et al. Linkage of osteoporosis to chromosome 20p 12 and association to BMP2. PLoS Biol 2003;1:E69.
    [39]Recker RR, Deng HW. Role of genetics in osteoporosis. Endocrine 2002,17(1):55-56.
    [40]Hastbacka J, de la Chapelle A, Kaitila I, et al. Linkage disequilibrium mapping in isolated founder populations:diastrophic dysplasia in Finland. Nat Genet 1992;2(3):204-211.
    [41]Morton NE. Collins A. Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci U S A.1999;95:11389-11393.
    [42]Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 1998;8(12):1273-1288.
    [43]Deng HW, Chen WM, Recker RR. Population admixture:detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits. Genetics 2001; 157:885-897.
    [44]Deng H W, Li Y. Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 2001;159:1319-1323.
    [45]李彩霞,黎培兴,方积乾.基于单体型重构的传递不平衡检验.中山大学学报2007;46(4):1-8.
    [46]Allison DB. Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 1997;60(3): 676-690.
    [47]张彦琦,李辉智,易东.基因芯片表达数据分析方法研究进展.重庆医学2005;34(12):1889-1892.
    [48]Fagerlund KM, Halleen JM.骨转换标志物的临床应用.中华骨质疏松和骨矿盐疾病杂志2009;2(2):73-78.
    [49]周学瀛,夏维波.骨转换生化标志物.基础医学与临床2007;27(10):1093-1100.
    [50]Singer FR, Eyre DR. Using biochemical markers of bone turnover in clinical practice. Cleve Clin J Med 2008;75(10):739-750.
    [51]Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc 2008;67(2): 157-162.
    [52]刘红,廖二元,伍贤平等.中老年妇女骨转换生化指标和骨密度的变化.中华内分泌代谢杂志2009;25(2):
    [53]皮银珍,廖二元,伍贤平等.女性骨转换指标与年龄和腰椎骨密度的关系.中华内分泌代谢杂志2005;21(5):441-445.
    [54]Nakamura K, Saito T, Oyama M, et al. Vitamin D sufficiency is associated with low incidence of limb and vertebral fractures in community-dwelling elderly Japanese women:the Muramatsu Study. Osteoporos Int 2010;10.1007/s00198-010-1213-6:
    [55]Ardawi MS, Qari MH, Rouzi AA, et al. Vitamin D status in relation to obesity, bone mineral density, bone turnover markers and vitamin D receptor genotypes in healthy Saudi pre- and postmenopausal women. Osteoporos Int 2010;10.1007/s00198-010-1249-7:
    [56]夏维波,苏华,周学瀛.维生素D缺乏与骨质疏松.中华骨质疏松和骨矿盐疾病杂志2009;2(3):145-154.
    [57]Deak F, Wagener R, Kiss I, et al. The matrilins:a novel family of oligomeric extracellular matrix proteins. Matrix Biol 1999;18:55-64.
    [58]Malin D, Sonnenberg-Riethmacher E, Guseva D, et al. The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. J Cell Sci 2009;122(Pt7):995-1004.
    [59]Belluoccio D, Schenker T, Baici A, et al. Characterization of human matrilin-3. Genomics 1998;53: 391-394.
    [60]Unger S. Bonafe L, Superti-Furga A. Multiple epiphyseal dysplasia:clinical and radiographic features, differential diagnosis and molecular basis. Best Pract Res Clin Rheumatol 2008;22(1):19-32.
    [61]Chapman KL, Mortier GR, Chapman K, et al. Mutations in the region encoding the vonWillebrand factor Adomain of matrilin-3 are associated with multiple epiphyseal dysplasia. Nat Genet 2001;28: 393-396.
    [62]Borochowitz ZU, Scheffer D, Adir V, et al. Spondylo-epi-metaphyseal dyspiasia (SEMD) matrilin 3 type:homozygote matrilin 3 mutation in a novel form of SEMD. J Med Genet 2004;41:366-372.
    [63]Otten C, Hansen U, Talke A, et al. A Matrilin-3 Mutation Associated With Osteoarthritis does not affect collagen affinity but promotes the formation of wider cartilage collagen fibrils. Hum Mutat 2010;31(3):254-263.
    [64]Stefansson SE, Jonsson H, Ingvarsson T, et al. Genomewide scan for hand osteoarthritis:a novel mutation in matrilin-3. Am J Hum Genet 2003;72:1448-1459.
    [65]Cotterill SL, Jackson GC, Leighton MP, et al. Multiple epiphyseal dysplasia mutations in MATN3 cause misfolding of the A-domain and prevent secretion of mutant matrilin-3. Hum Mutat 2005;26: 557-565.
    [66]Fresquet M, Jackson GC, Loughlin J, et al. Novel mutations in exon 2 of MATN3 affect residues within the alpha-helices of the A-domain and can result in the intracellular retention of mutant matrilin-3. Hum Mutat 2008;29:330.
    [67]Leighton MP, Nundlall S, Starborg T, et al. Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation. Hum Mol Genet 2007;16(14):1728-1741.
    [68]Otten C, Wagener R, Paulsson M, et al. Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J Med Genet 2005;42:774-779.
    [69]Pullig O, Tagariello A, Schweizer A, et al. MATN3 (matrilin-3) sequence variation (pT303M) is a risk factor for osteoarthritis of the CMC1 joint of the hand, but not for knee osteoarthritis. Ann Rheum Dis 2007;66:279-280.
    [70]Min JL, Meulenbelt I, Riyazi N, et al. Association of matrilin-3 polymorphisms with spinal disc degeneration and with osteoarthritis of the CMC1 joint of the hand. Ann Rheum Dis 2006;65:1060-1066.
    [71]van der Weyden L, Wei L, Luo J, et al. Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Pathol 2006; 169:515-527.
    [72]Ko Y, Kobbe B, Nicolae C, et al. Matrilin-3 is dispensable for mouse skeletal growth and development. Mol Cell Biol 2004;24(4):1691-1699.
    [73]Nicolae C, Ko YP, Miosge N, et al. Abnormal collagen fibrils in cartilage of matrilin-l/matrilin-3-deficient mice. J Biol Chem 2007;82(30):22163-22175.
    [74]Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107(4):513-523.
    [75]Little RD, Carulli JP, Del Mastro RJ, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:11-19.
    [76]Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513-1521.
    [77]Mizuguchi T, Furuta I, Watanabe Y, et al. LRP5, low-density-lipoprotein-receptorrelated protein 5, is a determinant for bone mineral density. J Hum Genet 2004;49(2):80-86.
    [78]Ferrari SL, Deutsch S, Choudhury U, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 2004;74:866-875.
    [79]Koller DL, Ichikawa S, Johnson ML, et al. Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res 2005;20:75-80.
    [80]Zhang ZL, Qin YJ, He JW, et al. Association of polymorphisms in low-density lipoprotein receptorrelated protein 5 gene with bone mineral density in postmenopausal Chinese women. Acta Pharmacol. Sin 2005;26:1111-1116.
    [81]Bollerslev J, Wilson SG, Dick IM, et al. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005;599-606.
    [82]Meurs JB, Rivadeneira F, Jhamai M,. et al. Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J Bone Miner Rcs 2006;21:141-150.
    [83]Balemans W, Patel N. Ebeling M, et al. IdentiWcation of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 2002;39:91-97.
    [84]Brunkow M. Gardner J, Ness JV, et al. Bone dysplasia sclerosteosis results from loss of the sost gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001;68:577-589.
    [85]Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deWciency of a novel secreted protein (SOST). Hum Mol Genet 2001; 10:537-543.
    [86]Uitterlinden AG, Arp PP, Paeper BW, et al. Polymorphisms in the Sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am J Hum Genet 2004;75:1032-1045.
    [87]Huang QY, Li GH, Cheung WM, et al. Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J Hum Genet 2008;53(7):644-655.
    [88]张智海,沈建雄,刘忠厚.DXA骨密度仪在国内标一化回顾性研究.中国骨质疏松杂志2005;11(2):133-145.
    [89]Genant HK, Wu CY, van Kuijk C, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993;8(9):1137-1148.
    [90]Liu YZ, Pei YF, Liu JF, et al. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009;4(8):e6827: doi:10.1371/journal.pone.0006827.
    [91]Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal.2009;21(8): 1245-1254.
    [92]Canalis E. Growth factor control of bone mass. J Cell Biochem 2009; 108(4):769-777.
    [93]Rendina D, Gianfrancesco F, Filippo GD, et al. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur J Endocrinol.2010;0: EJE-10-0043vl-EJE-10-0043.
    [94]RoshandelD, Holliday K, Pye SR, et al. Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res 2010;DOI 10.1002/jbmr.78.
    [95]Martinez J, Olmos JM, Herndndez JL, et al. Bone turnover markers in Spanish postmenopausal women:the Camargo cohort study. Clin Chim Acta 2009;409(1-2):70-74.
    [96]Garnero P, Borel O, Delmas PD. Evaluation of a fully automated serum assay for C-terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin Chem 2001;47:694-702.
    [97]Trento LK, Pietriopolli A, Ticconi C, et al. Role of type I collagen C telopeptide, bone specific alkaline phosphatase and osteocalcin in the assessment of bone status in postmenopausal women, J Obstet Gynecol Res 2009;35:152-159.
    [98]Hunter D, Major P, Arden N, et al. A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. J Bone Miner Res 2000; 15:2276-2283.
    [99]Dawson-Hughes B, Harris SS. Krall EA, et al. Rates of bone loss in postmenopausal women randomly assigned to one of two dosage of vitamin D. Am J Clin Nutr 1995;61:1140-1145.
    [100]Ooms ME. Roos JC, Bezemer PD, et al. Prevention of bone loss by vitamin D supplementation in elderly women:a randomized double-blind trial. J Clin Endocrinol Metab 1995;80:1052-1058.
    [101]Garnero P, Munoz F, Sornay-Rendu E, et al. Associations of vitamin D status with bone mineral density, bone turnover, bone loss and fracture risk in healthy postmenopausal women. The OFELY study. Bone 2007;40:716-722.
    [102]Kuchuk NO, van Schoor NM, Pluijm SM, et al. Vitamin D status, parathyroid function, bone turnover, and BMD in postmenopausal.women with osteoporosis:global perspective, J Bone Miner Res 2009;24(4):693-701.
    [103]Bischoff-Fcrrari HA, Dietrich T, Orav EJ, et al. Positive association between 25-hydroxy vitaminD levels and bone mineral density:A population-based study of younger and older adults. Am J Med 2004;116:634-639.
    [104]Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 2006;81:353-373.
    [105]Ooms ME, Lips P, Roos JC, et al. Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res 1995; 10: 1177-1184.
    [1]Ferenc De'ak, Wagener R, Kiss I, et al. The matrilins:a novel family of oligomeric extracellular matrix proteins. Matrix Biol 1999; 18:55-64.
    [2]Paulsson M, Heinegard D. Radioimmunoassay of the 148-kilodalton cartilage protein. Biochem J 1982;207:207-213.
    [3]Wagener R, Kobbe B. Paulsson M. Primary structure of matrilin-3, a new member of a family of extracellular matrix proteins related to cartilage matrix protein (matrilin-1) and von Willebrand factor. FEBS Lett 1997;413:129-134.
    [4]Deak F, Piecha D, Bachrati C, et al. Primary structure and expression of matrilin-2, the closest relative of cartilage matrix protein within the von Willebrand factor type A module superfamily. J Biol Chem 1997;272:9268-9274.
    [5]Wagener R, Kobbe B, Paulsson M. Matrilin-4, a new member of the matrilin family of extracellular matrix proteins FEBS Lett 1998;438:165-170.
    [6]Jenkins RN, Osborne-Lawrence SL, Sinclair AK, et al. Structure and chromosomal location of the human gene encoding cartilage matrix protein. J Biol Chem 1990;265:19624-19631.
    [7]Muratogllu S, Bachrati C, Malpeli M, et al. Expression of the cartilage matrix protein gene at different chondrocyte developmental stages. Eur J Cell Biol 1995;68:411-418.
    [8]Segat D, Paulsson M, Smyth N. Matrilins:structure, expression and function. Osteoarthritis Cartilage 2001;9(SA):S29-S35.
    [9]Okimura A, Okada Y, Makihira S, et al. Enhancement of cartilage matrix protein synthesis in arthritic cartilage. Arthritis Rheum 1997;40:1029-1036.
    [10]Malin D, Sonnenberg-Riethmacher E, Guseva D, et al. The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. J Cell Sci 2009;122(Pt7):995-1004.
    [11]Belluoccio D, Schenker T, Baici A, et al. Characterization of human matrilin-3. Genomics 1998;53: 391-394.
    [12]Zhang Y, Chen Q. Changes of matrilin forms during endochondral ossification. J Biol Chem 2000;275(20):32628-32634.
    [13]Klatt AR, Nitsche DP, Kobbe B, et al. Molecular structure and tissue distribution of matrilin-3, a fiiamentforming extracellular matrix protein expressed during skeletal development. J Biol Chem 2000;275(6):3999-4006.
    [14]Segat D, Frie C, Nitsche PD, et al. Expression of matrilin-1,-2 and -3 in developing mouse limbs and heart. Matrix Biol 2000;19:649-655.
    [15]Budde B, Blumbach K, Ylostalo J, et al. Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen Ⅸ. Mol Cell Biol 2005;25(23):10465-10478.
    [16]Otten C, Hansen U, Talke A, et al. A Matrilin-3 Mutation Associated With Osteoarthritis does not affect collagen affinity but promotes the formation of wider cartilage collagen fibrils. Hum Mutat 2010;31(3):254-263.
    [17]Wiberg C, Klatt AR, Wagener R, et al. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen Ⅱ and aggrecan. J Biol Chem 2003;278:37698-37704.
    [18]Ehlen HW, Sengle G, Klatt AR, et al. Proteolytic processing causes extensive heterogeneity of tissue matrilin forms. J Biol Chem 2009;284:21545-21556.
    [19]Hills R, Mazzarella R, Fok K, et al. Identification of an AD AMTS-4 cleavage motif using phage display leads to the development of fluorogenic peptide substrates and reveals matrilin-3 as a novel substrate. J Biol Chem 2007;282:11101-11109.
    [20]Ko Y, Kobbe B, Nicolae C, et al. Matrilin-3 is dispensable for mouse skeletal growth and development. Mol Cell Biol 2004;24(4):1691-1699.
    [21]Nicolae C, Ko YP, Miosge N, et al. Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J Biol Chem 2007;282(30):22163-22175.
    [22]Hagg R, Bruckner P, Hedbom E. Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J Cell Biol 1998; 142:285-294.
    [23]Ruhland C, Schonherr E, Robenek H, et al. The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis. FEBS J 2007;274(16): 4246-4255.
    [24]van der Weyden L, Wei L, Luo J, et al. Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Pathol 2006; 169:515-527.
    [25]Kronenberg HM. Developmental regulation of the growth plate. Nature 2003;423(6937):332-336.
    [26]Gerber HP. Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodelling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5(6):623-628.
    [27]Apte SS, Olsen BR. Characterization of the mouse type X collagen gene. Matrix 1993; 13(2): 165-179.
    [28]Beamer WG. Donahue LR, Rosen CJ, et al. Genetic variability in adult bone density among inbred strains of mice. Bone 1996;18:397-403.
    [29]Vortkamp A, Lee K. Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996;273:613-622.
    [30]Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996;273:663-666.
    [31]Spector TD, Cicuttini F, Baker J, et al. Genetic influences on osteoarthritis in women:a twin study. BMJ1996;312:940-943.
    [32]Bijkerk C, Houwing-Duistermaat JJ, Valkenburg HA, et al. Heritabilities of radiologic osteoarthritis in peripheral joints and of disc degeneration of the spine. Arthritis Rheum 1999;42: 1729-1735.
    [33]Stefansson SE, Jonsson H, Ingvarsson T, et al. Genomewide scan for hand osteoarthritis:a novel mutation in matrilin-3. Am J Hum Genet 2003;72:1448-1459.
    [34]Min JL, Meulenbelt I, Riyazi N, et al. Association of matrilin-3 polymorphisms with spinal disc degeneration and with osteoarthritis of the CMC1 joint of the hand. Ann Rheum Dis 2006;65:1060-1066.
    [35]Pullig O, Tagarieiio A, Schweizer A, et al. MATN3 (matriiin-3) sequence variation (pi 303M) is a risk factor for osteoarthritis of the CMC1 joint of the hand, but not for knee osteoarthritis. Ann Rheum Dis 2007;66:279-280.
    [36]Pullig O, Wcscloh G, Klatt AR, ct al. Matrilin-3 in human articular cartilage:increased expression in osteoarthritis. Osteoarthritis Cartilage 2002;10(4):253-263.
    [37]Vincourt JB, Vignaud JM, Lionneton F, et al. Increased expression of matrilin-3 not only in osteoarthritic articular cartilage but also in cartilage-forming tumors,-and down-regulation of SOX9 via epidermal growth factor domain 1-dependent signaling. Arthritis Rheum 2008;58(9):2798-2808.
    [38]Klatt AR, Klinger G, Paul-Klausch B, et al. Matrilin-3 activates the expression of osteoarthritis-associated genes in primary human chondrocytes. FEBS Lett 2009;583(22):3611-3617.
    [39]Unger S, Bonafe L, Superti-Furga A. Multiple epiphyseal dysplasia:clinical and radiographic features, differential diagnosis and molecular basis. Best Pract Res Clin Rheumatol 2008;22(1):19-32.
    [40]Ballhausen D, Bonafe L, Terhal P, et al. Recessive multiple epiphyseal dysplasia (rMED): phenotype delineation in eighteen homozygotes for DTDST mutation R279W. J Med Genet 2003;40(1): 65-71.
    [41]Makitie O. Mortier GR, Czarny-Ratajczak M, et al. Clinical and.radiographic findings in multiple epiphyseal dysplasia caused by MATN3 mutations:description of 12 patients. Am J Med Genet 2004;41: 366-372.
    [42]Mabuchi A. Haga N. Maeda K, et al. Novel and recurrent mutations clustered in the von Willebrand factor A domain of MATN3 in multiple epiphyseal dysplasia. Hum Genet 2004;24:439-440.
    [43]Borochowitz ZU, Scheffer D, Adir V, et al. Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type:homozygote matrilin 3 mutation in a novel form of SEMD. J Med Genet 2004;41:366-372.
    [44]Maeda K, Nakashima E, Horikoshi T, et al. Mutation in the von Willebrand factor-A domain is not a prerequisite for the MATN3 mutation in multiple epiphyseal dysplasia. Am J Med Genet 2005; 136A: 285-286.
    [45]Chapman KL, Mortier GR, Chapman K, et al. Mutations in the region encoding the von Willebrand factor Adomain of matrilin-3 are associated with multiple epiphyseal dysplasia. Nat Genet 2001;28: 393-396.
    [46]Mostert AK, Dijkstra PF, Jansen BR, et al. Familial multiple epiphyseal dysplasia due to a matrilin-3 mutation:further delineation of the phenotype including 40 years follow-up. Am J Med Genet 2003;120A:490-497.
    [47]Jackson GC, Barker FS, Jakkula E, et al. Missense mutations in the beta strands of the single A-domain of matrilin-3 result in multiple epiphyseal dysplasia. J Med Genet 2004;41:52-59.
    [48]Cotterill SL, Jackson GC, Leighton MP, et al. Multiple epiphyseal dysplasia mutations in MATN3 cause misfolding of the A-domain and prevent secretion of mutant matrilin-3. Hum Mutat 2005;26: 557-565.
    [49]Fresquet M, Jackson GC, Loughlin J, et al. Novel mutations in exon 2 of MATN3 affect residues within the alpha-helices of the A-domain and can result in the intracellular retention of mutant matrilin-3. Hum Mutat 2008;29:330.
    [50]Otten C, Wagener R, Paulsson M, et al. Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J Med Genet 2005;42:774-779.
    [51]Leighton MP, Nundlall S, Starborg T, et al. Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation. Hum Mol Genet 2007; 16(14):1728-1741.
    [52]Fresquet M, Jowitt TA, Ylostalo J, et al. Structural and functional characterization of recombinant matrilin-3 A-domain and implications for human genetic bone diseases. J Biol Chem 2007;282: 34634-34643.
    [53]Hashimoto Y, Tomiyama T, Yamano Y, et al. Mutation (D472Y) in the type 3 repeat domain ot cartilage oligomeric matrix, protein affects its early vesicle trafficking in endoplasmic reticulam and induces apoptosis. Am J Pathol 2003;163:101-110.
    [54]Schmitz M, Niehoff A, Miosgc N, et al. Transgenic mice expressing D469DeIta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and sternal malformations. Matrix Biol 2008;27:67-85.
    [55]Dinser R, Zaucke F, Kreppel F, et al. Pseudoachondroplasia is caused through both intra-and extracellular pathogenic pathways. J Clin Invest 2002; 110:505-513.
    [56]Schmitz M, Becker A, Schimitz A, et al. Disruption of extracellular matrix structure may cause pseudoachondroplasia phenotypes in the absence of impaired cartilage oligomeric matrix protein secretion. J Biol Chem 2006;281:32587-32595.
    [57]Thur J, Rosenberg K, Nitsche DP, et al. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen Ⅰ, Ⅱ, and IX. J Biol Chem 2001;276:6083-6092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700