用户名: 密码: 验证码:
下挖式日光温室土墙温度和热流变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为增加日光温室的保温性能,出现了下挖式厚土墙日光温室,并在我国北方地区快速推广使用。但是,由于缺乏理论指导,该类型温室普遍存在墙体厚度过大、耕作层土壤破坏较大、土地利用率不高的问题,需通过系统研究,明确土墙合理的建造参数,为生产提供理论指导。
     为此,本研究于2011年12月~2012年3月,在山东省寿光市选取具有代表性的下挖式日光温室为研究对象,对土质后墙不同厚度层的温度和热流、墙体内侧不同高度处温度、温室内土壤不同深度温度和热流及室内外气温和太阳辐射进行了连续观测,分析了墙体不同厚度层温度和热流的变化以及与室内外气温和太阳辐射的关系、墙体内侧不同高度处温度的变化,在此基础上比较分析了温室内墙体和土壤温度与热流的变化。主要结果如下:
     (1)明确了冬季土墙温度和热流的变化
     冬季,墙体各层温度呈先降低再升高的趋势,与室内外气温的季节变化趋势一致。沿墙体的厚度方向,墙体温度总体上由内侧表面到外侧表面呈不断降低的趋势。墙体内侧表面、外侧覆盖层表面温度和热流的变化幅度大,分别与室内外气温的变化趋势相同,墙体温度、热流的变化幅度从浅层到深层依次减小,墙体内侧温度、热流变化幅度较大的层次多于外侧。连阴天条件下,墙体内侧各层温度都有不同程度的下降,向室内放热的层次不断加深,而墙体外侧各层次以向室外放热为主。
     (2)摸清了土墙温度和热流与室内外气温和太阳辐射的关系
     墙体内外侧表层的温度与气温和太阳辐射具有极显著的正相关,且与气温的相关性高于与太阳辐射的相关性,墙体温度受气温的影响高于受太阳辐射的影响。墙体内各层次与气温和太阳辐射没有直接相关性,墙体内侧或外侧各层次之间具有较高的相关性,相邻两层间温度的相关性最高,随距离增加两层间相关性减小。
     墙体内侧表层的热流与气温和太阳辐射呈极显著的正相关,且与太阳辐射的相关性高于与气温的相关性,墙体内侧热流受室内太阳辐射的影响大;而覆盖层外表面、墙体外表面与室外气温和太阳辐射呈显著的负相关,且与气温的相关性高于与太阳辐射的相关性,墙体外侧热流受室外气温的影响大。除表层外,墙体内外侧各层热流与太阳辐射没有直接相关性。
     墙体内侧表面至深度0.4m的热流与气温的相关性随深度增加而减小,其余墙体内各层次热流与气温没有直接相关性,表明气温和太阳辐射对墙体热流的影响主要在墙体表层。墙体内侧或外侧除表层外各层次之间的热流具有较高的相关性,且相邻两层之间的相关性最高,随两层间距离的增大相关性减小。
     (3)明确了墙体内侧不同高度处温度的变化
     冬季,墙体内侧不同高度处的温度呈先降低再升高的趋势,与室内气温的季节变化趋势一致。不同高度处,墙体温度总体上从表面到深层均呈不断降低的趋势,不同高度处表面的温度都高于室内气温,墙体各部分对维持室内气温都具有重要作用。
     同一深度处,随高度增加,墙体温度呈不断降低趋势,有热流不断从墙体下部向上部传递。在1月连阴天条件下,墙体上部向室内传热的层次达到0.6m,而中、下部向室内传热的层次达到1.0m,墙体中下部对室内气温的贡献大于上部。
     (4)比较了温室内墙体和土壤不同深度温度与热流的变化
     冬季,温室内墙体和土壤温度均呈先降低再升高的趋势,与室内气温的变化趋势相同。墙体和土壤表面温度变化幅度大,晴天时两表面温差较大、阴天较小。随深度的增加,墙体和土壤温度的变化幅度均不断减小,且相同深度处墙体温度的变化幅度高于土壤。
     墙体和土壤表面的热流变化幅度大,随深度增加,热流的变化幅度均减小,且相同深度处墙体的热流变化幅度大于土壤。晴天墙体和土壤热流的变化幅度明显大于阴天,且晴天吸热时间比阴天长;墙体和土壤表面热流晴天时相差较大,阴天时相差较小。不论墙体或土壤,晴天时向室内放热的层次主要是深度0.2m,阴天时向室内放热的层次为深度0.2~0.4m。
     不论晴天或阴天,墙体单位面积的吸放热量均大于土壤的吸放热量,土壤的吸放热总量总体上大于墙体的吸放热总量。墙体和土壤单位面积的吸热量与太阳辐射累积量具有显著的相关性,墙体和土壤的放热对维持室温均有重要作用。
     (5)提出了寿光地区下挖式日光温室土墙的适宜厚度
     根据墙体温度和热流的变化,把墙体从内到外划分为蓄热层、过渡层和御冷层,其厚度分别为0.8~1.0m、2.2~2.6m和0.4~0.6m(在墙体外侧有覆盖层的情况下)。在不考虑过渡层的条件下,寿光下挖式日光温室土墙厚度以1.4~1.6m为宜。
In recent years, in order to increase the sunlight greenhouse thermal insulationperformance, sunken solar greenhouse with thick soil wall was appeared, and this type ofsolar greenhouse was used widely in northern China. However, because of the lack oftheoretical guidance, and this type of solar greenhouse had common problems of too thick soilwall, high damage in cultivated soil layer and lower land utilization rate, so system researchsshould be carried out on the wall and confirmed reasonable constructing parameter of soilwall, and theoretical guidance was provided for practical production.
     Therefore, from December2011to March2012, representative sunken solar greenhousewas selected for experiment in Shouguang city of Shandong Province. Consecutive test wasconducted on the temperature and heat flux of different depth of the soil backwall,temperature of inner wall at different height, temperature and heat flux of different depth ofsoil in the greenhouse, and indoor and outdoor air temperature and solar radiation. Variationof temperature and heat flux of the wall and their correlation with indoor and outdoor airtemperature and radiation, and variation of temperature of inner wall at different height wereanalyzed, on this base, variation of temperature and heat flux of wall and soil in thegreenhouse were compared. The main research results were as follows:
     (1) Variation of temperature and heat flux of soil wall was confirmed in winter.
     In winter, temperature of each layer decreased first and then creased, in accordance withseasonal variation trend of indoor and outdoor air temperature. Overall, wall temperaturecontinued to decline from the inner surface to the outer surface at thickness direction.Temperature and heat flux of inner surface and outer covering surface of the wall varied overa wide range, with the same variation trend of indoor and outdoor air temperature respectively.The amplitude of variation of temperature and heat flux decreased gradually from shallowlayers to deep layers of the wall, and the soil layers of the inner wall with higher rangeabilityof temperature and heat flux were more than that of the outer wall. In successive cloudy days,temperature of each layer of inner wall declined at different degrees, and the layers releasingheat to the indoor deepened constantly, whereas the heat in layers of outer wall mainlyreleased to the outdoor.
     (2) Relation among temperature and heat flux of soil wall and indoor and outdoor airtemperature and solar radiation was found out.
     Temperature of inner and outer surface of wall had significant correlation with airtemperature and solar radiation, which had higher correlation with air temperature than with solar radiation, so the wall temperature was affected by air temperature higher than by solarradiation. In the wall, each layer except surface had no direct correlation with air temperatureand solar radiation, however, they had higher correlation with each other, and the neighboringlayers had highest correlation, with the increase of distance, the correlation decreased betweentwo layers.
     Heat flux of inner wall surface had significant positive correlation with air temperatureand solar radiation, which had higher correlation with indoor solar radiation than with indoorair temperature, so heat flux of inner wall was affected by indoor solar radiation significantly;however, outer surface of covering and the outer wall surface had significant negativecorrelation with outdoor air temperature and solar radiation, which had higher correlationwith air temperature than with solar radiation, so heat flux of outer wall was affected byoutdoor air temperature significantly. Except surface, heat flux of each layer of inner andouter wall had no direct correlation with solar radiation.
     With increase of depth, the correlation between heat flux of the inner surface to depth0.4m and air temperature decreased, and other layers in the wall had no direct correlation with airtemperature, therefore air temperature and solar radiation mainly influenced on the heat fluxof wall surface. Heat flux of each layer in the inner or outer wall except surface layers hadhigher correlation with each other, and the neighboring layers had highest correlation, and thecorrelation decreased between two layers with increase of distance.
     (3) Variation of temperature at different height of inner wall was confirmed.
     In winter, temperature of different height in the inner wall decreased first and then creased,in accordance with seasonal variation trend of indoor air temperature. Overall, walltemperature continued to decline from the surface to deeper layers at different height, andsurface temperature of different height was higher than indoor air temperature,so differentsections of the wall had significant role in maintaining indoor air temperature.
     With the increase of height, temperature of the same depth continued to decline, thereforeheat flux transferred from the lower section to the upper section continuously. In successivecloudy days in January, the layers of the upper wall releasing heat to the indoor reached0.6m,however the layers of the central and lower wall releasing heat to the indoor reached1.0m, sothe central and lower sections of wall contributed to indoor air temperature more than that ofthe upper section.
     (4) Variation of temperature and heat flux of wall and soil at different depth in thegreenhouse was compared.
     In winter, temperature of wall and soil in the greenhouse decreased first and thenincreased, in accordance with changing trend of indoor air temperature. Temperature of walland soil surface varied over a wide range, and the temperature differential between wall andsoil surface on sunny days was significantly larger than that on cloudy days. The rangeabilityof wall and soil temperature continued to decrease with the increase of depth, and variationrange of wall temperature was higher than that of soil at the same depth.
     Heat flux of wall and soil surface varied over a wide range, and rangeability of heat fluxdecreased with depth increasing. On sunny days, variation range of wall and soil heat fluxwas significantly larger than that on cloudy days, and the time of heat absorption on sunnydays was longer than that on cloudy days. Heat flux of wall and soil surface had largedifference on sunny days, however little difference on cloudy days. Regardless of wall or soil,the layer releasing heat to the indoor was0.2m depth on sunny days, however0.2~0.4m oncloudy days.
     No matter sunny or cloudy days, heat absorption and release of per unit wall were largerthan that of soil, on the whole, total heat absorption and release of soil larger than that of wall.Heat absorption of per unit wall and soil had significant correlation with accumulated solarradiation, and heat release of wall and soil had significant role in maintaining indoor airtemperature.
     (5) The suitable thickness of soil wall of sunken solar greenhouse was proposed inShouguang region
     According to the variation of temperature and heat flux in the wall, the wall could bedivided into the heat storage layer, the transitional layer, and the cold resistant layer frominside to outside, and their thickness was0.8~1.0m,2.2~2.6m and0.4~0.6m, respectively,under the condition of the outer surface with covering. Without considering the transitionallayer, the suitable thickness of the soil wall was1.4~1.6m in Shouguang City.
引文
安志信,张福墁,陈端生,郑甲盛.蔬菜节能日光温室的建造及栽培技术[M].天津:天津科学技术出版社,1994.
    白青,张亚红,刘佳梅.日光温室土质墙体内温度与室内气温的测定分析[J].西北农业学报,2009,18(6):332-337.
    白义奎,王铁良,姜传军,袁芳.外墙聚苯板复合墙体在日光温室中的应用[J].房材与应用,2002,30(1):27-29.
    白义奎,王铁良,刘文合.缀铝箔聚苯板空心墙体热绝缘系数分析[J].保温材料与建筑节能,2003,(6):41-43.
    白义奎,刘文合,王铁良,佟国红,孟少春.辽沈I型日光温室环境及保温性能试验研究[J].农业工程学报,2003,19(5):191-196.
    白义奎,王铁良,李天来,刘文合.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报,2003,19(3):190-195.
    白义奎,刘文合,柴宇,车忠仕,佟国红.防寒沟对日光温室横向地温的影响[J].沈阳农业大学学报,2004,35(6):595-597.
    白义奎,刘文合,王铁良,李天来.缀铝箔聚苯板空心墙体保温性能的测试与分析[J].新型建筑材料,2006,1:43-45.
    白增森,郭秀芳,丁玉川,张敬忠.日光温室严冬季节气温与地温的变化特征[J].中国蔬菜,1998,(3):31-32.
    柴立龙,马承伟,籍秀红,杨仁全,周增产,卜云龙.北京地区日光温室节能材料使用现状及性能分析[J].农机化研究,2007,(8):17-21.
    陈超,国海凤,周玮.相变墙体材料在温室大棚中的实验研究[J].太阳能学报,2009,30(3):287-293.
    陈端生.中国节能型日光温室建筑与环境研究进展[J].农业工程学报,1994,10(1):123-129.
    陈端生.设施园艺生产对覆盖材料性能的要求[J].温室园艺,2003,(1):25-26.
    陈端生,王刚.几种日光温室外保温覆盖材料的保温性能[J].农业工程学报,1997,(A00):108-115.
    陈端生,郑海山,刘步洲.日光温室气象环境综合研究-I墙体、覆盖物热效应研究初报[J].农业工程学报,1990,6(2):77-81.
    陈端生,郑海山,张建国,邱建军.日光温室气象环境综合研究(三)-几种弧型采光屋面温室内直射光量的比较研究[J].农业工程学报,1992,8(4):78-82.
    陈红武,李晓野,王宏丽.日光温室用复合相变储热材料的实验研究[J].农机化研究,2009,(7):192-197.
    陈青云.中国日光温室的实践与理论[A].杨其长.中国·寿光国际设施园艺高层学术论坛论文集[C].北京:中国农业科学技术出版社,2009,11-12.
    陈青云,汪政富.节能型日光温室热环境的动态模拟[J].中国农业大学学报,1996,1(1):67-72.
    陈正法,张茜茜,梁称福.我国日光温室研究进展及发展趋势[J].中国农学通报,1999,15(5):37-40.
    陈之群,彭杏敏,杨明宇,肖长涛,高丽红.不同保温被外覆盖对日光温室保温及黄瓜生育的影响[J].北方园艺,2010,(15):89-93.
    崔建云,董晨娥,左迎之,高晓梅,刘文正.外部环境气象条件对日光温室气象条件的影响[J].气象,2006,32(3):101-106.
    董海虎,李青松,谭秀兰,张凤,周鸿奎,袁建海.吐鲁番盆地节能日光温室地温变化特征及应用[J].新疆农业科学,2009,46(4):800-804.
    董仁杰.生态温室系统环境研究[D].北京:中国农业大学(东校区),1997.
    董瑞.沙荒地日光温室墙体传热性能研究[D].济南:山东建筑大学,2007.
    董仁杰,吕钊钦,齐刚,梁戈西,刘贤喜.蜂窝塑膜温室覆盖材料性能试验研究[J].山东农业大学学报,1993,24(1):30-36.
    杜军,王怀彬,杨励丹.温室内气温与土温相关性传热模型[J].哈尔滨工业大学学报,2000,32,(5):1-4.
    郜庆炉,薛香,段爱旺.日光温室内温度特点及其变化规律研究[J].灌溉排水学报,2003,22(6):50-53.
    高峰,俞立,卢尚琼,徐青香,于莉洁.国外设施农业的现状及发展趋势[J].浙江林学院学报,2009,26(2):27-285.
    高振波,赵立强,毛学辉,高星,王纲.日光温室温度分析模型与模拟[J].河北科技师范学院学报,2007,21(2):51-56.
    高志奎,武占会,任士福,王梅,安其东.经济型节能日光温是的设计与温光性能[J].河北农业大学学报,2004,27(5):27-30.
    谷欲.日光温室光温环境和结构优化[D].北京:北京农业工程大学,1996.
    果海凤.相变蓄热技术应用于温室大棚中的传热和节能特性研究[D].北京:北京工业大学,2008.
    郭洪恩,赵红.晴阴天对不同结构日光温室温度的影响[J].安徽农业科学,2009,37(28):13964-13966,13973.
    郭慧卿,李振海,张振武,崔引安,吴德让.日光温室北墙构造与室内环境的关系[J].沈阳农业大学学报,1995,26(2):193-199.
    郭慧卿,李振海,张振武,崔引安.日光温室温度环境动态模拟Ⅰ数学模型的建立与程序验证[J].沈阳农业大学学报,1994,25(4):438-443.
    郭靖.外挂型相变材料日光温室的蓄热效果研究[D].陕西杨凌:西北农林科技大学,2011.
    何雨,须晖,李天来,山口智治,赵淑梅,张凤丽.辽沈I型日光温室环境特性的研究Ⅲ冬季温室气温、地温变化规律及其相关性研究[J].温室园艺,2005,(6):26-28.
    韩太利,魏家鹏.寿光新型日光温室的结构特点与推广应用[J].中国蔬菜,2010,(13):7-9.
    韩颖.我国北方温室环境因子的科学分析与管理[D].吉林延边:延边大学,2005.
    韩云全,陈超,管勇,李琢,凌浩恕.复合相变蓄热墙体材料对日光温室热环境及番茄生长发育的影响[J].中国蔬菜,2012,(18):99-105.
    籍秀红.日光温室墙体材料保温蓄热性能的测试与研究[D].北京:中国农业大学,2005.
    亢树华,房思强,戴雅东,魏克家,陈瑞生,郑海山.节能型日光温室墙体材料及结构的研究[J].中国蔬菜,1992,(6):1-5.
    亢树华,陈端生.日光温室优型结构的研究[J].农业工程学报,1997,(A00):30-35.
    籍秀红.日光温室墙体材料保温蓄热性能的测试与研究[D].北京:中国农业大学,2007.
    梁建龙,王旭峰.阿拉尔垦区日光温室墙体的保温设计[J].塔里木农垦大学学报,2002,14(1):29-30.
    李成芳,李亚灵,温祥珍.日光温室保温板外置复合墙体的温度特性[J].山西农业大学学报(自然科学版),2009,29(5):454-457.
    李国师,谢士估.日光温室地温变化规律与调控[J].安徽农业科学,1995,23(4):369-370.
    李化龙,刘新生,范彩兰,袁光明.日光温室反辐射式保温被的开发与特性研究[J].陕西气象,2001,(1):24-26.
    李军,杨世宏.日光温室保温墙体的厚度确定和成本概算[J].宁夏农林科技,2002,(4):28-29.
    李建设,白青,张亚红.日光温室墙体与地面吸放热量测定分析[J].农业工程学报,2010,26(4):231-236
    李凯,宋丹,王宏丽,裘莉娟.日光温室瓶胆式相变墙体热性能研究[J].北方园艺,2013(5):40-42.
    李南南.日光节能温室相变墙体材料应用的前景分析[J].北方园艺,2011,(16):77-78.
    李清明,艾希珍,于贤昌.下挖深度对节能日光温室环境因子日变化及空间分布的影响[J].应用生态学报,2011,22(8):2061-2068.
    李式军.设施园艺学[M].北京:中国农业出版社,2002.
    李天来.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,36(2):131-138.
    李天来,李曼,韩亚东,张昆.辽沈Ⅳ型日光温室地温日变化规律及其谐波模拟验证[J].西北农业学报,2010,19(10):152-160.
    李天来,张昆,韩亚东,刘爽,李曼.辽沈Ι型日光温室西山墙热通量日变化及分布规律的研究[J].沈阳农业大学学报,2010,41(2):137-141.
    李天雷.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,36(2):131-138.
    李天群.加气混凝土砌块墙体裂缝原因及控制措施[J].重庆电力高等专科学校学报,2006,11(2):35-37.
    李小芳,陈青云.日光温室山墙对室内太阳直接辐射得热量的影响[J].农业工程学报,2004,20(5):241-245.
    李小芳.日光温室的热环境数学模拟及其结构优化[D].北京:中国农业大学,2005.
    李小芳,陈青云.墙体材料及其组合对日光温室墙体保温性能的影响[J].中国生态农业学报,2006,14(4):185-188.
    李晓野.温室太阳能空气集热—相变蓄热装置设计及性能研究[D].陕西杨凌:西北农林科技大学,2012.
    李元哲,吴德让,于竹.日光温室微气候的模拟与实验研究[J].农业工程学报,1994,10(1):130-136.
    李亚敏,商庆芳,田丰存,陈香兰.我国设施农业的现状及发展趋势[J].北方园艺,2008,(3):90-92.
    郦伟,董仁杰,汤楚宙,张淑敏.日光温室的热环境理论模型[J].农业工程学报,1997,13(2):160-163.
    刘克长,任中兴,张继祥,卢育华.山东日光温室温光性能的实验研究[J].中国农业气象,1999,20(4):34-37.
    刘桂芝,李杰林,陈建国,贺丽华,翟玉兰.坑式日光温室增温保温试验研究[J].北方园艺,2004,(2):16-18.
    刘璎瑛,丁为民,张剑锋.日光温室保温帘揭盖时间的确定[J].农业工程学报,2004,20(4):230-233
    刘璎瑛,丁为民,张剑锋.徐州地区日光温室保温性能的试验研究[J].农机化研究,2003,(2):166-169.
    刘建,周长吉.日光温室结构优化的研究进展与发展方向[J].内蒙古农业大学学报,2007,28(3):264-268.
    刘在民,蒋新梅,于锡宏.日光温室前沿苯板外护增地温效果研究[J].东北农业大学学报,2008,39(2):176-178.
    刘志杰,郑文刚,胡清华,史彦军,滕弘飞.中国日光温室结构优化研究现状及发展趋势[J].中国农学通报,2007,23(2):449-453.
    马承伟,卜云龙,籍秀红,陆海,邹岚,王影,李睿.日光温室墙体夜间放热量计算与保温蓄热性评价方法的研究[J].上海交通大学学报(农业科学版),2008,26(5):411-415.
    马承伟,陆海,李睿,曲梅.日光温室墙体传热的一维差分模型与数值模拟[J].农业工程学报,2010,26(6):231-237.
    马承伟,韩静静,李睿.日光温室热环境模拟预测软件研究开发[J].北方园艺,2010,(15):69-75.
    马江伟,王宏丽,许红军,宋丹.日光温室土墙厚度的优化——以杨凌地区为例[J].中国农业大学学报,2012,17(4):144-147.
    马春生,张静,王双喜.日光温室地温模型及数值模拟[J].山西农业大学学报,2004,(1):82-84,92.
    孟力力,杨其长,宋明军.北京地区日光温室温光及蓄热性能的试验研究[J].陕西农业科学,2008,(4):61-64.
    潘锦泉.我国日光温室的发展[J].石河子农科院学报,1996,(3):1-4.
    潘文维,罗庆熙,李军.我国温室产业现状及发展建议[J].北方园艺,2002,(3):4-5.
    乔正卫.新型保温被的研制与应用效果研究[D].陕西杨凌:西北农林科技大学,2008.
    乔正卫,邹志荣,张立明,杨双晓.4种日光温室保温被室内的试验性能测试[J].西北农林科技大学学报(自然科学版),2008,36(6):153-158.
    曲继松,张丽娟,冯海萍,郭文忠.宁夏干旱风沙区夯土砖土复合墙体日光温室保温性能初步研究[J].西北农业学报,2010,19(1):158-163.
    邱仲华,宋明军,康永动,王捷.一种复合保温覆盖材料研制和应用试验初报[J].农业工程学报,1995,11(4):117-120.
    任艳芳,何俊瑜,温祥珍.温室保温覆盖材料研究现状及进展[J].山西农业大学学报,2005,25(2),183-185.
    舒占涛,梁凤岐,张桂先,张永奇,赵文萍,靳玉荣,梁井杰,索春生.节能型日光温室的温、湿度效应与调节[J].内蒙古农业科技,2000,(5):13-14.
    宋俊果.日光温室热环境分析指标与建筑参数的研究[D].北京:中国农业大学,1997.
    宋明军.日光温室新型外覆盖保温材料的研制及性能研究[D].兰州:甘肃农业大学硕士论文,2005.
    孙丽.日光温室边际效应初步研究[D].郑州:河南农业大学,2008.
    孙山.新型日光温室的研究[D].北京:北京农业工程大学,1993.
    孙心心,邹志荣,王宏丽,苏清华.新型复合相变墙日光温室性能实测分析[J].农机化研究,2010,(3):168-170.
    孙心心.日光温室新型保温墙体材料的制备及应用效果的研究[D].陕西杨凌:西北农林科技大学,2010.
    佟国红,王铁良,白义奎,刘文合.日光温室节能墙体的选择[J].可再生资源,2003,(4):14-16.
    佟国红,王铁良,白义奎,刘文合.日光温室墙体传热特性的研究[J].农业工程学报,2003,19(3):186-189.
    佟国红, David M. Christopher,李天来,白义奎.日光温室保温被卷放位置对温度环境的影响[J].农业工程学报,2010,26(10):253-258.
    佟国红,李保明, Christopher D M,山口智治.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007,23(7):178-185.
    佟国红, Christopher D M.墙体材料对日光温室温度环境影响的CFD模拟[J].农业工程学报,2009,25(3):153-157.
    王斌,杨永春.不同天气下的温室环境日变化研究[J].安徽农业科学,2009,37(21):10245-10246.
    王朋.酯类相变蓄热保温温室墙体材料开发研究[D].陕西杨凌:西北农林科技大学,2012.
    王宏丽,李凯,王剑,张立明.适于温室生产的无机盐复合相变材料热性能的测试[J].西北农林科技大学学报(自然科学版),2008,36(3):141-144.
    王宏丽,任雷,党永华,邹志荣.关中地区日光温室北面复合保温墙体的传热研究[J].北方园艺,2008,(7):113-115.
    王宏丽,邹志荣,陈红武,张勇.温室中应用相变储热技术研究进展[J].农业工程学报,2008,24(6):304-307.
    王谦,陈景玲,孙治强,赵勇,吴明作,杨喜田,苗蕾.冬季日光温室北墙内表面热流分析[J].中国农业气象,2010,31(2):225-229.
    王蕊,姚轩,李珠.玻化微珠相变保温蓄热材料在日光温室中的应用及其能耗分析[J].工程力学,2012,29(增刊Ⅱ):216-220.
    王烁,杨其长.热阻帘在日光温室墙体热量释放调节中的应用初报析[J].中国农业气象,2010,31(3):407-410.
    王晓冬,马彩雯,吴乐天,张丽.日光温室墙体特性及性能优化研究[J].新疆农业科学,2009,46(5):1016-1021.
    王晓冬,张丽,王国强,肖林刚,张海春,刘娜.半地下式日光温室对地温的影响[J].新疆农机化,2007,(4):36-37.
    王志伟.节能日光温室水墙温水灌溉技术[J].甘肃农业科技,2003,(1):36-37.
    温祥珍,梁海燕,李亚灵,郭瑞峰.墙体高度对日光温室内夜间气温的影响[J].中国生态农业学报,2009,17(5):980-983.
    温祥珍,李亚灵.日光温室砖混结构墙体内冬春季温度状况[J].山西农业大学学报(自然科学版),2009,29(6):525-528.
    魏晓明,周长吉,曹楠,盛宝永,陈松云,鲁少尉.中国日光温室结构及性能的演变[J].江苏农业学报,2012,28(4):855-860.
    吴德让,李元哲,于竹.日光温室地下热交换系统的理论研究[J].农业工程学报,1994,10(1):137-143.
    吴乐天,史慧峰,王晓冬,肖林刚,张海春.吐鲁番日光温室气温、地温变化规律及对温室设计的建议[J].新疆农机化,2008,(2):27-29.
    吴正景,张菊平,王少先.日光温室保温节能技术应用与研究进展[J].北方园艺2010,(16):71-74.
    徐启江,池春玉,高奎星,郭铁南.日光节能温室在设施园艺中的发展趋势[J].黑龙江农业科学,2000,(4):47-49.
    辛本胜.日光温室温湿度预测模型研究[D].北京:中国农业大学,2005.
    邢兰.倾斜式日光温室冬季热环境的模拟研究[D].哈尔滨:哈尔滨工业大学,2006.
    徐刚毅,朴明权,陈斌.北京日光温室发展近况[J].北京农业科学(增刊),1999,24-27.
    徐刚毅,周长吉.日光温室PE发泡自防水保温被的研制与性能测试[J].农业工程学报,2005,21(1):128-131.
    薛亚宁,陈超,李清清,李琢,周玮.复合相变蓄热墙体材料应用于日光温室的效果研究[J].北方园艺,2010,(15):6-11.
    闫全英,梁辰,周然.用于相变墙体中的石蜡和多元醇相变材料的研究[J].建筑节能,2007,35(5):37-39.
    杨昊谕.日光温室热平衡解析[D].长春:吉林大学,2007.
    杨建军,邹志荣,张智,王云冰,张志新,燕飞.西北地区日光温室土墙厚度及其保温性的优化[J].农业工程学报,2009,25(8):180-185.
    杨建军.西北地区日光温室土质墙体厚度优化及其保温性研究[D].陕西杨凌:西北农林科技大学,2009.
    杨仁全,马承伟,刘水丽,周增产,刘文玺,吴松.日光温室墙体保温蓄热性能模拟分析[J].上海交通大学学报(农业科学版),2008,26(5):449-453.
    杨献光,赵宝存,齐志广.日光型温室内温度梯度变化的观察与分析[J].河北师范大学学报(自然科学版),2005,29(1):79-84.
    杨晓光,陈端生,郑海山.日光温室气象环境综合研究(四)日光温室地温场模拟初探[J].1994,10(1):150-156.
    杨艳超,刘寿东,薛晓萍.莱芜日光温室气温变化规律研究[J].中国农学通报,2008,24(12):519-523.
    姚轩,王蕊,李珠.玻化微珠及珍珠岩在低能耗日光温室中的应用[J].山西建筑,2010,36(7):224-225.
    翟国勋.节能型日光温室大棚[M].哈尔滨:东北林业大学出版社,1999.
    张福墁.设施园艺学[M].北京:中国农业大学出版社,2001.
    张福墁.农业现代化与我国设施园艺工程[J].设施园艺,2002,(12):9-10.
    张峰,张林华.下沉式日光温室土质墙体的保温蓄热性能[J].可再生能源,2009,27(3):18-20.
    张立明,邹志荣,陆国东,乔正卫.温室墙体复合相变材料的制备与有限元分析[J].农机化研究,2008,(4):158-160.
    张立明.温室墙体复合相变材料的制备与蓄热机理研究[D].陕西杨凌:西北农林科技大学,2008.
    张立芸.新材料墙体日光温室的试验研究[D].北京:中国农业大学,2005.
    张立芸,徐刚毅,马承伟,兰炎.日光温室新型墙体结构性能分析[J].沈阳农业大学学报,2006,37(3):459-462.
    张立芸,徐刚毅,郭忠利.加气混凝土砌块在日光温室建造中的应用研究[J].温室园艺,2006,(5):12-14.
    张武锁,李连旺,温祥珍,李亚灵.墙体填充材料对日光温室保温性的影响[J].内蒙古农业大学学报,2007,28(3):1-4.
    张英,穆楠,张雪清.国外设施农业的发展现状与趋势[J].农业与技术,2008,28(2):123-125.
    张勇,邹志荣,李建明,胡晓辉.日光温室相变空心砌块的制备及功效[J].农业工程学报,2010,26(2):263-267.
    张真和.高效节能型日光温室的开发进展及问题讨论[J].中国蔬菜,1992,(5):l-3,13.
    张志录,王思倩,刘中华,孙治强.下沉式日光温室土质墙体热特性的试验与分析[J].农业工程学报,2012,28(12):208-215.
    赵岽,王铁良,山口智冶,白义奎.辽沈Ⅳ型日光温室墙体保温性能试验研究[J].节能技术,2005,23(133):390-391,429.
    周长吉.日光温室结构优化设计及综合配套技术(四)日光温室围护结构-墙体的保温性能[J].农村实用工程技术,1999,(4):7.
    周长吉.我国日前使用的主要温室类型及性能(一)[J].农村实用工程技术,2000,(1):8-9.
    周新群,董仁杰,张淑敏,崔引安.日光温室外保温蜂窝结构覆盖材料的研究[J].农业工程学报,1998,14(4):159-163.
    邹志荣,李建明,王乃彪,刘云星,李海岗,李虎林.日光温室温度变化与热量状态分析[J].西北农业学报,1997,6(1):58-60.
    Amar M K, Mohammed M F. A review on energy conservation in building applications withthermal storage by latent heat using phase change materials[J]. Energy Conversion andManagement,2004,45(2):263-275.
    Arinze E A, Schoenau G J, Besant R W. A dynamic thermal performance simulation model ofan energy conserving greenhouse with thermal storage[J]. Tranactions of the ASAE,1984:508-517.
    Baille A, Lopez J C, Bonachela S, Gonealez-Real M M, Montero J I. Night energy balance ina heated low-cost plastic greenhouse[J]. Agricultural and Forest Meteorology,2006,137(1-2,1):107-118.
    Bakker J C. Greenhouse climate control: constraints and limitation[J]. Acta Horticulturae,1995,(399):25-35.
    Bakker J C. Greenhouse with closed cover and ventilation system for air treatment[J]. ActaHorticulturae,1992,(312):115.
    Berroug F, Lakhal E K, El Omari M, Faraji M, El Qarnia H. Thermal performance of agreenhouse with a phase change material north wall[J]. Energy and Buildings,2011,43:3027-3025.
    Chen D S. Technology of the energy-sewing sunlight greenhouse in China. The procecdingsof international symposium on applied technology of greenhouse ISTG’91[C].Knowledge Publishing House,1991:41-49.
    Chen D S. Theory and practice of energy-saving solar greenhouse in China[J]. Transactionsof the CSAE,2001,17(1):22-25.
    Chen W, Liu W. Numerical and experimental analysis of convection heat transfer in passivesolar heating room with greenhouse and heat storage[J]. Solar Energy,2004,76:623-633.
    Duncan G A, Loewer O J, Colliver Jr D G. Simulation of energy flows in a greenhouse:magnitudes and conservation potential[J]. TRANSACTIONS of the ASAE,1981:1014-1021.
    Elperin T, Fominykh A. Combined mass and heat transfer during non isothermal absorptionin gas-liquid slug flow with small bubbles in liquid plugs [J]. InternationalCommunications in Heat and Mass Transfer,1995,22(2):285-294.
    Engel R D. Using simulation to optimize solar greenhouse design[C]. In: Proceedings of the17th annual symposium on Simulation, NJ, USA,1984:119-139.
    Erens P J, Dreyer A A. Modelling of indirect evaporative air coolers[J]. International Journalof Heat and Mass Transfer,1993,17-26.
    Ertas A E, Anderson E, Kiris I. Properties of a New Liquid Desicant solution-LithiumChloride and Caleium Chloride Mixture[J]. Solar Energy,1992,49(3):184.
    Froehlich D P, Albright L D, Scott N R. Stead-periodic analysis of glasshouse thermalenvironment[J]. Trans of the ASAE,1979,22(2):387-399.
    Fuller R J, Meyer C P, Sale P J M. Validation of a dynamic model for predicting energy usein greenhouse[J]. Agric Energy Res,1987,38:1-14.
    Garzoli K V, Blackwell J. An analysis of the nocturnal heat loss from a single skin plasticgreenhouse[J]. Agric Eng Res,1981,26:204-214.
    Garzoli K. A simple greenhouse climate model[J]. Acta Horticulturae,1985,174:393-400.
    Garzoli K. A Simple greenhouse climate model [J]. Acta Horticulturae,1989,174,393-401.
    Harmanto, Tantau H J, Salokhe V M. Microclimate and air exchange rates in greenhousescovered with different nets in the Humid Tropics[J]. Biosystems Engineering,2006,94(2):239-253.
    Jolliet O, Danloy L, Jay J B, Munday G L, Reist A. An improved static model for predictingthe energy consumption of a greenhouse[J]. Agricultural and Forest Meteorology,1991,55:265-294.
    Kendirli B. Structural analysis of greenhouses: A case study in Turkey[J]. Building andEnvironment,2006,41:864-871.
    Kindelan M. Dynamic modeling of greenhouse environment[J]. Transactions of the ASAE,1980,3(6):1232-1239.
    Kurpaska S, Slipek Z. Mathematical model of heat and mass exchange in a garden subsoilduring warm-air heating[J]. J. agric. Engng Res,1996,65(4):305-311.
    Kumari N, Tiwari G N, Sodha M S. Effect of phase change material on passive thermalheating of a greenhouse[J]. Int. J. Energy Res,2006,30(4):221-236.
    Mathala J G, Chandra P. Effect of greenhouse design parameters on conservation of energyfor greenhouse environmental control[J]. Energy,2002,27(8):777-794.
    Najjar A, Hasan A. Modeling of greenhouse with PCM energy storage[J]. Energy Conversionand Management,2008,49(11):3338-3342.
    Nijskens J. Deltour J, Coutisse S, Nisen A. Heat transfer through covering materials ofgreenhouses[J]. Agricultural and Forest Meteorology,1984,33:193-214.
    Papadakis G, Briassoulis D, Scarascia G, Vox G, Feuilloley P, Stoffers J A. Radiometric andthermal properties of and testing method for, greenhouse covering materials[J]. J. agric.Engng Res,2000,77(1):7-28.
    Young P C, Lees M J. Simplicity out of complexity in glasshouse climate modeling[J]. ActaHorticulturae,1996,(406):15-28.
    Pollet I V, Pieters J G. Condensation and radiation transmittance of greenhouse claddingmaterials, part3: results for glass plates and plastic films[J]. J. agric. Engng Res,2000,77(4):419-428.
    Richardaon G M. Developments in structural design. In: Proceedings of Conference onPlastics in the Nineties.1988, l(4):20-21
    Roy J C, Boulard T, Kittas C, Wang S. Convective and ventilation transfers in greenhouses,Part1: the greenhouse considered as a perfectly stirred tank[J]. Biosystem Engineering,2002,83(1):1-20.
    Santamouris M, Mihaladakou G, Balaras C A, Argirious A, Asimakopoulos D, Vallindras M.Use of buried pipes for energy conservation in cooling of agricultural greenhouses[J].Solar Energy,1995,55(2):111-124.
    Santamouris M, Mihaladakou G, Balaras C A, Lewis J O, Vallindras M, Agirious A. Energyconservation in greenhouse with buried pipes[J]. Energy,1996,21(5):353-360.
    Sauer T J, Meek D W, Ochsener T E, Harris A R, Horton R. Errors in heat flux measurementby flux plates of contrasting design and thermal conductivity[J]. Vadose Zone,2003,2(12):580-588.
    Sauer T J, Ochsner T E, Horton R. Soil heat flux plates: heat flow distortion and thermalcontact resistance [J]. Agronomy Journal,2007,99(1):304-310.
    Spilter J D, Fisher D E. Development of periodic response factors for Use with the radianttime series method[J]. ASHRAE Transactions,1999,105(2):491-502.
    Staley L M, Monk G J, Mohlar J M. The influence of thermal curtains on energy utilization inglass greenhouses[J]. J. Agric. Eng Res,1986,33:127-139.
    Teitel M, Segal L. Net thermal radiation undershading screens[J]. J. Agric. Eng Res,1995,6l(1):19-26.
    Teitel M, Tanny J. Radiative heat transfer from heating tubes in a greenhouse[J]. J. Agric.Eng Res,1998,69(2):185-188.
    Ten-Berge H F M, Van-Ittersum M K, Rossing W A H, Van De Ven G W J, Schans J, Van-De-Sanden P A C M. Farming options for the Netherlands exploredby multi-objectivemodelling[J]. Eur J Agron,2000,13(2-3):263-277.
    Ting K C. From greenhouse to CEPPS to phyromarion. ACESYS III Forum, from protectedcultivation to phytomation[J]. New Jersey USA,1999,19:111-118.
    Tiwari G N, Dhiman N K. Design and optimization of a winter greenhouse for the Len-Typeclimate[J]. Energy Conversion and Management,1986,6(1):71-78.
    Tiwari G N, Dubey A K, Goyal R K. Analytical study of an active winter greenhouse[J].Energy,1997,22(4):389-392.
    Tiwari G N. Solar energy fundamentals, design, modeling and applications[M]. Pangboume(England): Alphascience international Ltd,2002:22-26.
    Tiwari G N, Gupta A, Gupta R. Evaluation of solar fraction on north partition wall for various
    shapes of solarium by Auto-Cad[J]. Energy and Buildings,2003,35:507-514.
    Van-den-kieboom A M G, Stoffers J A. Light transmittance under diffuse radiationcircumstances[J]. Acta Horticulturae,1985,174:67-74.
    Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics[M].London: Longman Group Ltd,1995.
    Vollebregt H J M, Van-tie-braa N J. KAnalysis of radiative and convective heat exchange atgreenhouse walls [J]. J. Agric. Eng Res,1995,60:95-106.
    Von-Eisner B, Briassoulis D, Waaijenberd D, Mistriotis A, Von Zabeltitz C, Gratraud J,Russo G, Suay-Cortes R. Review of structural and functional Characteristics ofgreenhouses in European Union countries, Part I: design requirement [J]. J. Agric. EngRes,2000,75:1-16.
    Von-Eisner B, Briassoulis D, Waaijenberd D, Mistriotis A, Von Zabeltitz C, Gratraud J,Russo G, Suay-Cortes R. Review of structural and functional Characteristics ofgreenhouses in European Union countries, PartⅡ: typical design [J]. J. Agric. Eng Res,2000,75:111-126.
    Wang S, Zhu S, Deltour J. Simulation and Measurement of Tunnel Greenhouse Climate[J].Transactions of the CSAE,1997,(4):39-144.
    Waugaman G, Kili A, Kettleboroughe C F. A Review of Desiccant Cooling system[J].Journal of Energy Resource Technology,1993,3:115-125.
    Wen X Z, Li H Y, Li Yaling, Guo R F. Effect of wall height on air temperature of greenhouseduring night[J]. Chinese Journal of co-Agriculture,2009,17(5):980-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700