用户名: 密码: 验证码:
黄土丘陵区枣林深层细根分布与土壤水分特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱半干旱地区,深层细根吸收土壤中的水分对于旱季林地耗水、维持林木蒸发蒸腾及其生长具有重要的意义。针对黄土丘陵区人工经济林普遍出现的土壤干层问题,本论文以黄土丘陵区人工经济林——矮化密植滴灌枣林(Ziziphusjujube Mill.)为研究对象,以稀植无灌溉枣林为对照,开展深层细根分布及土壤水分特征方面的研究,对该区人工经济林的水分管理及可持续发展具有重要意义。本论文采用根钻法,利用洛阳铲分层获取了从地表至细根分布最大深度范围内的土壤样品,经过室内处理、数据分析,重点研究了密植枣林细根的空间分布特征、基于根系分布的深层土壤水分分层特征、林龄及滴灌对枣林细根分布及土壤水分的影响,得到以下主要结论:
     (1)密植枣林细根(直径<2mm)干重密度随土层深度的增加而骤减、随林龄的增长而增加。水平方向上,同林龄枣林各水平位置细根干重密度间无显著差异。但是2年生和4年生枣林在离树干最近位置的细根干重密度较大,离树干最远位置较小;而9年生和12年生枣林在离树干最近及最远(四株树中间)这2个位置的细根干重密度较大,其它位置较小。垂直方向上,枣林(9年生)细根干重密度符合幂函数分布规律,0-0.6m土层细根干重密度总和占整个土层的63%。有序聚类分层凸显了枣林细根垂直分布的特征,枣林细根可划分为细根密集层(0-0.6m)、细根扩散层(0.6-1.6m)及细根稀疏层(1.6-5m)三层。2、4、9和12年生枣林细根干重密度总和分别为619.1,1109.84,1360.14和2319.41g.m~(-3),不同林龄枣林细根干重密度总和间有显著差异。
     (2)枣林细根分布最大深度随林龄的增长而增加,一定林龄后(9年)趋于稳定。2年生枣林细根分布最大深度为2m,4年生枣林细根分布最大深度为4m,9年生和12年生枣林细根分布最大深度均为5m。细根分布最大深度在枣树生长的前4年增加得较快,而在其后5年增加得缓慢,9年以后细根分布最大深度维持稳定,不再增加。不同林龄枣林细根干重密度累计百分比D50均位于0-0.8m土层,但D95随着林龄的增长不断向土层深处延伸。
     (3)结合根系分布特征进行土壤水分垂直分层的结果更符合林地实际水分消耗状况。将枣林深层土壤水分(2m以下)划分为强耗水层(2.0-4.4m)、弱耗水层(4.4-5.0m)及微弱耗水层(5.0-7.0m)三层。随着林龄增长,根系不断地向深层土壤吸水,导致土壤水分不断被消耗直至接近凋萎湿度,形成一段土壤水分低值区,该低值区位于降水入渗最大深度和细根分布最大深度之间。4年生枣林地土壤含水率在2~(-3).6m土层逐渐下降,但其值高于凋萎湿度;9年生和12年生枣林均在1.8~(-3).6m土层出现土壤含水率低值区,土壤含水率接近凋萎湿度。这说明,4年生枣林已经开始少量吸收深层土壤水分,9年之后的枣林细根已经大量吸收深层土壤水分,土壤出现了严重的干化现象。细根干重密度和土壤含水率呈负相关关系。
     (4)灌溉措施对枣林细根干重密度、细根分布最大深度、土壤含水率均有显著影响。密植滴灌枣林的细根干重密度较稀植无灌溉枣林的高,前者(0-5m)细根干重密度为2319.38g.m~(-3),后者(0-10m)为1969.06g.m~(-3)。密植滴灌枣林细根分布最大深度仅为稀植无灌溉枣林的一半,前者细根分布最大深度为5m,后者为10m。密植滴灌枣林土壤含水率均值高于稀植无灌溉枣林,前者土壤含水率为8.52%(0-10m),后者为6.6%。密植滴灌枣林土壤水分低值区的范围较稀植无灌溉枣林上移,前者土壤水分低值区分布于1.8~(-3).6m,后者分布于1.8-4.6m。相当于当地年平均降雨量(451.6mm)7.4%的滴灌水量(33.3mm)显著影响了细根分布最大深度和土壤含水率。枣林能够根据上层土壤水分供应状况调整扎根深度。虽然现有枣林出现了土壤干层,但理论上滴灌可以减短细根分布最大深度、减缓深层土壤水分的消耗,甚至抑制黄土丘陵半干旱区人工经济林利用性土壤干层的形成,一定量的滴灌可以维持林地的可持续发展。
     研究结论对黄土丘陵区枣林水分科学管理有重要的理论指导意义,能为进一步揭示黄土丘陵区人工经济林深层土壤水分的消耗过程、阐明土壤干层形成的机理、抑制土壤干化的形成提供一定的理论基础。
Soil water absorbed by deep fine root play an important role in forest land waterconsumption, maintaining forest evapotranspiration, and growing in arid and semiarid region.Oriented at commonly occurred soil dry layer problem in artificial economic forest in loesshilly region, this paper aimed at dwarfed drip irrigated densely jujube plantation primarily,widely jujube plantation without irrigation as control, stuied deep root distribution and soilwater profile dynamics. It would have important significance in artificial economic forestwater management and sustainable development. A soil coring method with a LuoYangshovel was used to obtain root sampling from surface to maximum fine root depth until nomore roots in consecutive two soil layers. Through indoor processing and data analysis, fineroot spatial distribution, deep soil water stratifying characteristic based on root distribution,the effect of stand age and drip irrigation on jujube plantation fine root distribution and soilwater were investigated. The main conclusions of this study were as follows:
     (1) Fine root dry weight density (diameter<2mm) decreased with soil depth andincreased with stand age. Horizontally, fine root dry weight density was larger in the nearestof the trunk than other position in2and4-yr-old jujube plantation, while it was higher in thenearest of the trunk and the centre of the four trees in9and12-yr-old jujube plantation, and ithad no significant difference among different horizontal position in the same year old jujubeplantation. Vertically, the relation between fine root dry weight density and soil depthconformed to power function,63%of fine roots concentrated in0-0.6m soil layer. Sequentialcluster stratifying results highlighted the fine root vertical distribution characteristic. Fineroots were divided into three layers, i.e. dense root layer (0-0.6m), diffusion root layer(0.6-1.6m) and sparse root layer (1.6-5m). The fine root dry weight density was619.1,1109.84,1360.14,2319.41g.m~(-3)in2,4,9and12-yr-old jujube plantations respectively. Thetotal fine root dry weight had significant difference among different jujube stands.
     (2) It showed that the maximum fine rooting depth increased with stand age andmaintained stable after9years. The maximum fine rooting depth reached2m in2-yr-old jujube plantation, it extended4m in4-yr-old jujube plantation, it reached5m in a9-year-oldjujube plantation, but it stabilized and did not increase thereafter. And it was5m in9-yr-oldand12-yr-old jujube plantation respectively. The maximum fine root depth extended deepinto the soil rapidly during the first four years, but more slowly in the subsequent five years.The cumulative percent of fine root dry weight density D50was always located in0-0.8m soillayer, but D95extended deeper into soil with stand age.
     (3) Combined with root distribution characteristic, the stratification result of soil watercould well reflect jujube plantation soil water depletion status. Deep soil water (below2m)was divided into three layers, i.e. strong depletion layer (2-4.4m), less strong layer (4.4-5m)and weak depletion layer (5-7m). Root extended deep to absorb soil water gradually withstand age, thus soil water was depleted until wilting point, formed a low soil water zone, andthe low soil water zone was located in the maximum precipitation infiltration depth and themaximum fine root depth. Soil water content decreased gradually between2~(-3).6m, and itwas higher than wilting point in4-yr-old jujube plantation. The low soil water zone wasoccurred in1.8~(-3).6m both in9-yr-old and12-yr-old jujube plantation, and the soil water wasclose to wilting point. It showed that4-yr-old jujube plantation has depleted deep soil waterslightly, fine root has depleted deep soil water completely after9years, and thus there wasserious dried layer in this soil layer. The relationship between fine root dry density and deepsoil water content was negative.
     (4) Irrigation has significant effect on fine root dry weight density, the maximum fineroot depth and soil water content. Fine root dry weight density was higher in densely jujubeplantation than widely plantation, and the total fine root dry weight density was2319.38g.m~(-3)in densely jujube plantation, while it was1969.06g.m~(-3)in widely jujube plantationrespectively. The maximum fine root depth in densely jujube plantation was only half of thewidely jujube plantation, it extended5m and10m respectively. The profile soil watercontent was higher in densely jujube plantation than widely jujube plantation in0-10m soildepth. It was8.52%and6.6%respectively. The low soil water content zone moved up indensely jujube plantation, it located in1.8~(-3).6m in densely jujube plantation and1.8-4.6m inwidely jujube plantation. Irrigation water equivalent to7.4%average rainfall had animportant effect on the maximum rooting depth. Jujube could reasonably adjust root depthaccording to the surface soil water supply status. Although dried layer has occurred in jujubeplantation, drip irrigation could reduce the maximum fine root depth, alleviate deep soil waterconsumption, and inhibit the dried soil layer formation, a certain amount of irrigation couldmaintain the forest land sustainable development.
     This conclusion has important significance in jujube water management and vegetation restoration. It can provide theoretical basis for revealing the process of deep soil waterconsumption in artificial economic forest.
引文
曹扬,赵忠,渠美,成向荣,王迪海.2006.刺槐根系对深层土壤水分的影响.应用生态学报,17(5):765~768
    陈碧珊,潘安定,李冰.2009.有序聚类法在沉积物粒度分带中的应用.安徽农业科学,37(35):17679~17682
    陈光水,杨玉盛,高人,谢锦升,杨智杰,毛艳玲.2008.杉木林年龄序列地下碳分配变化.植物生态学报,32(6):1285~1293
    陈洪松,邵明安,王克林.2005.黄土区荒草地和裸地土壤水分的循环特征.应用生态学报,16(10):1853~1857
    陈杰,刘文兆,张兴昌,侯喜禄,胡梦珺,王兵.2008.黄土丘陵沟壑区林地水文生态效应.生态学报,28(7):2954~963
    陈云明,侯喜禄,刘文兆.2000.黄土丘陵半干旱区不同类型植被水保生态效益研究.水土保持学报,14(3):57~62
    成向荣,黄明斌,邵明安.2007.神木水蚀风蚀交错带主要人工植物细根垂直分布研究.西北植物学报,27(2):321~327
    成向荣,赵忠,郭满才,王迪海,袁志发.2006.刺槐人工林细根垂直分布模型的研究.林业科学,42,(6):40~48
    程立平,刘文兆.2011.黄土塬区土壤水分分布特征及其对不同土地利用方式的响应.农业工程学报,27(9):203~207
    程瑞梅,王瑞丽,肖文发,封晓辉,刘泽彬,葛晓改,王晓荣,张炜银.2012.三峡库区马尾松根系生物量的空间分布.生态学报,32(3):823~832
    丁军,王兆骞,陈欣,张如良.2002.红壤丘陵区林地根系对土壤抗冲增强效应的研究.水土保持学报,16(4):9~12
    董宾芳,石辉,傅瓦利.2007.黄土丘陵区不同植被根系数量特征及离散程度.生态学杂志,26(12):1947~1953
    樊小林,李生秀.1997.植物根系的提水作用.西北农业大学学报,25(5):75~81
    冯文丽,崔洪庆,刘远征.2006.基于有序聚类法的风化岩体定量分带研究.岩土工程技术,(6):297~299
    甘卓亭,刘文兆.2008.渭北旱塬不同龄苹果吸收根空间分布特征.生态学报,28(7):2~7
    高慧璇.2005.应用多元统计分析.北京:北京大学出版社.1,253~259
    顾静,赵景波,周杰,杜娟.2009.咸阳附近苹果林地土壤水分动态与水分平衡研究.自然资源学报,24(5):898~906
    郭风台.1996.土壤水库及其调控.华北水利水电学院学报,(2):72~80
    郭裕新,单公华.2010.中国枣.上海:上海科学技术出版社.
    郭裕新.1982.枣.中国林业出版社.
    郭忠升.2009.半干旱区柠条林利用土壤水分深度和耗水量.水土保持通报,29(5):69~72
    郝兴明,陈亚宁,李卫红,郭斌,赵锐锋.2009.胡杨根系水力提升作用的证据及其生态学意义.植物生态学报,33(6):1125~1131
    何兴东,高玉葆.2003.干旱区水力提升的生态作用.生态学报,23(5):996~1002
    侯庆春,韩蕊莲.黄土高原植被建设中的有关问题.2000.水土保持通报,20(2):53~56
    侯振宏,贺康宁,张小全.2003.晋西黄土高原半干旱区刺槐林分需水量的研究.水土保持学报,17(4):180~183
    胡小宁,赵忠,袁志发,王迪海,郭满才,李剑.2010.黄土高原刺槐林细根生长与土壤水分的耦合关系.林业科学,46(12):30~35
    胡永翔,李援农,张莹.2012.黄土高原区滴灌枣树作物系数和需水规律试验.农业机械学报,43(11):87~91
    胡永颜.2012.不同坡位对21年生闽楠人工林生长及生物量分配的影响.江苏林业科技,39(4):6~8
    黄琳琳,陈云明,王耀凤.2011.黄土丘陵区不同密度人工油松林土壤水分状况研究.西北林学院学报,26(5):1~8
    纪福利.2008.华北落叶松人工林土壤水分变化规律的研究.河北林业,4:29~30
    贾志清,宋桂萍,李清河,孙保平,李昌哲.1997.宁南山区典型流城土坡水分动态变化规律研究.北京林业大学学报,19(3):15-20
    靳军.2013.沙地红枣:我校开启榆林沙区新产业的希望.http://news.nwsuaf.edu.cn/xnxw/37323.html[2013-8-23]
    康博文,刘建军,孙建华,李岩峰.2010.陕北毛乌素沙漠黑沙蒿根系分布特征研究.水土保持研究,17(4):119-123
    李俊,毕华兴,李笑吟,郭孟霞,刘鑫,林靓靓,郭超颖.2007.有序聚类法在土壤水分垂直分层中的应用.北京林业大学学报,29(1):98~101
    李凌浩,林鹏,邢雪荣.1998.武夷山甜储林细根生物量和生长量的研究.应用生态学报,9(4):337~340
    李楠,廖康,成小龙,耿文娟,李永闲,宁万军,邱晨.2012.‘库尔勒香梨’根系分布特征研究.果树学报,29(6):1036~1039
    李鹏,李占斌,赵忠,郑良勇.2002.渭北黄土高原不同立地上刺槐根系分布特征研究.水土保持通报,22(5):15~19
    李鹏,赵忠,李占斌.2004.黄土高原刺槐根系垂直分布特征研究.林业科学,15(2):87~92
    李世荣,张卫强,贺康宁.2003.黄土半干旱区不同密度刺槐林地的土壤水分动态.中国水土保持科学,1(2):28~32
    李唯,倪郁,胡自治,李胜.2003.植物根系提水作用研究述评.西北植物学报,23(6):1056~1062
    李文昌.2005.有序样本聚类法在经济分析中的应用.统计与决策,(2):13~14
    李小芳,李军,王学春,赵玉娟,程积民,邵明安.2007.半干旱黄土丘陵区柠条林水分生产力和土壤干燥化效应模拟研究.干旱地区农业研究,25(3):113~119
    李玉山.1983.黄土区土壤水分循环特征及其对陆地水分循环的影响.生态学报,3(2):91~101
    李玉山.2001.黄土高原森林植被对陆地水循环影响的研究.自然资源学报,16(5):427~432
    李宗新,陈源泉,王庆成,刘开昌,高旺盛,隋鹏.2012.作物学报,38(7):1286~1294
    林希昊,陈秋波,华元刚,杨礼富,王真辉.2011.不同树龄橡胶林土壤水分和细根生物量.应用生态学报,22(2):331~336
    刘昌明,王全肖.1990.土壤-作物-气界面水分过程与节水调控.北京:科学出版社,10
    刘东生,安芷生,文启忠,卢演俦,韩家懋,王俊达,刁桂仪.1978.中国黄土的地质环境.科学通报,23(1):1~19
    刘刚,王志强,王晓岚.2004.吴旗县不同植被类型土壤干层特征分析.水土保持研究,11(1):126~129
    刘荷芬,刘明久.1998.枣树根系分布调查.河南职技师院学报,26(1):107-108
    刘俊,刘崇怀.2006.龙眼葡萄棚架栽培条件下的根系分布.果树学报,23(3):379~383
    刘沛松,郝卫平,李军,贾志宽.2011.宁南旱区苜蓿草地土壤水分和根系动态分布拟合曲线特征.河北农业大学学报,34(4):29~34
    刘晓冰,王光华.2001.根系研究的现状与展望(上).世界林业,8:33~35
    刘艳萍,刘耀兰,刘雅娟.2009.黄土丘陵区枣树栽培技术及管理措施.陕西林业科技,1:66~68
    马理辉,吴普特,汪有科.2012.黄土丘陵半干旱区密植枣林随树龄变化的根系空间分布特征.植物生态学报,36(4):292~301
    马元喜.1999.小麦的根.北京:农业出版社.
    孟秦倩,王健,吴发启,张青峰.2012.黄土山地苹果园土壤水分最大利用深度分析.农业工程学报,28(15):65~71
    米脂政府网.2013.米脂概况:环境资源. http://www.mizhi.gov.cn/lsmc/mzgk/zrhj.htm[2013-5-23]
    苗玉新.2005.大田作物研究法概述.黑龙江农业科学,3:50~52
    穆兴民,徐学选,王文龙,温仲民,杜峰.2003.黄土高原人工林对区域深层土壤水环境的影响.土壤学报,40(2):210~217
    牛海,李和平,赵萌莉,韩雄,董晓红.2008.毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究.干旱区资源与环境,22(2):157~163
    秦玲,魏钦平,李嘉瑞.2006.成龄苹果树形改造对根系生长分布的影响.果树学报,23(1):105~107
    阮成江,李代琼.1999.半干旱黄土丘陵区沙棘林地土壤水分及其对沙棘生长影响研究.水土保持通报,19(5):27~30
    单长卷,梁宗锁.2006.黄土高原刺槐人工林根系分布与土壤水分的关系.中南林学院学报,26(1):19~21
    摄晓燕,谢永生,王辉,鞠艳.2010.主要农用黄绵土典型剖面养分分布特征及历史演变.水土保持学报,24,4
    史建伟,于水强,于立忠,韩有志,王政权,郭大立.2006.微根管在细根研究中的应用.应用生态学报,17(4):715~719
    舒洪岚.2007.探地雷达在植物根系研究中的应用.江西林业科技,(5):32~33
    司建华,冯起,李建林,赵健.2007.荒漠河岸林胡杨吸水根系空间分布特征.生态学杂志,26(1):1~4
    孙力安,刘国彬,梁一民.1994.不同直径土钻测定草地地下生物量方法探讨.中国草地,2:32~35
    孙钦航,成中余,郑建军,刘建辉.1992.枣树根系生长发育的观察.陕西林业科技,4:45
    孙仕军,丁跃元,曹波,田园.2002.平原井灌区土壤水库调蓄能力分析.自然资源学报,17(1):42~47
    孙一琳,王洪英,刘秀萍.2007.黄土高原人工刺槐林土壤水分特征.青岛农业大学学报(自然科学版),24(2):123~126
    孙曰波,赵从凯.2009.根系研究方法进展.潍坊高等职业教育,5(1):52~55
    孙长忠,黄宝龙,陈海滨,刘增文,温仲民.1998.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报,20(3):7~14
    唐守正.1989.多元统计分析方法.北京:中国林业出版社,84~86
    田宇明,王庆成.2011.初植密度对10年生水曲柳人工林生物量及根系的影响.林业科学,47(7):102~107
    田园.1991.地下水开发利用与管理(第一缉).北京:水利电力出版社.
    王晗生.2011.旱区经营人工植被对土壤干化过程的调控.自然资源学报,26(4):562~577
    王浩,杨贵羽,贾仰文,王建华.2006.土壤水资源的内涵及评价指标体系.水利学报,37(4):389~394
    王进鑫,王迪海,刘广全.2004.刺槐和侧柏人工林有效根系密度分布规律研究.西北植物学报,24(12):2208~2214
    王力,邵明安,张青峰.2004.陕北黄土高原土壤干层的分布和分异特征.应用生态学报,15(3):436~442
    王力,邵明安,侯庆春.2000.土壤干层量化指标初探,水土保持学报,14(4):87-90
    王琳琳,陈云明,张飞,王锋利,李寰.2010.黄土丘陵半干旱区人工林细根分布特征及土壤特性.水土保持通报,30(4):27~31
    王锐,刘文兆,李志.2008.黄土塬区10m深剖面土壤物理性质研究.土壤学报,45(3):550~554
    王文全,王世绩,刘雅荣.刘建伟.1994.粉煤灰田立地上杨,柳榆,刺槐根系的分布和生长特点.林业科学,30(1):25~33
    王文全,贾渝彬,胥丽敏,张振江.1997.毛白杨根系分布的研究.河北农业大学学报,20(1):24~29
    王信增,焦峰.2011.基于有序聚类法的土壤水分剖面划分.西北农林科技大学学报(自然科学版),39(2):191~196
    王学春,李军,郝明德.2011.长武旱塬草粮轮作田土壤水分可持续利用模式模拟.农业工程学报,27(Supp1):257~266
    王永东,徐新文,雷加强,李生宇,周智彬,常青,王鲁海,谷峰,邱永志,许波.2008.塔里木沙漠公路防护林带土壤水分动态研究.科学通报,53(SⅡ):89~95
    王永蕙.1993.中国果树志枣卷.北京:中国林业出版社,2~3
    王政权,张彦东,王庆成.1999.水曲柳幼苗根系对土壤养分和水分空间异质性的反应.植物研究,19(3):329~334
    王志强,刘宝元,刘刚,张永萱.2009.黄土丘陵区人工林草植被耗水深度研究,中国科学D辑:地球科学,52(6):835~842
    王志强,刘宝元,王晓岚.2005.黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响.地理研究,24(1):113~120
    王子婷,于洪波,莫保儒,蔡国军,柴春山.2009.定西龙滩流域不同人工植被类型土壤水分动态研究.甘肃林业科技,34(1):14~19
    韦兰英,上官周平.2006.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系.生态学报,26(11):740~3748
    魏国良,汪有科,王得祥,蔺雨阳,杨涛.2010.梨枣人工林有效吸收根系密度分布规律研究.西北农林科技大学学报(自然科学版),38(1):133~138
    魏国良,汪有科,杨涛,蔺雨阳.2010.滴灌条件下梨枣根系分布特征研究.安徽农业科学,38(12):6136~6137,6139
    魏天军,李百云.2009.宁夏旱砂地和灌区枣树根系生长发育调查.现代农业科技,13:87~88
    魏义长,刘作新,康玲玲.2004.辽西淋溶褐土土壤水动力学参数的推导及验证.水利学报,3:81~85
    吴惠梅,李忠慧,朱亮,孙文铁,黄万龙.2008.有序样品聚类的最优分割法在地层特性评价中的应用.石油天然气学报,(2):460~462
    吴普特,汪有科,辛小桂,朱德兰.2008.陕北山地红枣集雨微灌技术集成与示范.干旱地区农业研究,26(4):1~6
    辛小桂,吴普特,汪有科,肖森.2012.山地不同树龄枣园土壤水分状况研究.干旱地区农业研究,30(3):85~89
    徐程扬,张华,贾忠奎,薛康,杜鹏志,王京国.2007.林分密度和立地类型对北京山区侧柏人工林根系的影响.北京林业大学学报,29(4):95~99
    许喜明,陈海滨,原焕英,王辉.2006.黄土高原半干旱区人工林地土壤水分环境的研究.西北林学院学报,21(5):60~64
    杨峰,王文科,刘立,赵贵章,段鹏.2011.毛乌素沙地沙柳根系与土壤水分特征的研究.安徽农业科学,39(26):16050~16052
    杨磊,卫伟,陈利顶,蔡国军,贾福岩.2012.半干旱黄土丘陵区人工植被深层土壤干化效应.地理研究,31(1):71~80
    杨丽韫,罗天祥,吴松涛.2007.长白山原始阔叶红松林及其次生林细根生物量与垂直分布特征.9(27):3609~3617
    杨文治,韩仕峰.1985.黄土丘陵区人工林草地的土壤水分生态环境,中国科学院西北水土保持研究所集刊,2:18~28
    杨文治,邵明安.2000.黄土高原土壤水分研究.北京:科学出版社:272~274
    杨文治,田均良.2004.黄土高原土壤干燥化问题探源.土壤学报,41(1):1~6
    杨文治.2001.黄土高原土壤水资源与植树造林.自然资源学报,16(5):433~438
    杨喜田,杨小兵,曾玲玲,范增伟.2009.林木根系的生态功能及其影响根系分布的因素.河南农业大学学报,43(6):681~690
    杨新民,杨文治,马玉玺.1994.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究.水土保持研究,3(1):31~35
    杨秀云,韩有志,张芸香.2008.距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化.植物生态学报,32(6):1277~1284
    雍文,魏卫东,马振江,杜玉泉,咸慧智,喻菊芳.2006.灵武长枣树根系观察.宁夏农林科技,1:7~8
    由懋正,王会肖.1996.农田土壤水资源评价.北京:气象出版社,45~51
    于顺龙.2009.坡向、坡位对水曲柳中龄林生长与生物量分配的影响.内蒙古林业调查设计,32(1):54~56
    余锦华,杨维权.2005.多元统计分析.广州:中山大学出版社,181~183
    余新晓,张建军,朱金兆.1996.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,32(4):289~297
    榆林统计局.2012.榆林市2011年红枣喜获丰收,产量创历史新高达48.8万吨.http://www.sei.gov.cn/ShowArticle.asp?ArticleID=220861.html [2012-2-29]
    袁国富,张佩,薛沙沙,庄伟.2012.沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据.植物生态学报,36(10):1033~1042
    张劲松,孟平.2004.石榴树吸水根根系空间分布特征.南京林业大学学报(自然科学版),28(4):89~91
    张俊娥.2001.中国枣品种资源花粉生物学特性研究.[硕士学位论文].太谷:山西农业
    张立华.2006.海岸沙地木麻黄人工林细根生态学研究.[硕士学位论文].福州:福建农林大学
    张利,张彩英,彭春香.1990.沧州地区土壤水资源研究.自然资源学报,5(3):230~235
    张良德,徐学选,胡伟,李星.2011.黄土丘陵区燕沟流域人工刺槐林的细根空间分布特征.林业科学,47(11):31~38
    张学龙,车克均,王金叶,闫文德,张虎.1998.祁连山寺大隆临朐土壤水分动态研究.西北林学院学报,13(1):1-9
    张学权.2003.林地土壤水分研究概述.西昌农业高等专科学校学报,17(1):81~84
    张尧庭,方开泰.2003.多元统计分析.北京:科学出版社:352~358
    张义,谢永生,郝明德.2011.黄土高原沟壑区塬面苹果园土壤水分特征分析.土壤,43(2):293~298
    张义,谢永生,江青龙.2010.不同生产力水平苹果园土壤水分空间异质性.生态学杂志,2010,29(7):1326~1332
    张永清,苗果园.2006.切断深层根对黍子根系及地上部营养生长的影响.干旱地区农业研究,24(1):134~137
    张志山,李新荣,张景光,王新平,赵金龙,陈应武.2006.用Minirhizotron观测柠条根系生长动态.植物生态学报,30(3):457~464
    赵雨明,卢桂宾,史敏华,郭金武,张永红.1998.旱坡地枣树密植园密度与根系关系的研究.山西林业科技,12(4):10~14
    赵玉娟,李军,王学春,李小芳,邵明安.2007.延安油松人工林地水分生产力于土壤干燥化效应模拟.西北农林科技大学学报(自然科学版),35(7):61~68
    赵忠,成向荣,薛文鹏,王迪海,袁志发.2006.黄土高原不同水分生态区刺槐细根垂直分布的差异.林业科学,42(11):1~7
    赵忠,李剑,袁志发,胡小宁,曹扬,王迪海.2009.黄土沟坡刺槐林地土壤水分垂直变化的数学模型.林业科学,45(10):9~13
    赵忠,李鹏,王乃江.2000.渭北黄土高原主要造林树种根系分布特征的研究.应用生态学报,11(2):38~40
    朱显谟.1989.黄土高原土壤与农业.北京:农业出版社.109
    朱小虎,陈虹,张立宇.2009.核棉间作下核桃根系生长及与地上部生长相关性研究.北方园艺,(8):104~106
    朱衍杰,张秀省,穆红梅,董平.2012.植物根系生长与研究方法的进展.北方园艺,(20):176~179
    祝廷成.2004.羊草生物生态学.长春:吉林科学技术出版社.
    邹厚远,鲁子瑜,刘克俭,古晓林.1991.沙打旺种群对土壤水分的影响及其调节.生态学杂志,10(3):15~17
    Aber J D, Melillo J M, Nadelhoffer K J, Mcclaugherty C A, Pastor J.1985. Fine root turnover in forestecosystems in relation to quantity and form of nitrogen availability—a comparison of2methods.Oecologia,66:317~321
    Achat D L, Bakker M R, Trichet P.2008. Rooting patterns and fine root biomass of Pinus pinaster assessedby trench wall and core methods. Journal of Forest Research,13(3):165~175
    Amy A M, Libby A S.2007. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas,based on stable isotopes in water. Journal of Hydrology,342:238~248
    Andersen C P,Phillips D L,Rygiewicz P T,Storm M J.2008. Fine root growth and mortality indifferent-aged ponderosa pine stands.Canadian Journal of Forest Research,38(7):1797~1806
    Araguás S-Araguás L, Rozanski K, Plata Bedmar A, Tundis Vital A R, Tancredi A C, Franken W.1995.Changes of soil water balance due to forest clearing in the central Amazon region. In: Solutions’95,managing the effects of man’s activities on groundwater, IAH International Congress XXVI. Alberta:CDROM, Mow-Technology Ltd.
    Araki H,Iijima M.2005.Stable isotope analysis of water extraction from subsoil in upland rice (Oryzasativa L) as affected by drought and soil compaction, Plant Soil,270(1-2):147~157
    Azevedo P V, da Silva B B, da Silva, V P R.2003. Water requirements of irrigated mango orchards innortheast in northeast Brazil. Agriculture Water Management,58(3):241~254
    Bakker E G, Stahl E A, Toomajian C, Nordborg M, Kreitman M, Bergelson J.2006. Distribution of geneticvariation within and among local populations of Arabidopsis thaliana over its species-range. MolecularEcology,15:1405~418
    Bakker M R, Turpault M P, Huet S, Nys C.2008. Root distribution of Fagus sylvatica in a chronosequencein western France. Journal of Forest Research,13:176~184
    Baran N, Jean R, Mouvet C.2007. Field data and modeling of water and nitrate movement through deepunsaturated loess. Journal of Hydrology,345:27~37
    Barton C V M, Montagu K D.2004. Detection of tree roots and determination of root diameters by groundpenetrating radar under optimal conditions. Tree Physiol,24:1323~1331
    Blume H P,Zimmermann U, Munnich K O.1967. Tritium tagging of soil moisture: the water balance offorest soils. In: Isotope and radiation techniques in soil physics and irrigation studies, proceedings of asymposium. Vienna: International Atomic Energy Agency:315~332
    B hm W, K pke.1977. Comparative root investigations with two profile wall methods. ZAcker-Pflanzenbau,144:297~303
    B hm W.1976. In situ estimation of root length at natural soil profiles. J Agric Sci,87:365~368
    Bongarten B C, Teskey R O.1987. Dry weight partitioning and its relationship to productivity inloblolly pine seedlings from seven sources. Forest Science,33:255~267
    Bouillet J P, Laclau J P, Ardnaud M, M’Bou A T, Saint-Andre L, Jourdan C.2002. Changes with age in thespatial distribution of roots of Eucalyptus clone in Congo: impact of water and nutrient uptake. ForestEcology Management,171:43~57
    Bravdo B A, Levin I, Assaf R.1992. Control of root size and root environment of fruit trees for optimalfruit production. Journal of Plant Nutrition,15:699-712
    Brooks J R, Meinzer F C, Coulombe R, Gregg J.2002. Hydraulic redistribution of soil water duringsummer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol,22,1107~1117
    Burgess S S O, Adams M A, Turner N C, Ong C K.1998. The redistribution of soil water by tree rootsystems. Oecologia,115:306~311
    Burton A J, Pregitzer K S, Hendrick R L.2000. Relationships between fine root dynamics and nitrogenavailability in Michigan northern hardwood forests. Oecologia,125,389~399
    Butnor J R, Doolittle J A, Johnsen K H, Samuelson L, Stokes T, Kress L.2003. Utility ofground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci Soc Am J,67:1607~1615
    Caldwell M M, Richards J H.1986. Competing root systems: morphology and models of absorption. In:Givnish T J. On the economy of plant form and function. Cambridge: Cambridge University Press,251~273
    Caldwell M M, Richards J H.1989. Hydraulic lift: water efflux from upper roots improves effectiveness ofwater uptake by deep roots. Oecologia,79,1~5
    Canadell J, Jackson R B, Ehleringer J R, Mooney H A, Sala O E, Schulze E D.1996. Maximum rootingdepth of vegetation types at the global scale. Oecologia,108,583~595
    Cao K.2000. Water relations and gas exchange of tropical saplings during a prolonged drought in aBornean heath forest, with reference to root architecture. Journal of tropical ecology,16:101~116
    Chahine M T.1992. The hydrological cycle and its influence on climate. Nature,359(6394):373~380
    Chen H S,Shao M A, Li Y Y.2008. Soil desiccation in the Loess Plateau of China. Geoderma,143:91~100
    Cheng X R,Huang M B, Shao M A.2009. A comparison of fine root distribution and water consumption ofmature Caragana korshinkii Kom grown in two soils in a semiarid region, China. Plant soil,315:149~161
    Claus A, George E.2005. Effect of stand age on fine-root biomass and biomass distribution in threeEuropean forest chronosequences. Canadian Journal of Forest Research,35(7):1617~1625
    da Silva E V, Bouillet J P, Goncalves J L D, Abreu C H, Trivelin P C O, Hinsinger P, Jourdan C,Nouvellon Y, Stape J L, Laclau J P.2011. Functional specialization of Eucalyptus fine roots: contrastingpotential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. FunctionalEcology,25(5):996~1006
    Dawson T E, Pate J S.1996. Seasonal water uptake and movement in root systems of Australianphraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia,107:13~20
    Desborough C E.1997. The impact of root weighting on the response of transpiration to moisture stress inland surface schemes. Monthly Weather Review,125(8):1920~1930
    Dickmann D I, Nguyen P V, Pregitzer K S.1996. Effects of irrigation and coppicing on above-groundgrowth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones. For Ecol Manage,80,163~174
    Dixon R K, Brown S, Houghton R A, Solomon A M, Trexler M C, Wisniewski J.1994. Carbon pools andflux of global forest ecosystems. Science,263:185~190
    Eissenstat D M, Caldwell M M.1988. Seasonal timing of root growth in favorable microsites. Ecology,69,870~873
    Eissenstat D M, Yanai R D.2002. Root life span, efficiency, and turnover. New York: Marcel Dekker,221~238
    Feddes R A, Coauthors.2001. Modeling root water uptake in hydrological and climate models. Bull AmerMeteor Soc,82,2797~2809
    Finer L, Helmisaari H S, Lohmus K, Majdi H, Brunner I, Borja I, Eldhuset T, Godbold D, Grebenc T,Konopka B, Kraigher H, Mottonen M R, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E.2007.
    Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.),Norway spruce(Picea abies L.Karst) and Scots pine (Pinus sylvestris L.). Plant Biosystems,141:394~405
    Fleischer F, Eckel S, Schmid I, Schmidt V, Kazda M.2006. Point process modelling of root distribution inpure stands of Fagus sylvatica and Picea abies. Canadian Journal of Forest Research,36(1):227~237
    Gale M R,Grigal D F,Harding R B.1991.Soil productivity index: predictions of site quality for whitespruce plantations. Soil Science Society of America Journal,55(6):1701-1708
    Gaudinski J B, Trumbore S E, Davidson E A, Cook A C, Markewitz D, Richter D.2001. The age of fineroot carbon in three forests of the eastern United States measured by radio carbon. Oecologia,129:420~429
    Gill R A, Jackson R B.2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol,147:13~31
    Gonfiantini R, Gratziu S, Tongiorgi E.1965. Oxygen isotopic composition of water in leaves. In: Isotopesand radiation in soil–plant nutrition studies, proceedings of a symposium. Vienna: International AtomicEnergygency,405~410
    Govindarajan M, Rao M R, Mathuva M N, Nair P K R.1996.Soil water and root dynamics under hedgerowintercropping in semiarid Kenya. Agronomy Journal,88:4,513-520
    Gregory P J.1989. Water-use efficiency of crops in the semiarid tropics. International Crops ResearchInstitute for the Semi-Arid Tropics (ICRISAT), Patancheru, India,85~98
    Grolke N A, Retzlaff W A.2001. Changes in physiological attributes of ponderosa pine from seedling tomature tree. Tree Physiology,21(5):275~286
    Hager M D,Edward T.1989. My favorite tree, the jujube. California Rare Fruit GrowersNewsletter,21:31~32
    Hendrick R L, Pregitzer K S.1993. Patterns of fine root mortality in2sugar maple forests. Nature,361:59~61
    Hendrick R L, Pregitzer K S.1996. Temporal and depth-related patterns of fine root dynamics in northernhardwood forests. J Ecol,84,167~176
    Hodnett M G, Pimentel da Silva L, da Rocha H R, Cruz Senna R.1995. Seasonal soil water storage changesbeneath central Amazonian rainforest and pasture. Journal of Hydrology,170:233~254
    Jackson P C, Cavelier J, Goldstein G, Meinzer F C, Holbrook N M.1995. Partitioning of water resourcesamong plants of a lowland tropical forest. Oecologia,101:197~203
    Jackson P C, Meinzer F C, Bustamante M, Goldstein G, Franco A, Rundel P W, Caldas L, Igler E, Causin F.1999. Partitioning of soil water among tree species in a Brazilian cerrado ecosystem. Tree Physiology,19:717~724
    Jackson R B, Canadell J E, Hleringer J R, Mooney H A, Sala O A, Schulze E D.1996. A global analysis ofroot distributions for terrestrial biomes. Oecologia,108:389~411
    Jackson R B, Mooney H A, Schulze E D.1997. A global budget for fine root biomass, surface area, andnutrient contents. Proceedings of the National Academy of Sciences,94(14):7362~7366
    Jackson R B, Schenk H J, Jobbagy E G, Canadell J, Colello G D, Dickinson R E, Field C B, FriedlingsteinP, Heimann M, Hibbard K, Kicklighter D W, Kleidon A, Neilson R P, Parton W J, Sala O E, Sykes M T.2000. Belowground consequences of vegetation change and their treatment in models. EcologicalApplications,10:470~483
    Jipp P H, Nepstad D C, Cassel D K, De Carvalho C R.1998. Deep soil moisture storage and transpirationin forest and pastures of seasonally dry Amazonia, Climate Change,39:395~412
    Kaduk J, Heimann M.1996. A prognostic phenology scheme for global terrestrial carbon cycle models.Climate Research,6,1~19
    K tterer T, Fabiao A, Madeira M, Ribeiro C, Steen E.1995. Fine root dynamics, soil moisture and soilcarbon content in a Eucalyptus golbulus plantation under different irrigation and fertilization regimes. ForEcol Manage,74,1~12
    Kleidon A, Heimann M.1998a. Optimized rooting depth and its impacts on the simulated climate of anatmospheric general circulation model. Geophysical Research Letters,25(3),345~348
    Kleidon A, Heimann M.1998b. A method of determining rooting depth from a terrestrial biosphere modeland its impacts on the global water and carbon cycle. Global Change Biol,4:275~286
    Kleidon A.2003. Global datasets of rooting zone depth inferred from inverse methods. Journal ofClimate,17:2714~2722
    Kline J R, Jordan C F.1968. Tritium movement in soil of tropical rain forest. Science,160:550~551
    Knorr W.1997. Satellitengestuetzte Fernerkundung und Modellierung des globalen CO2-Austauschs derLandvegetation: Versuch einer Synthese.[PhD thesis]. Germany: University of Hamburg
    Kolesnikov V A.1968. Dynamics of the growth of roots system in fruit plants. Indian J Hortic,25,37~40
    Kosola K R, Eissenstat D M.1994. The fate of surface roots of citrus seedlings in dry soil. J ExpBot,45,1639~1645
    Kozlowski T T, Kramer P J, Pallardy S G.1991. The physiological ecology of woody plants,2ndedn. SanDiego, CA, USA: Academic Press Ltd.
    Kulenkamp A, Durmanov D.1974. Geno und ph notypische Besonderheiten der Wurzelsysteme beiimmergrünen und laubabwerfenden Obstarten. Beitr trop landwirtsch veterin rmed,12:57~68
    Lee J E, Oliveira R S, Dawson T E, Fung I.2005.Root functioning modifies seasonal climate.Proceedingsof the National Academy of Sciences of the United States of America,102(49):17576~17581
    Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M.2001. Drought responses atleaf, stem and fine root levels of competitive Fagus sylvatical L. and Quercus petraea (Matt.) Liebl. treesin dry and wet years. For Ecol Manage,149,33~46
    Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, H lscher D.2004. Stand fine root biomass and fineroot morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil,258,43~56
    Liu M.2006. Chinese jujube: Botany and horticulture. Hort Rev,32:229~298
    L sch R.2001. Wasserhaushalt der Pflanzen Quelle und Meyer. Wiebelsheim.
    Ludwig F, Dawson T E, Kroon H, Berendse F, Prins H H T.2003. Hydraulic lift in Acacia tortilis trees onan East African savanna. Oecologia,134:293~300
    Lyr H, Hoffmann G.1967. Growth rates and growth periodicity of tree roots. Inter Rev For Res,2:181~236
    Ma L H, Liu X L, Wang Y K, Wu P T.2013. Effects of drip irrigation on deep root distribution, rootingdepth, and soil water profile of jujube in a semiarid region. Plant Soil, DOI:10.1007/s11104-013-1880-0
    Ma L H, Wu P T, Wang Y K.2012. Spatial distribution of roots in a dense jujube plantation in the semiaridhilly region of the Chinese Loess Plateau. Plant Soil,354:57~68
    Mainiero R, Kazda M.2006. Depth-related fine root dynamics of Fagus sylvatica during exceptionaldrought. Forest ecology and management,237:135~142
    Mainiero R.2013. Minirhizotrons. In: Helmisaari H S, Brunner I. Handbook in methods used inrhizosphere research, chapter1.2. Root growth and morphology, in press.
    Makkonen K, Helmisaari H S.2001. Fine root biomass and production in Scots pine stands in relation tostand age. Tree Physiology,21:193~198
    Mark T.van Wijk.2011. Understanding plant rooting patterns in semi-arid systems: an integrated modelanalysis of climate, soil type and plant biomass. Global ecology and biogeography,20,331~342
    Marshall J D.1986. Drought and shade interact to cause fine-root mortality in Douglas-fir seedlings. PlantSoil,91,51~60
    Marshall T J, Holmes J W, Rose C W.1996. Soil physics. New York: Cambridge University Press.
    Matyssek R, Maruyama S, Boyer J S.1991. Growth-induced water potentials may mobilize internal waterand nitrogen. Plant, Cell Environ,14,917~923
    McCulley R L, Jobbágy E G, Pockman W T, Jackson R B.2004. Nutrient uptake as a contributingexplanation for deep rooting in arid and semi-arid ecosystems. Oecologia,141:620~628
    Meinzer F C, Andrade J L, Goldstein G, Holbrook N M, Cavelier J, Wright S J.1999. Partitioning of soilwater among canopy trees in a seasonally dry tropical forest. Oecologia,121(3):293~301
    Meinzer F C, Clearwater M J, Goldstein G.2001. Water transport in trees: current perspectives, newinsights and some controversies. Environmental and Experimental Botany,45:239~262
    Milchunas D G, lauenroth W K.1992. Carbon dynamics and estimates of primary production by harvest,14C dilution, and14C turnover. Ecology,73:593~607
    Milly P C D, Dunne K A.1994. Sensitivity of the global water cycle to the water-holding capacity of land.J. Climate,7,506~526
    Mooney H A, Gulmon S L, Rundel P W, Ehleringer J R.1980. Further obsdervatioons on the waterrelations of Prosopis tamarugo of the Northern Atacama Desert. Oecologia,44:177~180
    Moreira M Z, Sternberg L D L, Nepstad D C.2000. Vertical patterns of soil water uptake by plants in aprimary forest and an abandoned pasture in the Eastern Amazon: an isotopic approach. Plant Soil,22(2):95~107
    Nepstad D C, de Carvalho C R, Davidson E A, Jipp P H, Lefebvre P A, Negreiros H G, da Silva E D, StoneT A, Trumbore S E, Vieira S.1994. The role of deep roots in the hydrological and carbon cycles ofAmazonian forests and pastures. Nature,372,666~669
    Nippert J B, Wieme R A, Ocheltree T W, Craine J M.2012. Root characteristics of C4grasses limit relianceon deep soil water in tall grass prairie. Plant Soil,355(1-2):385~394
    Oliveira R S, Bezerra L, Davidson E A, Pinto F, Klink C A, Nepstad D C, Moreira A.2005. Deep rootfunction in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology,19:574~581
    Osama K, Onoe M, Yamada H.1985. NMR imaging for measuring root system and soil water content.Environ Contol Biol,23:99~102
    Ostonen I, Lohmus K, Pajuste K.2005. Fine root biomass, production and its proportion of NPP in a fertilemiddle aged Norway spruce forest: Comparison of soil core and in growth core methods. Forest Ecologyand Management,212:264~277
    Pallardy S G, Rhoads J L.1993. Morphological adaptations to drought in seedlings of deciduousangiosperms. Canadian Journal of Forest Research,23:1766~1774
    Parker M M, Van Lear D H.1996. Soil heterogeneity and root distribution of mature loblolly pine stands inpiedmont soils. Soil Science Society of America Journal,60:1920~1925
    Passioura J B.2002. Soil conditions and plant growth. Plant, Cell&Environment,25:311~318
    Persson H.1980. Spatial distribution of fine-root growth, mortality and decomposition in a young Scotspine stand in central Sweden. Oikos,34(1):77~87
    Ponti F, Minotta G, Cantoni L, Bagnaresi U.2004. Fine root dynamics of pedunculate oak andnarrow-leaved ash in a mixed-hardwood plantation in clay soils. Plant Soil,259,39~49
    Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, Klooster S A.1993.Terrestrial ecosystem production: A process model based on global satellite and surface data. GlobalBiogeochemical Cycels,7(4):811~841
    Pregitzer K S, Hendrick R L, Fogel R.1993. The demography of fine roots in response to patches of waterand nitrogen. New Phytol,125,575~580
    Proffitt A P B,Berliner P R,Oosterhuis D M.1985. A comparative study of root distribution and waterextraction efficiency by wheat grown under high-and low-frequency irrigation. Agronomy Journal,77:655~662
    Psssioura J B.2002. Soil conditions and plant growth. Plant,Cell and Environment,25(2):311~318
    Püttsepp ü, Lohmus K, Persson H A, Ahlstrom K.2006. Fine-root distribution and morphology in an acidicNorway spruce (Picea abies (L.) Karst.) stand in SW Sweden in relation to granulated wood ash application.Forest Ecology and Management,221:291~298
    Raich J W, Nadelhoffer K J.1989. Belowground carbon allocation in forest ecosystems—global trends.Ecology,70:1346~1354
    Raich J W, Rastetter E B, Melillo J M, Kicklighter D W, Steudler P A, Peterson B J, Grace A L, Moore I I IB, V r smarty C J.1991. Potential net primary productivity in South America: Application of a globalmodel. Ecological Applications,1(4):399~429
    Rebetez M, Dobbertin M.2004. Climate change may alter already threaten Scots pine stands in the SwissAlps. Theor Appl Climatol,79,1~9
    Richards J H, Caldwell M M.1987. Hydraulic lift: substantial nocturnal water transport between soil layersby Artemisia tridentate roots. Oecologia,73:486~489
    Robinson N, Harper R, Smettem K.2006. Soil water depletion by Eucalyptus spp. integrated into drylandagricultural systems. Plant Soil,286(1):141~151
    Romero-Saltos H, Sternberg L da S L, Moreira M Z, Nepstad D C.2005. Rainfall exclusion in an easternamazonian forest alters soil water movement and depth of water uptake. American Journal of Botany,92(3):443~455
    Sanantonio D, Hermann R K.1985. Standing crop, production, and turnover of fine roots on dry, moderate,and well watered sites of mature Douglas-fir in western Oregon. Ann Sci For,42,113~142
    Sanford R L J, Cuevas E.1996. Root growth and rhizosphere interactions in tropical forest. New York:Chapman and Hall,268~300
    Sarmiento G, Goldstein G, Meinzer F.1985. Adaptive strategies of woody species in neotropical savannas.Biological Reviews of the Cambridge Philosophical Society,60(3):315~355
    Sayer E J, Tanner E V J, Cheesman A W.2006. Increased litter fall changes fine root distribution in a moisttropical forest. Plant Soil,281:5~13
    Schenk H J, Jackson R B.2002a. The global biogeography of roots. Ecol Monogr,72:311~328
    Schenk H J, Jackson R B.2002b. Rooting depths, lateral root spreads and below-ground/above-groundallometries of plants in water-limited ecosystems. Journal of Ecology,90(3):480~494
    Schenk H J, Jackson R B.2005. Mapping the global distribution of deep roots in relation to climate and soilcharacteristics. Geoderma,126:129~140
    Schmid I, Kazda M.2001. Vertical distribution and radial growth of coarse roots in pure and mixed standsof Fagus sylvatica and Picea abies. Canadian Journal of Forest Research,31:539~548
    Schulze E D, Mooney H A, Sala O E, Jobbagy E, Buchmann N, Bauer G, Canadell J, Jackson R B, Loreti J,Oesterheld M, Ehleringer J R.1996. Rooting depth, water availability, and vegetation cover along anaridity gradient in Patagonia. Oecologia,108(3):503~511
    Singh K P, Srivastava S K.1985. Seasonal variations in the spatial distribution of root tips in teak (Tectoniagrandis Linn.f.) plantations in the Varasani Forest Division. Plant Soil,84,93~104
    Smit A L, George E, Groenwold J.2000. Root observations and measurements at (transparent) interfaceswith soil. Berlin: Springer-Verlag,235~256
    Smit A L, Bengough A G, Engels C.2000. Root Methods A Handbook. Berlin:Springer,147~233
    Smucker A J M, Aiken R M.1992. Dynamics root responses to water deficits. Soil Science,154,281~289
    Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L.2007. Climatechange: the physical science basis. Contribution of Working Group I to the fourth assessment report of theIntergovernmental Panel on Climate Change. Cambridge, UK&New York, NY, USA: CambridgeUniversity Press
    Sperry J S, Stiller V, Hacke U G.2002. Soil water uptake and water transport through root systems. NewYork: Marcel Dekker Inc,663~681
    Stephen S O B, Mark A A, Neil C T, Don A W, Chin K O.2001. Tree roots: conduits for deep recharge ofsoil water. Oecologia,126:158~165
    Stone E L, Kalisz P J.1991. On the maximum extent of tree roots. Forestry and EcologicalManagement,46,59~102
    Suarez M L, Ghermandi L, Kitzberger T.2004. Factors predisposing episodic drought-induced treemortality in Nothofagus-site, climatic sensitivity and growth trends. J Ecol,92,954~966
    Tallon L K, Si B C.2004. Representative soil water benchmarking for environmental monitoring. Journalof Environmental Informatics,4:28~36
    Tanasescu N, Paltineanu C.2004. Root distribution of apple tree under various irrigation systems within thehilly region of Romania. International Agrophysics,18:175~180
    Torreano S J, Morris L A.1998. Loblolly pine root growth and distribution under water stress. Soil Sci SocAm J,62,818~827
    van Buijtenen J P, Bilan V, Zimmerman R H.1976. Morphophysiological characteristics related to droughtresistance in Pinus taeda. In: Cannell M G R, Last F T. Tree physiology and yield improvement.London:Aacademic Press,348~359
    Vogt K A, Grier C C, Meier C E.1983. Organic matter and nutrient dynamics in forest floors of young andmature Abies amabilis stands in western Washington, as affected by fine-root input. EcologicalMonographs,53:139~157
    Wang Y Q, Shao M A, Liu Z P.2013. Vertical distribution and influencing factors of soil water contentwithin21-m profile on the Chinese Loess Plateau. Geoderma,193-194:300~310
    Wang Y Q, Shao M A, Shao H B.2010. A preliminary investigation of the dynamic characteristics of driedsoil layers on the Loess Plateau of China. Journal of Hydrology,381(1-2):9~17
    Warren J M, Meinzer F C, Brooks J R, Domec J C.2005. Vertical stratification of soil water storage andrelease dynamics in Pacific Northwest coniferous forests. Agricultural and Forest Meteorology,130:39~58
    Wells C E, Eissenstat D M.2001. Marked differences in survivorship among apple roots of differentdiameters. Ecology,82:882~892
    Wershaw R L, Friedman I, Heller S J, Frank P A.1970. Hydrogen isotopic fractionation of water passingthrough rees. In: Hobson G D, Speers G C. Advances in organic geochemistry, proceedings of the ThirdInternational Congress on Organic Geochemistry. New York: Pergamon Press:55~67
    Woods F W, O’Neal D.1965. Tritiated water as a tool for ecological field studies. Science,147:148~149Yavitt J B, Wright S J.2001. Drought and irrigation effects on fine root dynamics in a tropical moist forest,Panamá. Biotropica,33:421~434
    Yu G R, Zhuang J, Nakayama K, Jin Y.2007. Root water uptake and profile soil water as affected byvertical root distribution. Plant Ecology,189:15~30
    Yuan Z Y, Chen H Y H.2010. Fine root biomass, production,turnover rates, and nutrient contents in borealforest ecosystems in relation to species, climate, fertility and stand age: literature review and meta-analyses.Critical Reviews in Plant Sciences,29(4):204~221
    Zeng X B, Dai Y J, Dickinson R E, Shaikh M.1998. The role of root distribution for climate simulationover land. Geophysical Research Letters,25(24):4533~4536
    Zhou Z C, Shangguan Z P.2007. Vertical distribution of fine roots in relation to soil factors in Pinustabulaeformis Carr.forest of the Loess Plateau of China. Plant Soil,291:119~129
    Zhu X M, Li Y S, Peng X L, Zhang S G.1983. Soils of the loess region in China. Geoderma,29(3):237~255
    Zimmermann U, Ehhalt U D, Munnich K O.1967a. Soil-water movement and evapotranspiration: changesin the isotopic composition of the water. In: Isotopes in hydrology symposium, proceedings of asymposium. Vienna: International Atomic Energy Agency,567~585
    Zimmermann U, Munnich K O, Roether W, Kreutz W, Schubach K, Siegel O.1966. Tracers determinemovement of soil moisture and evapotranspiration. Science,152:346~347
    Zimmermann U, Munnich K O, Roether W.1967b. Downward movement of soil moisture traced by meansof hydrogen isotopes. In: Stout G E.Isotope techniques in the hydrologic cycle: a symposium at theUniversity of Illinois. Geophysical Monograph Series11. Washington D C: American Geophysical Union:28~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700