用户名: 密码: 验证码:
刺槐内共生细菌的重金属抗性机制及其与植物的联合修复作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌-豆科植物共生体系在重金属污染土壤的生物修复中具有很大的应用前景,而揭示根瘤菌的重金属抗性机制及其在金属胁迫下和植物的共生关系是运用根瘤菌-豆科植物联合修复系统的基础和前提。本文通过全基因组测序分析、转座子突变等技术,对分离自甘肃铅锌矿区刺槐(Robinia pseudoacacia)根瘤中的两株重金属抗性细菌Agrobacterium tumefaciens CCNWGS0286及Mesorhizobium amorphae CCNWGS0123的Cu/Zn抗性机制、以及对Cu/Zn污染土壤的联合修复作用进行了研究。
     经测定,Cu~(2+)对菌株CCNWGS0286和CCNWGS0123的最小抑制浓度(MIC)分别为2.8mM、2.5mM,而Zn~(2+)对菌株的MIC分别为3.0mM、2.0mM。菌体对Zn~(2+)的最适吸附条件及生物吸附特征的研究表明,在应用菌株CCNWGS0286和CCNWGS0123的活体细胞作为生物吸附剂时,对Zn~(2+)生物吸附的最适条件为pH:5.0,生物吸附剂剂量:1.0g/L,初始金属浓度:100mg/L。多种动力学模型拟合结果表明,二级动力学模型能更加准确的描述菌株对Zn~(2+)的吸附过程。Langmuir和Freundlich模型对菌体CCNWGS0286和CCNWGS0123吸附拟合效果不尽相同,但两菌株作为生物吸附剂对Zn~(2+)的吸附均属于化学吸附。此外,两株菌体吸附剂均在pH为1.0时解析效率最高,达70%以上。结合傅里叶红外光谱、扫描电镜及能谱分析等方法,最终确定了-COOH、C=O、-NH和-C6H5等官能团主要参与了菌体吸附剂对Zn~(2+)的吸附过程,而菌体可通过细胞形态变化和胞外分泌物的产生等途径增强菌体对Zn~(2+)的抗性。
     A. tumefaciens CCNWGS0286(176)具有良好的重金属抗性及促植物生长能力。基于全基因组序列分析,发现并预测了A. tumefaciens176基因组中与锌抗性相关的基因及操纵子。通过转座子突变技术,建立了库容为7600的突变体文库,并从中筛选出9个锌敏感突变体。敏感性实验证明,多数突变体对Zn~(2+)和Cd~(2+)专一敏感、且敏感程度较高,此外,其中一株锌敏感突变体15-6IAA分泌能力显著下降。结合全基因组序列分析、转座子突变获得的插入基因以及锌抗性相关基因RT-PCR结果,最终确定在A.tumefaciens176中,P1b-type APTase ZntA-4200及MerR family转录调节因子ZntR1在维持细菌Zn和Cd抗性/稳态中起主要作用。此外,脂转运蛋白基因的缺失对菌体Zn~(2+)、Cd~(2+)抗性及IAA合成均有不同程度的影响,但其作用机制还不明确,可能与细菌的某些代谢活动相关。植物实验表明,A. tumefaciens176在Zn~(2+)胁迫条件下仍能促进刺槐生长。通过菌株促植物生长因子测定及KEGG代谢途径分析,证明菌株能过量分泌吲哚乙酸(IAA),且IAA分泌量受Zn~(2+)影响较小,因此推断能过量分泌IAA是A. tumefaciens176在Zn~(2+)胁迫下促进植物生长最主要的原因。通过比较Zn~(2+)胁迫条件下,野生菌176(ZnR,IAA+)、突变体12-2(ZnS,IAA+)、突变体15-6(ZnS, IAA-)以及参比菌株C58(ZnR,IAA-)对刺槐生长的促进作用,最终证明细菌金属抗性基因不能对抗或缓解金属对植物的毒害,植物生长激素才是污染条件下辅助植物存活、生长的主要因素。
     本研究全面分析了M. amorphae CCNWGS0123(186)全基因组序列特征,以及潜在的铜抗性相关基因及操纵子。同时结合转座子突变技术,构建了库容为10,000余株的突变体库,并筛选获得8个铜敏感性突变株。所有突变体Tn5插入基因主要分为三种类型:P-type ATPase、未知功能蛋白、及其他(GTP结合蛋白、核蛋白)。转座子突变基因及RT-PCR结果表明,CopA-6910和CusB共同决定M. amorphae186对铜的抗性。其中,CopA-6910主要负责将细胞质中的一价Cu排出到周质空间,而CusAB主要负责将周质空间内的一价Cu排出到细胞外,从而降低周质空间一价Cu的毒害。促植物生长因素测定结果表明,共生固氮能力是M. amorphae186在铜胁迫环境下辅助刺槐生长的主要因素。野生型菌株186及其铜敏感突变体3-42(copA::Tn5)和34-28(ccmX::Tn5)均可与宿主植物共生结瘤,但突变体34-28由于CcmX的缺失,其有效根瘤数量、固氮能力、促植物生长能力、及接种植物中Cu富集量均受到不同程度的影响。这说明CcmX的缺失,不仅影响菌株的铜抗性水平,同时还影响了菌株与宿主刺槐的共生结瘤过程,推测该基因可能与铜离子参与cbb3细胞色素c氧化酶系统中的催化过程有关。铜胁迫条件下植物实验表明,接种有186的刺槐,其全N含量、生物量以及Cu富集量比未接种的植物均有显著增加,且刺槐根中富集的Cu远远高于茎叶Cu富集量,进一步说明了将根瘤菌-刺槐共生体系用于修复矿区重金属污染环境的潜能。
Due to the ability of nitrogen fixation by rhizobia, rhizobia-legumes symbiosis plays animportant and potential role in aiding phytoremediation of some metal contaminated soils. Toobtain the maximum benefits from legumes assisted by rhizobia for phytoremediation ofmetals, it is critical to have a good understanding of the metal resistant machenism of rhizobiaand the symbiotic plant-rhizobia relationship with metals. In this study, analysis of thegenome sequence and of transcription via RT-PCR combined with transposon genedisruptions revealed the copper or zinc resistance of Agrobacterium tumefaciensCCNWGS0286and Mesorhizobium amorphae CCNWGS0123isolated from the nodules ofRobinia pseudoacacia growing in zinc-lead mine tailing. The phytoremediation assisted bythe two strains was also estimated in this study.
     The MICs of CCNWGS0286and CCNWGS0123to copper were2.8mM and2.5mM,while to zinc were3.0mM and2.0mM, respectively. Biosorptions of zinc by livingbiomasses of CCNWGS0286and CCNWGS0123were investigated under optimal conditionsat pH5.0, initial metal concentrations of100mg/L and a dose of1.0g/L. Kinetics modelssuggested there was more than one step involved in the Zn~(2+)sorption process, while apseudo-second-order model was more suitable to describe the kinetic behavior accurately. Thefittings of Langmuir and Freundlich isotherms to experimental data for Zn~(2+)sorption of thetwo strains were not exactly the same. However, they all belonged to the chemisorptionprocess. Moreover, more than70%Zn~(2+)could be recovered from Zn~(2+)-loaded biomasses atpH1.0. Carbonyl, amino, carboxyl and aromatic groups were responsible for the biosorptionof Zn~(2+)by both CCNWGS0286and CCNWGS0123. In addition, cellular deformation,precipitate and damage might be involved in Zn~(2+)resistance of the two strains.
     Plant growth promoting bacterium Agrobacterium tumefaciens CCNWGS0286(176)displayed both high metal resistance and enhanced the growth of Robinia plants in metalcontaminated environment. Genes putatively conferring zinc resistance were identified in thedraft genome of A. tumefaciens176. Among the7,600Tn5insertional mutants of A. tumefaciens176generated by transposon mutagenesis, nine zinc sensitive isolates werescreened individually, most of which showed great and specific sensitivity to Zn~(2+)and Cd~(2+).In addition, interruption of a putative oligoketide cyclase/lipid transport protein in mutant15-6reduced IAA synthesis and also showed reduced Zn~(2+)and Cd~(2+)resistance. Analysis ofthe genome sequence and of transcription via RT-PCR combined with transposon genedisruptions revealed ZntA-4200and transcriptional regulator ZntR1played an important rolein zinc homeostasis of A. tumefaciens176. In greenhouse studies, R. pseudoacacia inoculatedwith A. tumefaciens176displayed a significant increase in biomass production compared toplant biomass without inoculation even in a zinc-contaminated environment. Moreover, IAAoverproduction by A. tumefaciens176with little affected by Zn~(2+)was proved to be the mainreason to enhance plant growth under zinc contaminated environment. Interestingly, thedifferences in plant biomass improvement among A. tumefaciens176(ZnRIAA+), A.tumefaciens C58(ZnRIAA-), zinc sensitive mutants12-2(ZnSIAA+) and15-6(ZnSIAA-)revealed phytohormones were the dominant factor in enhancing plant growth in contaminatedsoil when compared to the influence of genes encoding zinc resistance determinants.
     Genes putatively conferring copper resistance were identified in the draft genome of M.amorphae CCNWGS0123(186).10,000Tn5insertional mutants were generated bytransposon mutagenesis and eight copper sensitive isolates were obtained. Tn5insertion siteswere located on the whole genome of M. amorphae186, which were sorted into threecategories as P-type ATPase, hypothetical protein and others including GTP-binding proteinand ribosomal protein. Analysis of the genome sequence and of transcription via RT-PCRcombined with transposon gene disruptions revealed CopA-6910and CusB played animportant role in copper homeostasis of M. amorphae186. CopA-6910predominantly carriedout Cu+efflux from the cytoplasm to the periplasm, while CusAB was responsible for Cu+detoxification of the periplasm by export to extracellular space. Symbiotic nitrogen fixationwas proved to be the key point that helping plant growth ever under copper contaminatedenvironment. Moreover, M. amorphae186and its two mutants3-42(copA::Tn5) and34-28(ccmX::Tn5) were able to form symbiosis with R. pseudoacacia. However, nodule numbers,total N content, plant biomass and leghemoglobin expression were all reduced wheninoculated with mutant34-28(ccmX::Tn5). Therefore, mutagenesis of hytothetical gene(ccmX) which is likely related with cbb3-Cox not only affected copper resistance, but alsoaffected symbiotic relationship with R. pseudoacacia. In greenhouse studies, R. pseudoacaciainoculated with M. amorphae186displayed a significant increase in biomass production, totalN content and copper accumulation compared to plant biomass without inoculation even in acopper-contaminated environment. Moreover, copper accumulation in roots was much higher than the accumulation in shoots, indicating the potential and safety when applyingrhizobia-legumes symbiosis for phytoremediation of metals.
引文
Aksu Z and Isoglu I2005. Removal of copper (II) ions from aqueous solution by biosorption ontoagricultural waste sugar beet pulp. Process Biochemistry40(9):3031-3044
    Angerer A and Braun V1998. Iron regulates transcription of the Escherichia coli ferric citrate transportgenes directly and through the transcription initiation proteins. Archives of Microbiology169(6):483-490
    Antoun H, Beauchamp C J, Goussard N, Chabot R and Lalande R1998. Potential of Rhizobium andBradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect onradishes (Raphanus sativus L.). Plant and Soil204(1):57-67
    Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E and Kubal M2008. The RAST Server: rapid annotations using subsystems technology. BMC genomics9(1):75
    Barazani O and Friedman J1999. Is IAA the major root growth factor secreted fromplant-growth-mediating bacteria? Journal of Chemical Ecology25(10):2397-2406
    Belimov A A, Dodd I C, Hontzeas N, Theobald J C, Safronova V I and Davies W J2009. Rhizospherebacteria containing1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grownin drying soil via both local and systemic hormone signalling. New Phytologist181(2):413-423
    Bianco C and Defez R2010. Improvement of phosphate solubilization and Medicago plant yield by anindole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and EnvironmentalMicrobiology76(14):4626-4632
    Bolton E, Higgisson B, Harrington A and O'Gara F1986. Dicarboxylic acid transport in Rhizobium meliloti:isolation of mutants and cloning of dicarboxylic acid transport genes. Archives of Microbiology144(2):142-146
    Botero L M, Al-Niemi T S and McDermott T R2000. Characterization of two inducible phosphatetransport systems in Rhizobium tropici. Applied and Environmental Microbiology66(1):15-22
    Broos K, Beyens H and Smolders E2005. Survival of rhizobia in soil is sensitive to elevated zinc in theabsence of the host plant. Soil Biology and Biochemistry37(3):573-579
    Broos K, Uyttebroek M, Mertens J and Smolders E2004. A survey of symbiotic nitrogen fixation by whiteclover grown on metal contaminated soils. Soil Biology and Biochemistry36(4):633-640
    Brown N L, Barrett S R, Camakaris J, Lee B T and Rouch D A1995. Molecular genetics and transportanalysis of the copper‐resistance determinant (pco) from Escherichia coli plasmid pRJ1004.Molecular Microbiology17(6):1153-1166
    Brown S, Svendsen A and Henry C2009. Restoration of high zinc and lead tailings with municipalbiosolids and lime: a field study. Journal of Environmental Quality38(6):2189-2197
    Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino G L, Campion B andDefez R2008. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch rootnodule development. Archives of Microbiology190(1):67-77
    Carrasco J, Armario P, Pajuelo E, Burgos A, Caviedes M, López R, Chamber M and Palomares A2005.Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavymetals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biology and Biochemistry37(6):1131-1140
    Casella S, Frassinetti S, Lupi F and Squartini A1988. Effect of cadmium, chromium and copper onsymbiotic and free-living Rhizobium leguminosarum biovar trifolii. FEMS Microbiology Letters49(3):343-347
    Castro I, Ferreira E and McGrath S1997. Effectiveness and genetic diversity of Rhizobium leguminosarumbv. trifolii isolates in Portuguese soils polluted by industrial effluents. Soil Biology andBiochemistry29(8):1209-1213
    Chaney R L, Broadhurst C L and Centofanti T2010. Phytoremediation of Soil Trace Elements. TraceElements in Soils:311
    Chaney R L, Siebielec G, Li Y M and Kerschner B A2000. Response of four turfgrass cultivars tolimestone and biosolids-compost amendment of a zinc and cadmium contaminated soil atPalmerton, Pennsylvania. Journal of Environmental Quality29(5):1440-1447
    Chaudri A M, Allain C M G, Barbosa-Jefferson V L, Nicholson F A, Chambers B J and McGrath S P2000.A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term fieldexperiment. Plant and Soil221(2):167-179
    Chaudri A M, McGrath S P and Giller K E1992. Survival of the indigenous population of Rhizobiumleguminosarum biovar trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biology andBiochemistry24(7):625-632
    Chaudri A M, McGrath S P, Giller K E, Rietz E and Sauerbeck D R1993. Enumeration of indigenousRhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminatedsewage sludge. Soil Biology and Biochemistry25(3):301-309
    Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B and Xu T2010. Application of plantgrowth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction ofCd-polluted soils. Applied Soil Ecology46(3):383-389
    Chen W M, Wu C H, James E K and Chang J S2008. Metal biosorption capability of Cupriavidustaiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal ofHazardous Materials151(2-3):364-371
    Cheung C W, Porter J F and McKay G2001. Sorption kinetic analysis for the removal of cadmium ionsfrom effluents using bone char. Water Research35(3):605-612
    Chien S1979. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils.Soil Science Society of America Journal44(2):265-268
    Chipman D, Barak Z and Schloss J V1998. Biosynthesis of2-aceto-2-hydroxy acids: acetolactatesynthases and acetohydroxyacid synthases. Biochimica et Biophysica Acta1385(2):401-419
    Chojnacka K2010. Biosorption and bioaccumulation--the prospects for practical applications. EnvironmentInternational36(3):299-307
    Choudhury R and Srivastava S2001. Mechanism of zinc resistance in Pseudomonas putida strain S4.World Journal of Microbiology and Biotechnology17(2):149-153olak F, Atar N and Olgun A2009. Biosorption of acidic dyes from aqueous solution by Paenibacillusmacerans: Kinetic, thermodynamic and equilibrium studies. Chemical Engineering Journal150(1):122-130
    Cooksey D A1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMSMicrobiology Reviews14(4):381-386
    Dary M, Chamber-Pérez M, Palomares A and Pajuelo E2010.“In situ” phytostabilisation of heavy metalpolluted soils using Lupinus luteus inoculated with metal resistant plant-growth promotingrhizobacteria. Journal of Hazardous Materials177(1-3):323-330
    Davis T A, Volesky B and Mucci A2003. A review of the biochemistry of heavy metal biosorption bybrown algae. Water Research37(18):4311-4330
    Dazzo F, Biswas J and Ladha J2000. Rhizobia inoculation improves nutrient uptake and growth of lowlandrice. Soil Science Society of America Journal64(5):1644-1650
    De Hoff P and Hirsch A M2003. Nitrogen comes down to earth: report from the5th European NitrogenFixation Conference. Molecular Plant-Microbe Interactions16(5):371-375
    De Lajudie P, Willems A and Nick G1999. Agrobacterium bv.1strains isolated from nodules of tropicallegumes. Systematic and Applied Microbiology22(1):119-132
    Del Rio M, Font R, Almela C, Velez D, Montoro R and De Haro Bailon A2002. Heavy metals and arsenicuptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcollar mine.Journal of Biotechnology98(1):125-137
    Dell'Amico E, Cavalca L and Andreoni V2008. Improvement of Brassica napus growth under cadmiumstress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry40(1):74-84
    Denarie J and Cullimore J1993. Lipo-oligosaccharide nodulation factors: A minireview. New class ofsignaling molecules mediating recognition and morphogenesis. Cell74(6):951-954
    Denton B P2007. Advances in phytoremediation of heavy metals using plant growth promoting bacteriaand fungi. MMG445. Basic Biotechnology eJournal3(1):1-5
    Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni A M, Tassi E and Vallini G2006. Combinedapplication of Triton X-100and Sinorhizobium sp. Pb002inoculum for the improvement of leadphytoextraction by Brassica juncea in EDTA amended soil. Chemosphere63(2):293-299
    Diels L, Dong Q, van der Lelie D, Baeyens W and Mergeay M1995. The czc operon of Alcaligeneseutrophus CH34: from resistance mechanism to the removal of heavy metals. Journal of IndustrialMicrobiology14(2):142-153
    Dimkpa C, Svatos A, Merten D, Buchel G and Kothe E2008a. Hydroxamate siderophores produced byStreptomyces acidiscabies E13bind nickel and promote growth in cowpea (Vigna unguiculata L.)under nickel stress. Canadian Journal of Microbiology54(3):163-172
    Dimkpa C O, Svatos A, Dabrowska P, Schmidt A, Boland W and Kothe E2008b. Involvement ofsiderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.Chemosphere74(1):19-25
    Dodd I, Zinovkina N, Safronova V and Belimov A2010. Rhizobacterial mediation of plant hormone status.Annals of Applied Biology157(3):361-379
    Duncan R, Camakaris J, Lee B and Luke R1985. Inducible plasmid-mediated copper resistance inEscherichia coli. Journal of General Microbiology131(4):939-943
    Dundar M, Nuhoglu C and Nuhoglu Y2008. Biosorption of Cu(II) ions onto the litter of natural tremblingpoplar forest. Journal of Hazardous Materials151(1):86-95
    Ekici S, Pawlik G, Lohmeyer E, Koch H-G and Daldal F2012. Biogenesis of cbb3-type cytochrome coxidase in Rhodobacter capsulatus. Biochimica et Biophysica Acta (BBA)-Bioenergetics1817(6):898-910
    El-Aziz R, Angle J and Chaney R1991. Metal tolerance of Rhizobium meliloti isolated from heavy-metalcontaminated soils. Soil Biology and Biochemistry23(8):795-798
    Enz S, Mahren S, Stroeher U H and Braun V2000. Surface signaling in ferric citrate transport geneinduction: interaction of the FecA, FecR, and FecI regulatory proteins. Journal of Bacteriology182(3):637-646
    Fan L M, Ma Z Q, Liang J Q, Li H F, Wang E T and Wei G H2011. Characterization of a copper-resistantsymbiotic bacterium isolated from Medicago lupulina growing in mine tailings. BioresourceTechnology102(2):703-709
    Faraldo-Gomez J D and Sansom M S2003. Acquisition of siderophores in gram-negative bacteria. NatureReviews Molecular Cell Biology4(2):105-116
    Finan T M, Wood J M and Jordan D C1983. Symbiotic properties of C4-dicarboxylic acid transportmutants of Rhizobium leguminosarum. Journal of Bacteriology154(3):1403-1413
    Franke S, Grass G, Rensing C and Nies D H2003. Molecular analysis of the copper-transporting effluxsystem CusCFBA of Escherichia coli. Journal of Bacteriology185(13):3804-3812
    Freeman J L, Zhang L H, Marcus M A, Fakra S, McGrath S P and Pilon-Smits E A2006. Spatial imaging,speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatusand Stanleya pinnata. Plant Physiology142(1):124-134
    Fritioff, Kautsky L and Greger M2005. Influence of temperature and salinity on heavy metal uptake bysubmersed plants. Environmental Pollution133(2):265-274
    Fuhrmann J1996. Soybean response to nodulation by wild-type and an isogenic Bradyrhizobium elkaniimutant lacking rhizobitoxine production. Crop Science36(6):1740
    Gaballa A and Helmann J D1998. Identification of a Zinc-Specific Metalloregulatory Protein, Zur,Controlling Zinc Transport Operons in Bacillus subtilis. Journal of Bacteriology180(22):5815-5821
    Garrido M E, Bosch M, Medina R, Llagostera M, Pérez de Rozas A M, Badiola I and Barbé J2003. Thehigh‐affinity zinc uptake system znuACB is under control of the iron‐uptake regulator (fur) gene inthe animal pathogen Pasteurella multocida. FEMS Microbiology Letters221(1):31-37
    Ghosh M and Singh S2005. A review on phytoremediation of heavy metals and utilization of itsbyproducts. Applied Ecology and Environmental Research3(1):1-18
    Ghosh S and Basu P S2006. Production and metabolism of indole acetic acid in roots and root nodules ofPhaseolus mungo. Microbiological Research161(4):362-366
    Ghoul M, Bacquet M and Morcellet M2003. Uptake of heavy metals from synthetic aqueous solutionsusing modified PEI-silica gels. Water Research37(4):729-734
    Giller K, McGrath S and Hirsch P1989. Absence of nitrogen fixation in clover grown on soil subject tolong-term contamination with heavy metals is due to survival of only ineffective Rhizobium. SoilBiology and Biochemistry21(6):841-848
    Giller K E, Nussbaum R, Chaudri A M and McGrath S P1993. Rhizobium meliloti is less sensitive toheavy-metal contamination in soil than R. leguminosarum bv. trifolii or R. loti. Soil Biology andBiochemistry25(2):273-278
    Giller K E, Witter E and Mcgrath S P1998. Toxicity of heavy metals to microorganisms and microbialprocesses in agricultural soils: a review. Soil Biology and Biochemistry30(10-11):1389-1414
    Gilotra U and Srivastava S1997. Plasmid-encoded sequestration of copper by Pseudomonas pickettii strainUS321. Current Microbiology34(6):378-381
    Glick B R1995. The enhancement of plant growth by free-living bacteria. Canadian Journal ofMicrobiology41(2):109-117
    Glick B R2004. Teamwork in phytoremediation. Nature Biotechnology22(5):526-527
    Glick B R2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMSMicrobiology Letters251(1):1-7
    Glick B R2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances28(3):367-374
    Glickmann E and Dessaux Y1995. A critical examination of the specificity of the salkowski reagent forindolic compounds produced by phytopathogenic bacteria. Applied and EnvironmentalMicrobiology61(2):793-796
    Goodlass G and Smith K1979. Effects of ethylene on root extension and nodulation of pea (Pisum sativumL.) and white clover (Trifolium repens L.). Plant and Soil51(3):387-395
    Gordon S A and Weber R P1951. Colorimetric Estimation of Indoleacetic Acid. Plant Physiology26(1):192-195
    Gowri P M and Srivastava S1996. Encapsulation as a response of Azospirillum brasilense sp7to zinc stress.World Journal of Microbiology and Biotechnology12(4):319-322
    Grass G and Rensing C2001. CueO Is a Multi-copper Oxidase That Confers Copper Tolerance inEscherichia coli. Biochemical and Biophysical Research Communications286(5):902-908
    Gro e C, Grass G, Anton A, Franke S, Santos A N, Lawley B, Brown N L and Nies D H1999.Transcriptional Organization of the czc Heavy-Metal Homeostasis Determinant from Alcaligeneseutrophus. Journal of Bacteriology181(8):2385-2393
    Guo J, Tang S, Ju X, Ding Y, Liao S and Song N2011. Effects of inoculation of a plant growth promotingrhizobacterium Burkholderia sp. D54on plant growth and metal uptake by a hyperaccumulatorSedum alfredii Hance grown on multiple metal contaminated soil. World Journal of Microbiologyand Biotechnology:1-10
    Gupta A K, Dwivedi S, Sinha S, Tripathi R D, Rai U N and Singh S N2007. Metal accumulation andgrowth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource Technology98(17):3404-3407
    Gupta S S and Bhattacharyya K G2006. Adsorption of Ni(II) on clays. Journal of Colloid and InterfaceScience295(1):21-32
    Gupta V, Rastogi A, Saini V and Jain N2006. Biosorption of copper (II) from aqueous solutions bySpirogyra species. Journal of Colloid and Interface Science296(1):59
    Halder A, Mishra A, Bhattacharyya P and Chakrabartty P1990. Solubilization of rock phosphate byRhizobium and Bradyrhizobium. Journal of General and Applied Microbiology36(2):81-92
    Han R, Li H, Li Y, Zhang J, Xiao H and Shi J2006. Biosorption of copper and lead ions by waste beeryeast. Journal of Hazardous Materials137(3):1569-1576
    Hantke K2001. Bacterial zinc transporters and regulators. Biometals14(3-4):239-249
    Hao X, Lin Y, Johnstone L, Baltrus D A, Miller S J, Wei G and Rensing C2012. Draft Genome Sequenceof Plant Growth-Promoting Rhizobium Mesorhizobium amorphae, Isolated from Zinc-Lead MineTailings. Journal of Bacteriology194(3):736-737
    Hirsch A M and Fang Y1994. Plant hormones and nodulation: what's the connection? Plant MolecularBiology26(1):5-9
    Hirsch P, Jones M, McGrath S and Giller K1993. Heavy metals from past applications of sewage sludgedecrease the genetic diversity of Rhizobium leguminosarum biovar trifolii populations. SoilBiology and Biochemistry25(11):1485-1490
    Hoegger P J, Kilaru S, James T Y, Thacker J R and Kües U2006. Phylogenetic comparison andclassification of laccase and related multicopper oxidase protein sequences. FEBS Journal273(10):2308-2326
    Holden P A and Firestone M K1997. Soil microorganisms in soil cleanup: how can we improve ourunderstanding? Journal of Environmental Quality26(1):32-40
    Huang D-L, Tang D-J, Liao Q, Li H-C, Chen Q, He Y-Q, Feng J-X, Jiang B-L, Lu G-T and Chen B2008.The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinchomeostasis genes via recognizing two distinct sequences within its target promoters. NucleicAcids Research36(13):4295-4309
    Hunter W J1993. Ethylene Production by Root Nodules and Effect of Ethylene on Nodulation in Glycinemax. Applied and Environmental Microbiology59(6):1947-1950
    Ibekwe A, Angle J, Chaney R and Van Berkum P1995. Sewage sludge and heavy metal effects onnodulation and nitrogen fixation of legumes. Journal of Environmental Quality24(6):1199-1204
    Ibekwe A, Angle J, Chaney R and Van Berkum P1996. Zinc and cadmium toxicity to alfalfa and itsmicrosymbiont. Journal of Environmental Quality25(5):1032-1040
    Ibekwe A, Angle J, Chaney R and Van Berkum P1998. Zinc and cadmium effects on rhizobia and whiteclover using chelator-buffered nutrient solution. Soil Science Society of America Journal62(1):204-211
    Idris E E, Iglesias D J, Talon M and Borriss R2007. Tryptophan-dependent production of indole-3-aceticacid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42.Molecular Plant-Microbe Interactions20(6):619-626
    Ike A, Sriprang R, Ono H, Murooka Y and Yamashita M2007a. Bioremediation of cadmium contaminatedsoil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4and thePCS genes. Chemosphere66(9):1670-1676
    Ji G and Silver S1995. Bacterial resistance mechanisms for heavy metals of environmental concern.Journal of Industrial Microbiology14(2):61-75
    Kamnev A, Antonyuk L, Tugarova A, Tarantilis P, Polissiou M and Gardiner P2002. Fourier transforminfrared spectroscopic characterisation of heavy metal-induced metabolic changes in theplant-associated soil bacterium Azospirillum brasilense Sp7. Journal of Molecular Structure610(1):127-131
    Kaneshiro T and Kwolek W1985. Stimulated nodulation of soybeans by Rhizobium japonicum mutant(B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Science42(3):141-146
    Khalid A, Tahir S, Arshad M and Zahir Z A2005. Relative efficiency of rhizobacteria for auxinbiosynthesis in rhizosphere and non-rhizosphere soils. Soil Research42(8):921-926
    Khan M S, Zaidi A, Wani P A and Oves M2009. Role of plant growth promoting rhizobacteria in theremediation of metal contaminated soils. Environmental Chemistry Letters7(1):1-19
    Kim E-H, Nies D H, McEvoy M M and Rensing C2011. Switch or funnel: how RND-type transportsystems control periplasmic metal homeostasis. Journal of Bacteriology193(10):2381-2387
    King P, Anuradha K, Lahari S, Prasanna Kumar Y and Prasad V2008. Biosorption of zinc from aqueoussolution using Azadirachta indica bark: Equilibrium and kinetic studies. Journal of HazardousMaterials152(1):324-329
    Kopittke P M, Dart P J and Menzies N W2007. Toxic effects of low concentrations of Cu on nodulation ofcowpea (Vigna unguiculata). Environmental Pollution145(1):309-315
    Kpomblekou-a K and Tabatabai M1994. Effect of Organic Acids on Release of Phosphorus FromPhosphate Rocks. Soil Science158(6):442-453
    Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M and Sessitsch A2008. Rhizosphere bacteria affectgrowth and metal uptake of heavy metal accumulating willows. Plant and Soil304(1):35-44
    Kuiper I, Lagendijk E L, Bloemberg G V and Lugtenberg B J2004. Rhizoremediation: a beneficialplant-microbe interaction. Molecular Plant-Microbe Interactions17(1):6-15
    Kumar K V, Singh N, Behl H and Srivastava S2008. Influence of plant growth promoting bacteria and itsmutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere72(4):678-683
    Kumar K V, Srivastava S, Singh N and Behl H M2009. Role of metal resistant plant growth promotingbacteria in ameliorating fly ash to the growth of Brassica juncea. Journal of Hazardous Materials170(1):51-57
    Kwon Y and Ricke S2000. Efficient amplification of multiple transposon-flanking sequences. Journal ofMicrobiological Methods41(3):195-199
    Lagergren S1898. Zur theorie der sogenannten adsorption gel ster stoffe, Kungliga SvenskaVetenskapsakademiens. Handlingar24(4):1-39
    Lakzian A, Murphy P and Giller K E2007. Transfer and loss of naturally-occurring plasmids amongisolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils. Soil Biologyand Biochemistry39(5):1066-1077
    Lee K H and Larue T A1992. Exogenous Ethylene Inhibits Nodulation of Pisum sativum L. cv Sparkle.Plant Physiology100(4):1759-1763
    Legatzki A, Grass G, Anton A, Rensing C and Nies D H2003. Interplay of the Czc system and two P-typeATPases in conferring metal resistance to Ralstonia metallidurans. Journal of Bacteriology185(15):4354-4361
    Leyva Ramos R, Bernal Jacome L A, Mendoza Barron J, Fuentes Rubio L and Guerrero Coronado R M2002. Adsorption of zinc(II) from an aqueous solution onto activated carbon. Journal of HazardousMaterials90(1):27-38
    Li H, Lin Y, Guan W, Chang J, Xu L, Guo J and Wei G2010. Biosorption of Zn(II) by live and dead cellsof Streptomyces ciscaucasicus strain CCNWHX72-14. Journal of Hazardous Materials179(1-3):151-159
    Lima A I G, Corticeiro S C and de Almeida Paula Figueira E M2006. Glutathione-mediated cadmiumsequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology39(4):763-769
    Liu J, Wang E T, Ren da W and Chen W X2010. Mixture of endophytic Agrobacterium and Sinorhizobiummeliloti strains could induce nonspecific nodulation on some woody legumes. Archives ofMicrobiology192(3):229-234
    Lodeiro P, Herrero R and de Vicente M2006. Thermodynamic and kinetic aspects on the biosorption ofcadmium by low cost materials: a review. Environmental Chemistry3(6):400-418
    Loftin I R, Franke S, Roberts S A, Weichsel A, Héroux A, Montfort W R, Rensing C and McEvoy M M2005. A novel copper-binding fold for the periplasmic copper resistance protein CusF.Biochemistry44(31):10533-10540
    Ma W, Charles T C and Glick B R2004. Expression of an exogenous1-aminocyclopropane-1-carboxylatedeaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Applied andEnvironmental Microbiology70(10):5891-5897
    Ma W, Guinel F C and Glick B R2003a. Rhizobium leguminosarum biovar viciae1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied andEnvironmental Microbiology69(8):4396-4402
    Ma W, Sebestianova S B, Sebestian J, Burd G I, Guinel F C and Glick B R2003b. Prevalence of1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie van Leeuwenhoek83(3):285-291
    Ma Y, Prasad M N, Rajkumar M and Freitas H2011. Plant growth promoting rhizobacteria and endophytesaccelerate phytoremediation of metalliferous soils. Biotechnology Advances29(2):248-258
    Ma Y, Rajkumar M and Freitas H2009a. Inoculation of plant growth promoting bacterium Achromobacterxylosoxidans strain Ax10for the improvement of copper phytoextraction by Brassica juncea.Journal of Environmental Management90(2):831-837
    Ma Y, Rajkumar M and Freitas H2009b. Isolation and characterization of Ni mobilizing PGPB fromserpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp.Chemosphere75(6):719-725
    Mago R and Srivastava S1994. Uptake of zinc in Pseudomonas sp. strain UDG26. Applied andEnvironmental Microbiology60(7):2367-2370
    Mandal S M, Mondal K C, Dey S and Pati B R2007. Optimization of Cultural and Nutritional Conditionsfor Indole3-acetic Acid (IAA) Production by a Rhizobium sp. Isolated from Root Nodules of Vignamungo (L.) Hepper. Research Journal of Microbiology2:239-246
    Marie C, Broughton W J and Deakin W J2001. Rhizobium type III secretion systems: legume charmers oralarmers? Current Opinion in Plant Biology4(4):336-342
    Marie C, Deakin W J, Viprey V, Kopcinska J, Golinowski W, Krishnan H B, Perret X and Broughton W J2003. Characterization of Nops, nodulation outer proteins, secreted via the type III secretionsystem of NGR234. Molecular Plant-Microbe Interactions16(9):743-751
    Martensson A and Witter E1990. Influence of various soil amendments on nitrogen-fixing soilmicroorganisms in a long-term field experiment, with special reference to sewage sludge. SoilBiology and Biochemistry22(7):977-982
    McDermott T R and Kahn M L1992. Cloning and mutagenesis of the Rhizobium meliloti isocitratedehydrogenase gene. Journal of Bacteriology174(14):4790-4797
    McGrath S, Brookes P and Giller K1988. Effects of potentially toxic metals in soil derived from pastapplications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biology andBiochemistry20(4):415-424
    McGrath S P, Chaudri A M and Giller K E1995. Long-term effects of metals in sewage sludge on soils,microorganisms and plants. Journal of Industrial Microbiology14(2):94-104
    Mhamdi R, Mrabet M, Laguerre G, Tiwari R and Aouani M E2005. Colonization of Phaseolus vulgarisnodules by Agrobacterium-like strains. Canadian Journal of Microbiology51(2):105-111
    Mills S D, Lim C-K and Cooksey D A1994. Purification and characterization of CopR, a transcriptionalactivator protein that binds to a conserved domain (cop box) in copper-inducible promoters ofPseudomonas syringae. Molecular and General Genetics MGG244(4):341-351
    Miretzky P, Munoz C and Carrillo-Chavez A2010. Cd (II) removal from aqueous solution by Eleocharisacicularis biomass, equilibrium and kinetic studies. Bioresource Technology101(8):2637-2642
    Mohamad O, Hao X, Xie P, Hatab S, Lin Y and Wei G2012. Biosorption of Copper (II) from AqueousSolution Using Non-Living Mesorhizobium amorphae Strain CCNWGS0123. Microbes andEnvironments27(3):234-241
    Mortimer M W, McDermott T R, York G M, Walker G C and Kahn M L1999. Citrate synthase mutants ofSinorhizobium meliloti are ineffective and have altered cell surface polysaccharides. Journal ofBacteriology181(24):7608-7613
    Mrabet M, Mnasri B, Romdhane S B, Laguerre G, Aouani M E and Mhamdi R2006. Agrobacterium strainsisolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum.FEMS Microbiology Ecology56(2):304-309
    Munson G P, Lam D L, Outten F W and O'Halloran T V2000. Identification of a copper-responsivetwo-component system on the chromosome of Escherichia coli K-12. Journal of Bacteriology182(20):5864-5871
    Nahas E1996. Factors determining rock phosphate solubilization by microorganisms isolated from soil.World Journal of Microbiology and Biotechnology12(6):567-572
    Naja GM and B. V2010. Treatment of Metal-Bearing Effluents: Removal and Recovery. Handbook onHeavy Metals in the Environment. C. J. In: Wang LK, Hung YT, Shammas NK, editors, BocaRaton, FL: Taylor&Francis and CRC Press
    Nies D H1992. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, andcadmium (czc system) in Alcaligenes eutrophus. Journal of Bacteriology174(24):8102-8110
    Nies D H2000. Heavy metal-resistant bacteria as extremophiles: molecular physiology andbiotechnological use of Ralstonia sp. CH34. Extremophiles4(2):77-82
    Nies D H2003. Efflux‐mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews27(2-3):313-339
    Nies D H and Silver S2007. Molecular microbiology of heavy metals. Springer
    Nukui N, Ezura H, Yuhashi K, Yasuta T and Minamisawa K2000. Effects of ethylene precursor andinhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus andMacroptilium atropurpureum. Plant and Cell Physiology41(7):893-897
    O'Day P A and Vlassopoulos D2010. Mineral-based amendments for remediation. Elements6(6):375-381
    Obbard J P and Jones K C1993. The effect of heavy metals on dinitrogen fixation by Rhizobium-whiteclover in a range of long-term sewage sludge amended and metal-contaminated soils.Environmental Pollution79(2):105-112
    Ortega-Villasante C, Rellan-Alvarez R, Del Campo F F, Carpena-Ruiz R O and Hernandez L E2005.Cellular damage induced by cadmium and mercury in Medicago sativa. Journal of ExperimentalBotany56(418):2239-2251
    Outten C E, Outten F W and O'Halloran T V1999. DNA distortion mechanism for transcriptional activationby ZntR, a Zn (II)-responsive MerR homologue in Escherichia coli. Journal of BiologicalChemistry274(53):37517-37524
    Outten F W, Outten C E, Hale J and O'Halloran T V2000. Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR. Journal of BiologicalChemistry275(40):31024-31029
    Oves M, Zaidi A and Khan M S2010. Role of Metal Tolerant Microbes in Legume Improvement. Microbesfor Legume Improvement:337
    Pajuelo E, Dary M, Palomares A, Rodriguez-Llorente I, Carrasco J and Chamber M2008a.Biorhizoremediation of Heavy Metals Toxicity Using Rhizobium-Legume Symbioses. BiologicalNitrogen Fixation: Towards Poverty Alleviation through Sustainable Agriculture:101-104
    Pajuelo E, Rodríguez-Llorente I D, Lafuente A and Caviedes M á2011. Legume–Rhizobium Symbioses asa Tool for Bioremediation of Heavy Metal Polluted Soils. Biomanagement of Metal-ContaminatedSoils20:95-123
    Pajuelo E, Rodriguez-Llorente I D, Dary M and Palomares A J2008b. Toxic effects of arsenic onSinorhizobium-Medicago sativa symbiotic interaction. Environmental Pollution154(2):203-211
    Pastor J, Hernandez A J, Prieto N and Fernandez-Pascual M2003. Accumulating behaviour of Lupinusalbus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. Journal of PlantPhysiology160(12):1457-1465
    Patten C L and Glick B R1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal ofMicrobiology42(3):207-220
    Peix A, Rivas-Boyero A, Mateos P, Rodriguez-Barrueco C and Velazquez E2001. Growth promotion ofchickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum undergrowth chamber conditions. Soil Biology and Biochemistry33(1):103-110
    Penmetsa R V and Cook D R1997. A Legume Ethylene-Insensitive Mutant Hyperinfected by Its RhizobialSymbiont. Science275(5299):527-530
    Penmetsa R V, Frugoli J A, Smith L S, Long S R and Cook D R2003. Dual genetic pathways controllingnodule number in Medicago truncatula. Plant Physiology131(3):998-1008
    Pereira S I, Lima A I and Figueira E M2006. Screening possible mechanisms mediating cadmiumresistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils.Microbial Ecology52(2):176-186
    Perrine F M, Rolfe B G, Hynes M F and Hocart C H2004. Gas chromatography-mass spectrometryanalysis of indoleacetic acid and tryptophan following aqueous chloroformate derivatisation ofRhizobium exudates. Plant Physiology and Biochemistry42(9):723-729
    Petersen C and M ller L B2000. Control of copper homeostasis in Escherichia coli by a P-type ATPase,CopA, and a MerR-like transcriptional activator, CopR. Gene261(2):289-298
    Piechalak A, Tomaszewska B, Baralkiewicz D and Malecka A2002. Accumulation and detoxification oflead ions in legumes. Phytochemistry60(2):153-162
    Polanyi M1932. Theories of the adsorption of gases. A general survey and some additional remarks.Transactions of the Faraday Society28:316-332
    Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J and Van Onckelen H1991.Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Letters282(1):53-55
    Rajkumar M and Freitas H2008. Influence of metal resistant-plant growth-promoting bacteria on thegrowth of Ricinus communis in soil contaminated with heavy metals. Chemosphere71(5):834-842
    Ranjard L, Lignier L and Chaussod R2006. Cumulative effects of short-term polymetal contamination onsoil bacterial community structure. Applied and Environmental Microbiology72(2):1684-1687
    Rate A W, Lee K M and French P A2004. Application of biosolids in mineral sands mine rehabilitation: useof stockpiled topsoil decreases trace element uptake by plants. Bioresource Technology91(3):223-231
    Rathinam A, Maharshi B, Janardhanan S K, Jonnalagadda R R and Nair B U2010. Biosorption of cadmiummetal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic andthermodynamic study. Bioresource Technology101(5):1466-1470
    Reeves R D and Baker A J M2000. Metal-accumulating plants. Phytoremediation of Toxic Metals: UsingPlants to Clean Up the Environment. I. Raskin and B. D. Ensley. New York, John Wiley and Sons:193-229.
    Renella G, Chaudri A and Brookes P2002. Fresh additions of heavy metals do not model long-term effectson microbial biomass and activity. Soil Biology and Biochemistry34(1):121-124
    Rensing C, Fan B, Sharma R, Mitra B and Rosen B P2000. CopA: an Escherichia coli Cu (I)-translocatingP-type ATPase. Proceedings of the National Academy of Sciences97(2):652-656
    Rensing C, Ghosh M and Rosen B P1999. Families of soft-metal-ion-transporting ATPases. Journal ofBacteriology181(19):5891-5897
    Rensing C and Grass G2003. Escherichia coli mechanisms of copper homeostasis in a changingenvironment. FEMS Microbiology Reviews27(2‐3):197-213
    Rivas R, Peix A, Mateos P, Trujillo M, Martínez-Molina E and Velázquez E2006. Biodiversity ofpopulations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils.Plant and Soil287:23-33
    Roberts S A, Weichsel A, Grass G, Thakali K, Hazzard J T, Tollin G, Rensing C and Montfort W R2002.Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copperhomeostasis in Escherichia coli. Proceedings of the National Academy of Sciences99(5):2766
    Rodríguez H and Fraga R1999. Phosphate solubilizing bacteria and their role in plant growth promotion.Biotechnology Advances17(4-5):319-339
    Romero-Gonzalez J and Peralta-Videa J2005. Determination of thermodynamic parameters of Cr (VI)adsorption from aqueous solution onto Agave lechuguilla biomass. The Journal of ChemicalThermodynamics37(4):343-347
    Ronson C W, Lyttleton P and Robertson J G1981. C4-dicarboxylate transport mutants of Rhizobium trifoliiform ineffective nodules on Trifolium repens. Proceedings of the National Academy of Sciences78(7):4284
    Rouch D and Brown N1997. Copper-inducible transcriptional regulation at two promoters in theEscherichia coli copper resistance determinant pco. Microbiology143(4):1191-1202
    Rouch D A, Lee B T and Morby A P1995. Understanding cellular responses to toxic agents: a model formechanism-choice in bacterial metal resistance. Journal of Industrial Microbiology14(2):132-141
    Ruzhen J and Yuhong P2010. Preliminary Study on Phosphate Solubilization and K-releasing Abilities ofRhizobium tropici. Martinez-Romero et al. Strains from Woody Legumes. Proceedings of the19thWorld Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia.Symposium2.3.1The soil-root interface, pp.104-107
    Safronova V I, Stepanok V V, Engqvist G L, Alekseyev Y V and Belimov A A2006. Root-associatedbacteria containing1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrientuptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils42(3):267-272
    Sajjad Mirza M, Ahmad W, Latif F, Haurat J, Bally R, Normand P and Malik K A2001. Isolation, partialcharacterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagatedsugarcane in vitro. Plant and Soil237(1):47-54
    Schiewer S and Volesky B2000. Biosorption processes for heavy metal removal. EnvironmentalMicrobe-Metal Interactions14:329-362
    Schwyn B and Neilands J B1987. Universal chemical assay for the detection and determination ofsiderophores. Analytical Biochemistry160(1):47-56
    Sheng X F, Xia J J, Jiang C Y, He L Y and Qian M2008. Characterization of heavy metal-resistantendophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growthand lead accumulation of rape. Environmental Pollution156(3):1164-1170
    Shilev S, Ruso J, Puig A, Benlloch M, Jorrin J and Sancho E2001. Rhizospheric bacteria promotesunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. MinervaBiotecnologica13(1):37-39
    Shin J-H, Oh S-Y, Kim S-J and Roe J-H2007. The zinc-responsive regulator Zur controls a zinc uptakesystem and some ribosomal proteins in Streptomyces coelicolor A3(2). Journal of Bacteriology189(11):4070-4077
    Singh S, Kayastha A M, Asthana R K, Srivastava P K and Singh S2001. Response of Rhizobiumleguminosarum to nickel stress. World Journal of Microbiology and Biotechnology17(7):667-672
    Singh S K, Grass G, Rensing C and Montfort W R2004. Cuprous oxidase activity of CueO fromEscherichia coli. Journal of Bacteriology186(22):7815-7817
    Smith R and Bradshaw A1979. The use of metal tolerant plant populations for the reclamation ofmetalliferous wastes. Journal of Applied Ecology16:595-612
    Smith S1997. Rhizobium in soils contaminated with copper and zinc following the long-term application ofsewage sludge and other organic wastes. Soil Biology and Biochemistry29(9-10):1475-1489
    Smith S and Giller K1992. Effective Rhizobium leguminosarum biovar trifolii present in five soilscontaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil.Soil Biology and Biochemistry24(8):781-788
    Smolders E, Buekers J, Oliver I and McLaughlin M J2004. Soil properties affecting toxicity of zinc to soilmicrobial properties in laboratory‐spiked and field‐contaminated soils. Environmental Toxicologyand Chemistry23(11):2633-2640
    Smolders E, Mcgrath S P, Lombi E, Karman C C, Bernhard R, Cools D, Van den Brande K, van Os B andWalrave N2003. Comparison of toxicity of zinc for soil microbial processes betweenlaboratory‐contamined and polluted field soils. Environmental Toxicology and Chemistry22(11):2592-2598
    Solioz M and Vulpe C1996. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trendsin Biochemical Sciences21(7):237-241
    Spaepen S, Vanderleyden J and Remans R2007. Indole‐3‐acetic acid in microbial and microorganism‐plantsignaling. FEMS Microbiology Reviews31(4):425-448
    Stoyanov J V, Hobman J L and Brown N L2001. CueR (YbbI) of Escherichia coli is a MerR familyregulator controlling expression of the copper exporter CopA. Molecular Microbiology39(2):502-512
    Stoyanov J V, Magnani D and Solioz M2003. Measurement of cytoplasmic copper, silver, and gold with alux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichiacoli. FEBS Letters546(2):391-394
    Sullivan J T, Trzebiatowski J R, Cruickshank R W, Gouzy J, Brown S D, Elliot R M, Fleetwood D J,McCallum N G, Rossbach U, Stuart G S, Weaver J E, Webby R J, De Bruijn F J and Ronson C W2002. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A.Journal of Bacteriology184(11):3086-3095
    Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J and vander Lelie D2009. Genome survey and characterization of endophytic bacteria exhibiting abeneficial effect on growth and development of poplar trees. Applied and EnvironmentalMicrobiology75(3):748-757
    Taghavi S, van der Lelie D, Hoffman A, Zhang Y B, Walla M D, Vangronsveld J, Newman L and Monchy S2010. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp.638.PLOS Genetics6(5): e1000943
    Theunis M, Kobayashi H, Broughton W J and Prinsen E2004. Flavonoids, NodD1, NodD2, and nod-boxNB15modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesisin Rhizobium sp. strain NGR234. Molecular Plant-Microbe Interactions17(10):1153-1161
    Tokala R K, Strap J L, Jung C M, Crawford D L, Salove M H, Deobald L A, Bailey J F and Morra M J2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108andthe pea plant (Pisum sativum). Applied and Environmental Microbiology68(5):2161-2171
    Ungarish M and Aharoni C1981. Kinetics of chemisorption. Deducing kinetic laws from experimental data.Journal of the Chemical Society, Faraday Transactions177(5):975-985
    Vázquez S, Moreno E and Carpena R O2008. Bioavailability of metals and As from acidifiedmulticontaminated soils: Use of white lupin to validate several extraction methods. EnvironmentalGeochemistry and Health30(2):193-198
    Vadivelan V and Kumar K V2005. Equilibrium, kinetics, mechanism, and process design for the sorptionof methylene blue onto rice husk. Journal of Colloid and Interface Science286(1):90-100
    Van Assche F and Clijsters H1990. Effects of metals on enzyme activity in plants. Plant Cell andEnvironment13(3):195-206
    Vara Prasad M N and de Oliveira Freitas H M2003. Metal hyperaccumulation in plants: Biodiversityprospecting for phytoremediation technology. Electronic Journal of Biotechnology6(3):285-321
    Vassilev N, Vassileva M and Nikolaeva I2006. Simultaneous P-solubilizing and biocontrol activity ofmicroorganisms: potentials and future trends. Applied Microbiology and Biotechnology71(2):137-144
    Vidal C, Chantreuil C, Berge O, Maure L, Escarre J, Bena G, Brunel B and Cleyet-Marel J C2009.Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growingon metallicolous soil in Languedoc, France. International Journal of Systematic and EvolutionaryMicrobiology59(4):850-855
    Vijayaraghavan K and Yun Y S2008. Bacterial biosorbents and biosorption. Biotechnology Advances26(3):266-291
    Vivas A, Biro B, Ruiz-Lozano J M, Barea J M and Azcon R2006. Two bacterial strains isolated from aZn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere62(9):1523-1533
    Volesky B and Holan Z1995. Biosorption of heavy metals. Biotechnology Progress11(3):235-250
    von Rozycki T and Nies D H2009. Cupriavidus metallidurans: evolution of a metal-resistant bacterium.Antonie van Leeuwenhoek96(2):115-139
    Wang C, Knill E, Glick B R and Défago G2000. Effect of transferring1-aminocyclopropane-1-carboxylicacid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0and its gac A derivativeCHA96on their growth-promoting and disease-suppressive capacities. Canadian Journal ofMicrobiology46(10):898-907
    Wang L L, Wang E T, Liu J, Li Y and Chen W X2006. Endophytic occupation of root nodules and roots ofMelilotus dentatus by Agrobacterium tumefaciens. Microbial Ecology52(3):436-443
    Wani P A, Khan M S and Zaidi A2007a. Cadmium, chromium and copper in greengram plants. Agronomyfor Sustainable Development27(2):145-153
    Wani P A, Khan M S and Zaidi A2007b. Effect of metal tolerant plant growth promoting Bradyrhizobiumsp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere70(1):36-45
    Wani P A, Khan M S and Zaidi A2008a. Chromium-reducing and plant growth-promoting Mesorhizobiumimproves chickpea growth in chromium-amended soil. Biotechnology Letters30(1):159-163
    Wani P A, Khan M S and Zaidi A2008b. Effect of metal-tolerant plant growth-promoting Rhizobium on theperformance of pea grown in metal-amended soil. Archives of Environmental Contamination andToxicology55(1):33-42
    Wani P A, Khan M S and Zaidi A2008c. Effects of heavy metal toxicity on growth, symbiosis, seed yieldand metal uptake in pea grown in metal amended soil. Bulletin of Environmental Contaminationand Toxicology81(2):152-158
    Weber W J and Morris J C1962. Advances in water pollution research: removal of biologically resistantpollutants from waste waters by adsorption. Proceedings of International Conference on WaterPollution Symposium.2:231–266
    Werner D, Neumann H, Steele H, Wetzel A, Magasheva R and Plisak R2002. Soil biotests andphytoremediation with the legume-Rhizobium symbiosis. Nitrogen Fixation: From Molecules toCrop Productivity:571-573
    Wong M H2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils.Chemosphere50(6):775-780
    Wood D W, Setubal J C, Kaul R, Monks D E, Kitajima J P, Okura V K, Zhou Y, Chen L, Wood G E,Almeida N F, Jr., Woo L, Chen Y, Paulsen I T, Eisen J A, Karp P D, Bovee D, Sr., Chapman P,Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li M J, McClelland E,Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, YooH, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C,Zhao Z Y, Dolan M, Chumley F, Tingey S V, Tomb J F, Gordon M P, Olson M V and Nester E W2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science294(5550):2317-2323
    Yang B, Shu W, Ye Z, Lan C and Wong M2003. Growth and metal accumulation in vetiver and twoSesbania species on lead/zinc mine tailings. Chemosphere52(9):1593-1600
    Yang Z Y, Yuan J G, Xin G R, Chang H T and Wong M H1997. Germination, Growth, and Nodulation ofSesbania rostrata Grown in Pb/Zn Mine Tailings. Environmental Management21(4):617-622
    Yanni Y G, Rizk R, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F,Stoltzfus J and Buckley D1997. Natural endophytic association between Rhizobiumleguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth.Plant and Soil194(1):99-114
    Younis M2007. Responses of Lablab purpureus–Rhizobium symbiosis to heavy metals in pot and fieldexperiments. World Journal of Agricultural Sciences3(1):111-122
    Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T and Minamisawa K2000.Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness onMacroptilium atropurpureum. Applied and Environmental Microbiology66(6):2658-2663
    Zaidi S, Usmani S, Singh B R and Musarrat J2006. Significance of Bacillus subtilis strain SJ-101as abioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea.Chemosphere64(6):991-997
    Zhang L, Koay M, Maher M J, Xiao Z and Wedd A G2006. Intermolecular Transfer of Copper Ions fromthe CopC Protein of Pseudomonas syringae. Crystal Structures of Fully Loaded Cu (I) Cu (II)Forms. Journal of the American Chemical Society128(17):5834-5850
    Zhang Z, Shu W, Lan C and Wong M2001. Soil seed bank as an input of seed source in revegetation oflead/zinc mine tailings. Restoration Ecology9(4):378-385
    Zheng Y, Fang X, Ye Z, Li Y and Cai W2008. Biosorption of Cu(II) on extracellular polymers fromBacillus sp. F19. Journal of Environmental Sciences (China)20(11):1288-1293
    Zheng Z, Wei F, Lee H and Yang Z2005. Responses of Azorhizobium caulinodans to cadmium stress.FEMS Microbiology Ecology54(3):455-461
    Zhuang X, Chen J, Shim H and Bai Z2007. New advances in plant growth-promoting rhizobacteria forbioremediation. Environment International33(3):406-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700