用户名: 密码: 验证码:
彩色棉纤维分化发育规律与色素成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
彩色棉(Gossypium hirsutum L.)无需染色,绿色环保,具有广阔的发展前景。但是彩色棉纤维品质较差、颜色单调且不稳定,严重影响了彩色棉产品开发及产业化。本研究以不同颜色的棉花品种[棕色棉品种棕絮1号(ZX-1)和新彩棉1号(XC-1);绿色棉品种陇绿棉2号(G-7)和绿1-4560(4560);以及普通白色对照品种鲁棉研28(LMY28)]为材料,首先从形态学方面对纤维分化发育、色泽变化及色素沉积分布进行了观察;然后对彩色棉纤维品质形成进行了研究,并围绕彩色棉纤维品质与纤维超分子结构、纤维素含量、糖组分及矿质元素的含量和纤维发育相关酶活性的关系进行了研究;此外从代谢物水平对色素成分进行了系统研究。主要结果如下:
     1彩色棉纤维发育过程中纤维色泽的形成规律
     棕色棉ZX-1和XC-1的纤维色泽在开花后35d之前均随纤维的发育逐渐加深,开花后35~40d以及开花后55d~吐絮快速加深。而绿色棉G-7和4560的纤维色泽在开花后25~45d逐渐加深,并于开花后45d达到最大,开花后55d至吐絮变浅。
     2彩色棉纤维发育过程纤维色素的沉积分布规律
     在纤维发育过程中,ZX-1与G-7纤维色素的形成时间及在纤维内的沉积部位均存在差异。纤维色素在G-7的形成时间较ZX-1早,且沉积于纤维中腔和次生壁内层,而ZX-1仅沉积在纤维中腔内。
     3彩色棉纤维品质形成机理的研究
     3.1彩色棉纤维分化发育规律
     各供试品种胚珠中部的部分表皮细胞均于开花前1d开始分化;开花后当天,胚珠纤维细胞均有突起;开花后1d,纤维细胞突起增多,体积增大,其中LMY28的纤维细胞已有伸长的态势;开花后3d,纤维细胞均已伸长。除分化程度在各供试材料间差异不显著外,突起数量、发育和伸长程度,均以LMY28最优,ZX-1次之,G-7最差。
     3.2彩色棉纤维品质的形成
     各供试品种的纤维长度、3.2mm隔距比强度、成熟度和马克隆值均随棉纤维的发育呈增大的变化趋势。最终棉纤维长度、3.2mm隔距比强度、成熟度及马克隆值均表现为白色棉LMY28>棕色棉ZX-1和XC-1>绿色棉G-7和4560。
     3.3彩色棉纤维发育过程中超分子结构的动态变化及与纤维品质的关系
     各供试品种的横向晶粒尺寸均随纤维发育进程不断增大,取向参数逐渐减小(优化),但不同品种间存在差异。彩色棉纤维的横向晶粒尺寸与3.2mm隔距比强度密切相关(r=0.8962*),ψ角和φ角与3.2mm隔距比强度、成熟度、马克隆值呈显著负相关(r=0.9382*to0.9023*),α角与纤维长度极显著负相关(r=0.9731**)。表明彩色棉纤维品质差与纤维发育过程中横向晶粒尺寸初始值和终止值低及取向参数终止值高,进而影响纤维3.2mm隔距比强度、成熟度、马克隆值和纤维长度有关。
     3.4彩色棉纤维发育过程中纤维素含量与糖组分及矿质元素含量的关系
     棉纤维发育过程中纤维素含量均呈“S”型曲线变化趋势。开花后25d之后,白色棉品种LMY28的纤维素含量极显著高于彩色棉品种ZX-1和G-7。果糖、葡萄糖、半乳糖、纤维二糖、N、P、K、S和Mg的含量是纤维素沉积必不可少的。表明,葡萄糖既是棉花纤维素生物合成的直接前体,又是纤维素生物合成的关键糖。彩色棉品种可能存在一种特殊机制:原本用于纤维素生物合成的碳水化合物(尤其是葡萄糖)和矿质元素(N、P、K、S和Mg)被用于纤维色素的生物合成和沉积,从而导致了纤维素含量彩色棉显著低于白色棉。
     3.5彩色棉纤维发育过程中相关酶活性
     彩色棉棉纤维发育过程中,纤维发育相关酶(蔗糖合成酶、β-1,3-葡聚糖酶、蔗糖酶、吲哚乙酸氧化酶和过氧化物酶)活性较白色棉低,影响了彩色棉纤维素的合成和沉积,进而影响了彩色棉优良纤维品质的形成。此外,棕色棉的磷酸蔗糖合成酶活性较白色棉和绿色棉高,但其纤维素含量较白色棉低,可能其磷酸蔗糖合成酶合成的蔗糖用于了纤维色素的合成,引起了纤维素的合成过程中能量的供应不足,导致彩色棉纤维素含量较白色棉低,进而影响了彩色棉优良纤维品质的形成。4彩色棉纤维色素的成分
     甲醇80℃索氏提取48h的色素样品,采用HPLC以甲醇:乙酸=98:2(v/v)为流动相进行分离,于285nm波长下检测分离的效果最佳。最后采用LC-MS对棕色棉ZX-1和绿色棉G-7色素甲醇提取液进行分离检测,其中棕色棉ZX-1和绿色棉G-7分别检测出7种和12种化合物,其均为黄酮类化合物。棕色棉ZX-1纤维色素经鉴定出的7种化合物分别为:无色花翠素-3-O-(β-D-吡喃葡萄糖基-(1→4)-α-L-吡喃鼠李糖苷、山奈酚3-(3''-乙酰基-α-L-呋喃阿拉伯糖苷)-7-鼠李糖苷、芦丁、槲皮素、Piscerythramine、芹菜素-7-(6''-丁烯酰基糖苷)、Pendulin。绿色棉G-7纤维色素经鉴定出的12种化合物分别为:柳穿鱼黄素-7-芸香糖甙、槲皮素-3-硫酸酯-7-α-阿拉伯吡喃糖苷、表没食子儿茶素-5,3',5'-三甲基醚-3-O-没食子酸酯、山奈酚3-[6''-(3-羟基-3-甲基戊二酰基)葡萄糖苷]、鹰嘴豆芽素A-7-O-芸香糖苷、槲皮素3,3'-二甲基醚-4'-异戊酸、异山奈素-7-芸香糖甙、Apigenin7-(2''-glucosyllactate)、山奈酚-3-(3'',4''-双乙酰基葡萄糖苷)、槲皮素-3-木糖苷-7-葡萄糖苷、异鼠李素-3-O-β-D-2'',3'',4''-三乙酰基吡喃葡萄糖苷、Cassiaoccidentalin A。彩色棉纤维色素成分中并不是每种成分都具有天然色泽,其中,棕色棉ZX-1纤维色素的化合物1和化合物5是无色的,其它化合物的颜色呈灰黄至黄色;绿色棉G-7纤维色素的化合物3和化合物5是无色的,其它化合物的颜色呈灰黄至黄色。彩色棉纤维色泽的表现可能依赖于纤维色素成分与纤维细胞中矿质元素的结合以及细胞质pH值的影响。
Brown and green are the two most common fiber colors in colored cotton cultivars(Gossypium hirsutum L.). Although there are drawbacks to colored cotton, such as poorquality and the instability of the fiber pigments, colored cotton remains widely popularbecause it is environment-friendly, economical, and beneficial to human health. In order toexplore the formation of fiber pigment and the relationship between fiber pigment and fiberquality and color stability in colored cotton cultivars, the experiments were conducted withdifferent cotton cultivars, including brown cotton cultivars (ZX-1and XC-1), green cottoncultivars (G-7and4560), and white cotton cultivar (LMY28). The regulation of fiberdifferentiation and development and the related metabolism of physiological and biochemical,the dynamic changes of supramolecular structure and fiber color, as well as, the distributionand composition of fiber pigments in fiber development process of colored cotton weresystematic studied by the combining methods of morphology, physiological and biochemicalmeasurements, and metabolomics. The main results were as follows.
     1Patterns of color formation in different fibers during development of colored cottoncultivars
     The fiber color of brown cultivars gradually deepened before35days post anthesis(DPA), rapidly deepened from35DPA to40DPA, and from55DPA to maturation, whilegreen cultivars gradually deepened from25DPA to45DPA, reached a maxima at45DPA,and then faded from55DPA to maturation.
     2Regulation of pigment deposition in colored cotton fibers during development
     Pigment forming time and depositing position showed significant differences in thefibers development process of ZX-1and G-7’s. That is to say, the pigment formation of G-7isearlier than that of ZX-1, and the pigment of G-7deposited in both lumen and the innersecondary wall, while the pigment of ZX-1only deposited in lumen.
     3Mechanism of fiber quality formation in colored cotton cultivars
     3.1Regulation of differentiation in colored cotton fiber
     The central part of the ovule epidermal cells began to differentiate at1DPA. There wereprotuberances of ovule fiber cells at0DPA. The number and volume of protuberancesincreased at1DPA, when the fiber cells of LMY28had the elongated trends. In addition,fiber cells already elongated at3DPA. In summary, LMY28was the best, followed by ZX-1,and G-7was the worst in the degree of differentiation, the number of protuberance, and thelevel of development and elongation.
     3.2Fiber quality formation of colored cotton cultivars
     Fiber length,3.2mm gauge strength, fiber maturation and fiber micronaire was increasedwith the development of the cotton fiber. The results showed that the ultimate fiber length,fiber3.2mm gauge tenacity, fiber maturation and fiber micronaire of all cotton cultivarsranked as LMY28> ZX-1and XC-1> G-7and4560.
     3.3Relationship between super-molecular structure changes and fiber quality in fiberdevelopment process of colored cotton cultivars
     The corresponding crystalline grain size increased constantly and orientation parametersdiminished gradually in fiber development process, but there were differences amongdifferent cultivars. The crystalline grain size had a correlation with3.2mm gauge tenacity (r=0.8962*), as well as, the orientational distribution angle-ψ () a nd spiral angle-φ () had anegative correlation with fiber3.2mm gauge tenacity, fiber maturation and fiber micronaire(r=0.9382*to0.9023*), moreover, the orientational separate angle-α () had a negativecorrelation with fiber length (r=0.9731**). In conclusion, the poor quality of colored cottonfiber is probably in relation to poor fiber3.2mm gauge tenacity, fiber maturation, fibermicronaire, fiber length, resulting from low initial value and termination value of crystallinegrain size and high termination value of orientation parameters in fiber development process.
     3.4The relationship between cellulose content and the contents of sugars and mineralsduring fiber development in colored cotton cultivars
     Cellulose contents during fiber development changed along S-shaped curves among thetested cotton cultivars. The cellulose content was significantly higher in the white cottoncultivar LMY28than in the colored cotton cultivars ZX-1and G-7after25DPA. Sugar and mineral contents showed significant changes during fiber development. Fructose, glucose,galactose, cellobiose, nitrogen, phosphorus, potassium, sulfur, and magnesium contents wereessential for cellulose deposition during fiber development. In this study, glucose was shownto be a direct precursor and key sugar in cellulose biosynthesis in cotton cultivars. There maybe a special mechanism in colored cotton cultivars that greater amounts of total carbohydrates,especially glucose, and minerals (nitrogen, phosphorus, potassium, sulfur, and magnesium)were consumed by the biosynthesis and deposition of fiber pigments than in the biosynthesisof cellulose. This finding could explain why the cellulose content was significantly lower inthe colored cotton cultivars than in white cotton.
     3.5The activity changes for enzymes associated with fiber development in coloredcotton cultivars
     The activity of enzymes associated with fiber development (sucrose synthase, β-1,3-glucanase, invertase, indoleasetic acid oxidase, and peroxidase) in colored cotton cultivarswere less than in white cotton cultivar. Effecting the cellulose biosynthesis and the formationof fiber quality of colored cotton. In addition, the activity of sucrose phosphate synthase incolored cotton cultivars was higher than in white cotton cultivar. As well as, the cellulosecontent of colored cotton was lower than white cotton, may be the sucrose was used for thefiber pigment biosynthesis, causing the short supply of energy in the process of the cellulosebiosynthesis. Resulting in the cellulose content in colored cotton was lower than white cottonand affecting the fiber quality formation in colored cotton.
     4The fiber pigment composition in colored cotton
     According to the extraction method and the separation and detection of component, wefound the best fiber pigment was extracted48h by Soxhlet extraction of methanol in waterbath at80°C. Fiber pigment in different colored cotton cultivars were separated, identified,and quantified by a high-performance liquid chromatographic method with photodiode arrayand mass spectrometric detection (LCMS). Compound of fiber pigment are flavonoids inbrown cotton ZX-1and green cotton G-7, including7compound and12compound,respectively. Seven compounds were identified by LCMS in brown cotton ZX-1, as follows.Leucodelphinidin3-O-(β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside), Kaempferol3-(3''-acetyl-α-L-arabinofuranoside)-7-rhamnoside, Rutin, Quercetin, Piscerythramine,Apigenin7-(6''-crotonylglucoside), Pendulin.
     Twelve compounds including Pectolinarigenin7-rutinoside, Quercetin3-sulfate-7-α-arabinopyranoside, Epigallocatechin5,3',5'-trimethyl ether3-O-gallate, Kaempferol3-[6''-(3-hydroxy-3-methylglutaryl) glucoside], Biochanin A7-O-rutinoside, Quercetin3,3'-dimethylether4'-isovalerate, Isokaempferide7-rutinoside, Apigenin7-(2''-glucosyllactate),Kaempferol3-(3'',4''-diacetylglucoside), Quercetin3-xyloside-7-glucoside, Isorhamnetin3-O-β-D-2'',3'',4''-triacetylglucopyranoside, and Cassiaoccidentalin A, were identified by LCMS ingreen cotton G-7. Meanwhile, the compound1and compound5was colorless, the othercompounds were grayish yellow to yellow of pigment composition in brown cotton ZX-1; thecompound3and compound5was colorless, the other compounds were grayish yellow toyellow of pigment composition in green cotton G-7, respectively. That is to say, the fibercolor of colored cotton may depend on the combination fiber pigment composition andminerals, as well as, the cytoplasmic pH value in fiber cells.
引文
卞海云,张文静,陈兵林,周治国,蒋光华,束红梅.低温条件下外源物质对棉纤维比强度的影响.棉花学报.2006,18(3):5
    陈国符,邬义明.纤维素及其衍生物.植物纤维化学.北京,轻工业出版社.1986:127-197
    陈旭升,刘剑光,狄佳春,许乃银,肖松华.棕色棉纤维色度与产量性状相关分析.中国棉花.2001,28(10):2
    程明,柯娜.彩棉与白棉结构和性能的比较.中国纤检.2006,(3):2
    单世华,施培,孙学振,周治国,边栋材.开花期和果枝部位对短季棉纤维品质及超分子结构的影响.中国农业科学.2002,35(2):6
    单世华,孙学振,周治国,施培,边栋材.温度对棉纤维强度及超分子结构的影响.作物学报.2000b,26(6):7
    单世华,孙学振,周治国,施培.温度对棉纤维品质性状的影响.华北农学报.2000a,15(4):6
    单世华,王明林,汪建民,施培.不同开花期IAA、GA3和POD对棉纤维伸长发育的影响.棉花学报.2001,13(2):5
    董合忠,李维江,唐薇,李振怀.2个彩色棉材料的农艺性状和纤维发育特点研究.山东农业科学.2002,(4):4
    董合忠,李维江,唐薇,张冬梅.彩色棉纤维发育与色素形成.中国棉花.2004,31(2):4
    董合忠,刘凤学.棉花胚珠的形态学特征与纤维细胞的分化.莱阳农学院学报.1989b,6(2):8-12
    董合忠,徐楚年,余炳生.陆地棉与海岛棉纤维发育的比较研究-棉纤维的分化.北京农业大学学报.1989a,15(4):377-381
    董合忠.测量未成熟纤维长度的几种方法.中国棉花.1987,14(1):22
    杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育.棉花学报.2000,12(4):6
    杜雄明,石玉真.天然彩色棉纤维特性及开发利用.针织工业.2002,(1):5
    杜雄明,孙君灵,刘国强,石玉真,周忠丽.抗虫杂交彩色棉中BZ12.中国棉花.2001,28(10):1
    杜雄明,张天真,袁有禄.有色棉的研究利用现状及展望.中国农学通报.1997,13(13):30-32
    冯鸿杰,王杰,孙君灵,张新宇,贾银华,孙杰,杜雄明.陆地棉棕色纤维色泽的遗传效应.作物学报.2010,36(6)
    耿军义,王国印,翟学军,李之树,刘存敬,李延增.陆地棉有色纤维基因遗传及其对产量和品质的影响.棉花学报.1998,10(6):307-311
    何承顺.盐酸煮沸提取和ICP-AES测定植株中矿质元素.分析测试通报.1991,10(1):67-72
    何书美,乔兰侠,刘敬兰.红外光谱法测定芹菜叶提取物中总黄酮的含量.分析科学学报.2008,24(2):4
    胡伯陶.棉纺织行业产品结构问题及调整思路(上).棉纺织技术.2001b,29(1):4
    胡伯陶.棉纺织行业产品结构问题及调整思路(下).棉纺织技术.2001a,29(2):5
    胡伯陶.浅议天然彩色棉的色彩及其产品加工中的几个问题.棉纺织技术.2002,30(5):4
    胡超,杨园园,郭宁,蔡永萍,林毅,高俊山,姜家生.棕色棉与白色棉缩合单宁单体儿茶素动态变化的比较.植物生理学报.2011,47(7):685-690
    胡恒亮,穆祥祺,贾景农,边栋材.棉纤维结晶度和横向晶粒尺寸的X射线衍射法测定.纺织学报.1984,5(7):426-429
    胡恒亮,穆祥祺. X射线衍射技术.北京,1988.纺织工业出版社
    胡宏标,张文静,王友华,陈兵林,周治国.棉纤维加厚发育相关物质对纤维比强度的影响.西北植物学报.2007,27(4):8
    黄俊娴,梁荣选,杨建男.天然色素的提取方法和应用.广东化工.2006,33(6):4
    黄猛.我国绿色纺织品的现状及发展趋势.棉纺织技术.2000,28(2):5
    黄晓东,邵迎,高安娜.我国彩色棉研究文献分析.农业图书情报学刊.2004,16(12):3
    纪家华,王恩德,李朝晖,张循浩,李洪琴.彩色抗虫杂交棉-滨彩1、2号.中国棉花.2001,28(8):1
    贾景农,边栋材,闻艳萍,赵雪,刘继华,尹承佾,于凤英.棉纤维微观结构差异与纤维强度的关系.纺织学报.1992,13(5):9-12
    蒋光华,孟亚利,陈兵林,卞海云,周治国.低温对棉纤维比强度形成的生理机制影响.植物生态学报.2006,30(2):9
    蒋淑丽,王学德.棉花纤维突变体胚珠发育过程中主要生化物质的积累特征.浙江大学学报(农业与生命科学版).2002,28(1):6
    李成奇,郭旺珍,张天真.棉花4个栽培种纤维初始发育的比较研究.作物学报.2007,33(8):6
    李定国,聂以春,张献龙.陆地棉棕色纤维色泽的遗传分析.华中农业大学学报.2004,23(6):4
    李付振,宁新民,邱新棉,苏成付,姚坚强,田立文.棉花深棕色纤维基因Lc1的遗传定位中国农业科学.2012,45(19):4109-4114
    李合生.植物生理生化实验原理和技术.北京,2000.高等教育出版社
    李悦有,王学德,徐亚浓.棕色棉细胞质雄性不育花药的细胞学观察.浙江大学学报(农业与生命科学版).2002c,28(1):5
    李悦有,王学德.彩色棉纤维的超微结构观察.浙江大学学报(农业与生命科学版).2002a,28(4):4
    李悦有,王学德.细胞质雄性不育彩色棉杂种优势的表现.浙江大学学报(农业与生命科学版).2002b,28(1):4
    林昕.世界主要产棉国家对彩色棉的研究与开发.江西棉花.2000a,22(1):8
    林昕.世界主要产棉国家对彩色棉的研究与开发.江西棉花.2000b,22(1):3-10
    刘继华,孙清荣,尹承佾,于凤英.棉花纤维发育过程中氧化酶活性与同工酶酶谱分析.山东农业大学学报(自然科学版).1993,24:302-306
    刘继华,杨洪博,曹鸿鸣.棉纤维生长发育(3)-棉花纤维的伸长发育.中国棉花.1995,22(4):38-39
    刘继华,尹承佾,孙清荣,杨洪博,于凤英,边栋材,贾景农.棉花纤维发育过程中细胞壁超分子结构的变化及与纤维强度的关系.作物学报.1996b,22(3):325-330
    刘继华,尹承佾,王永民,于凤英,贾景农,边栋材.棉花纤维超分子结构参数的遗传分析.作物学报.1994b,20(3):375-380
    刘继华,尹承佾,于凤英,贾景农,边栋材.略论超分子结构与纤维强度的关系.纤维标准与检验.1991,(8):14-16
    刘继华,尹承佾,于凤英,刘英欣,贾景农,边栋材.开花期对棉花纤维超分子结构与纤维强度动态变化的影响.中国农业科学.1996a,29(1):59-65
    刘继华,尹承佾,于凤英,孙清荣,王永民,贾景农,边栋材,陈学留.棉花纤维强度的形成机理与改良途径.中国农业科学.1994a,27(5):10-16
    刘康,张天真,潘家驹.棉纤维初始发育过程中过氧化物酶和吲哚乙酸氧化酶的活性.植物生理学通讯.1998,34(3):175-177
    刘思颖,沈曾佑,张志良,颜季琼.岱字巧号棉纤维发育过程中纤维细胞壁组分变化的研究.植物生理学报.1983,9(4):347-356
    潘庆民,白永飞,韩兴国,张丽霞.羊草根茎的贮藏碳水化合物及对氮素添加的响应.植物生态学报.2004,28(1):6
    邱新棉,俞碧霞,朱乾浩,赵连英,傅杏花.天然彩色棉育种研究.浙江农业学报.1999,11(5)
    邱新棉,赵连英.天然彩色棉研究进展.中国棉花.2000,27(5):3
    邱新棉,周文龙,李茂松,马永根.天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究.中国农业科学.2002,35(6):6
    邱新棉.经济发达地区应当积极发展天然彩色棉.中国农学通报.1998,14(5)
    邱新棉.天然彩色棉研究进展与发展前景.棉花学报.2004,16(4):6
    任晓燕.天然彩棉色素分光光度计定量测定色素方法的建立.安徽农学通报.2009,15(5):2
    上官小霞,王凌健,李燕娥,梁运生.棉花纤维发育的分子机理及品质改良研究进展.棉花学报.2008,20(1):8
    石玉真,杜雄明,刘国强,傅怀勤,李润花,周忠丽.天然彩色棉布料洗晒色泽变化初探.中国棉花.1998a,25(12):13-15
    石玉真,杜雄明,刘国强,傅怀勤,李润花,周忠丽.天然彩色棉布料洗晒色泽变化初探天然彩色棉布料洗晒色泽变化初探.中国棉花.1998b,25(12):13-15
    石玉真,杜雄明,刘国强,强爱娣,周忠丽,潘兆娥,孙君灵.天然有色棉纤维和短绒色泽遗传分析.棉花学报.2002,14(4):7
    束红梅,王友华,陈兵林,胡宏标,张文静,周治国.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系.作物学报.2007,33(6):6
    束红梅,王友华,张文静,周治国.两个棉花品种纤维发育关键酶活性变化特征及其与纤维比强度的关系.作物学报.2008,34(3):10
    宋晶,孙勇如,张利明,李文彬.靛蓝色素酶基因表达载体的构建及在大肠杆菌中的表达.高技术通讯.2003,13(9):4
    孙东磊,孙君灵,杜雄明,马峙英.棕色棉纤维和短绒色泽遗传研究.安徽农业科学.2008,36(15):3
    孙学振,刘霞,王立国,施培,王振林.彩色棉研究进展与展望.山东农业大学学报(自然科学版).2002,33(4):7
    汤章城.现代植物生理学实验指南.北京,科学出版社.1999:126-128
    陶灵虎,胡勤龙,刘稳生.用X射线衍射法测定棉纤维次生胞壁的平均螺旋角.江苏农学院学报.1988,9(2):53-55
    陶灵虎,刘稳生,封国林,陈德华,吴云康,阮锡根,邓家佩.棉纤维品质性状与取向参数的关系.作物学报.1998,24(2):221-224
    徒晓茜.天然色素的提取与分离.印染助剂.2006,23(9):4
    唐丽娟,刘玮炜,史大华,赵跃强,陶传洲.薄层层析在植物黄酮类化合物研究中的应用.时珍国医国药.2009,20(12):2
    王冬梅,李建平,黄乐平,李仁敬,郭江勇,吴明刚,田颖川,郭洪年.转抗虫基因彩色棉的获得.农业生物技术学报.2003,11(1):2
    王力华,朱美霞,徐荣旗.彩色棉的研究与产业化.分子植物育种.2003,1(1):4
    王丽艳.彩色棉纤维的色彩稳定性及开发中有待解决的问题.山东纺织经济.2008,(3):3
    王利祥,刘海峰,肖向文,庞志乾,宋武,鲁春芳,罗城,刘戈宇,徐吉臣,李小兵,李晓波.新疆彩色棉花遗传特性分析.安徽农业科学.2012,(7)
    王淑民.彩色棉溯源与研究.世界农业.2000,9:19-21
    王学德,李悦有.彩色棉纤维发育的特性研究.浙江大学学报(农业与生命科学版).2002c,28(3):6
    王学德,李悦有.彩色棉纤维色素提取和测定方法的研究.浙江大学学报(农业与生命科学版).2002b,28(6):5
    王学德,李悦有.彩色棉雄性不育系、保持系和恢复系的选育及DNA指纹图谱的构建.浙江大学学报(农业与生命科学版).2002a,28(1):6
    吴永成,李首成.天然有色棉纤维发育特性研究.西南农业学报.2006b,19(6):4
    吴永成,李首成.天然有色棉纤维早期分化发育的细胞形态观察.四川农业大学学报.2006a,24(1):4
    西蒙古良.陆地棉纤维色泽的遗传.国外农学–棉花.1984,(3):17-19
    肖崇厚.中药化学(供中药类专业用).上海,1997.上海科学技术出版社
    徐楚年,余炳生,张仪,贾君镇,寿元.棉花四个栽培种纤维发育的比较研究.北京农业大学学报.1988,14(2):113-119
    徐楚年,张仪,余炳生,林庆文,肖荧南,贾君镇.棉花四个栽培种纤维发育早期扫描电镜的比较研究.北京农业大学学报.198713(3):255-262
    徐阳,孙卫国,谷彦彩.天然彩色棉色素的提取与光谱分析.西安工程科技学院学报.2007,21(4):4
    薛应龙.植物生理学实验手册.上海,海科学技术出版社.1985,
    杨树明.健康发展我国的天然彩色棉产业.棉纺织技术.2002,30(5):4
    杨佑明,徐楚年.棉纤维发育的分子生理机制.植物学通报.2003,20(1):9
    于伯龄.绿色天然彩色棉金属盐固色试验.针织工业.2002,(1):3
    于伯龄.天然绿色棉的金属盐固色试验.纺织导报.2001,(3):3
    袁淑娜,华水金,倪密,李悦有,文国吉,邵明彦,张海平,祝水金,王学德.彩色棉纤维中矿质元素含量与纤维品质形成的关系.中国农业科学.2010,43(20)
    詹少华,李正鹏,林毅,蔡永萍.天然棕色棉纤维色彩遗传特性的定量分析.中国农学通报.2008,24(12):3
    詹少华,林毅,蔡永萍,李正鹏.天然棕色棉纤维发育过程中生化物质变化规律的研究.皖西学院学报.2007b,23(5):5
    詹少华,林毅,蔡永萍,李正鹏.天然棕色棉纤维色素光谱学特性及其化学结构初步推断.植物学通报.2007a,24(1):6
    詹少华,林毅,蔡永萍,汪曙.天然棕色棉色素提取、纯化及其UV光谱研究.激光生物学报.2004,13(5):5
    詹少华,林毅,蔡永萍,文汉.天然棕色棉色素分布规律及色素合成与纤维发育的关系.棉花学报.2006,18(3):5
    詹少华,林毅,蔡永萍.彩色棉棉铃生长发育动态研究简报.棉花学报.2005b,17(2):2
    詹少华,林毅.天然彩棉棕色素定量测定方法的建立.分子植物育种.2005a,3(3):6
    张秉贤,王国祥.彩色棉与白色棉之间的DNA分子标记研究.中国棉花.2001,28(2):2
    张秉贤,王国祥.试论我国彩色棉的发展.中国棉花.2000,27(12):2
    张恒木,赵旌旌,王隆华.试管棉纤维发育中IAA氧化酶和POD活性的变化(简报).植物生理学通讯.2000,36(4):3
    张辉,汤文开,谭新,龚路路,李学宝.棉纤维发育及其相关基因表达调控研究进展.植物学通报.2007,24(2):7
    张林水,朱祯,吴霞,姜艳丽,徐鸿林,上官小霞,李波,李燕娥.转三价抗虫基因彩色棉的获得.西北植物学报.2005,25(6):6
    张美冬,詹先进,蓝家样,张兴中,陈全求,黄云.彩色棉品质性状的遗传效应研究.中国农学通报.2009,25(1):5
    张美玲,宋宪亮,孙学振,陈二影,赵庆龙,李宗泰.彩色棉纤维发育过程中超分子结构变化与纤维品质的关系.作物学报.2010,36(8)
    张美玲,宋宪亮,孙学振,王振林,赵庆龙,李宗泰,姬红,许晓龙.彩色棉纤维分化及色素沉积过程观察.作物学报.2011,37(7):1280-1288
    张镁,胡伯涛,赵向前.影响彩色棉色素和纤维品质形成的因子.天然彩色棉的基础和应用.张镁.北京,中国纺织出版社.2004:18-27
    张镁,吴红霞,马长华,胡伯陶.彩棉纤维的形态结构、超微结构和主要化学组成.印染.2002,28(6):5
    张文静,胡宏标,陈兵林,束红梅,王友华,周治国.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响.作物学报.2007b,33(4):8
    张文静,胡宏标,王友华,陈兵林,束红梅,周治国.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系.中国农业科学.2007a,40(10):8
    张祥,刘晓飞,吕春花,董召娣,陈源,陈德华.两个不同类型彩色棉品种纤维发育的生理特征.作物学报.2011,37(3)
    张祥,肖建,栾娜,王永慧,杨朝华,陈源,陈德华.两个不同彩色棉纤维品质性状形成特点及生长调节剂调节作用.作物学报.2009,35(5):7
    张小均,田新惠,李明月,刘海峰,李少昆,宋武,孙杰.天然彩色棉纤维色素提取及光谱特性研究.棉花学报.2008,20(2):4
    赵瑞海,勾玲,韩春丽,张旺锋,雷军,边栋材.不同生态棉区棉纤维晶区取向参数的变化及与纤维比强度的关系.棉花学报.2008,20(1):5
    赵瑞海,韩春丽,张旺锋.棉纤维超分子结构及与纤维品质的关系.棉花学报.2005,17(2):5
    赵向前,王学德.天然彩色棉纤维色素成分的研究.作物学报.2005a,31(4):7
    赵向前,王学德.细胞质雄性不育彩色棉的杂种优势利用和制种研究.棉花学报.2005b,17(1):4
    赵向前,王学德.纤维颜色作为指示性状的三系杂交棉制种技术.浙江大学学报(农业与生命科学版).2002,28(2):4
    智联腾,赵倩,敖光明,于静娟.天然彩色棉纤维特异表达启动子LTP3的克隆及其在烟草中的表达特异性.热带生物学报.2011,02(2)
    Abidi N, Hequet E, Cabrales L. Changes in sugar composition and cellulose content duringthe secondary cell wall biogenesis in cotton fibers. Cellulose.2010,17:153-160
    Aiyangar G S. Origin and development of lint and fuzz in cotton. Indian Journal AgricultralScience.1951,21:293-312
    Amor Y, Haigler C H, Johnson S, Wainscott M, Delmer D P. A membrane-associated form ofsucrose synthase and its potential role in synthesis of cellulose and callose in plants.Proceedings of the National Academy of Sciences.1995,92(20):9353-9357
    Anderson D B, Kerr T. Growth and structure of cotton fiber. Industrial&EngineeringChemistry.1938,30(1):48-54
    Arpat A, Waugh M, Sullivan J, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing R,Wilkins T. Functional genomics of cell elongation in developing cotton fibers. PlantMolecular Biology.2004,54(6):911-929
    Babb V M, Haigler C H. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiology.2001,127(3):1234-1242
    Berlin J D. The outer epidermis of the cotton seed. Cotton Physiology.1986:375-414
    Bilmeyer F, Saltzmann M. Principles of color technology. Wiley. New York, Color and ColorDifference Measurement.1981:67-109
    Boquet D J, Moser E B. Boll retention and boll size among intrasympodial fruiting sites incotton. Crop Science.2003,43:195–201
    Bradow J M, Davidonis G H. Quantitation of fiber quality and the cotton production-processing interface: a physiologists perspective. Journal of Cotton Science.2000,4:34-64
    Brenda W S. Flavonoid biosynthesis. A Colorful model for genetics, biochemistry, cellbiology, and biotechnology. Plant Physiology.2001,126(2):485-493
    Brown Jr R M, Saxena I M. Cellulose biosynthesis: A model for understanding the assemblyof biopolymers. Plant Physiology and Biochemistry.2000,38(1–2):57-67
    Burbulis I E, Iacobucci M, Shirley B W. A null mutation in the first enzyme of flavonoidbiosynthesis does not affect male fertility in Arabidopsis. The Plant Cell.1996,8(6):1013-1025
    Calhoun S D, Bowman D T. Techniques for development of new cultivars. Cotton: origin,history, technology and production. Wiley. New York, Snath WC.1999:361–414
    Chan L W, Chan W Y, Heng P W S. An improved method for the measurement of colouruniformity in pellet coating. International Journal of Pharmaceutics.2001,213(1–2):63-74
    Chung C, Lee M, Choe E K. Characterization of cotton fabric scouring by FT-IR ATRspectroscopy. Carbohydrate Polymers.2004,58(4):417-420
    Conner J W, Krieg D R, Gipson J R. Accumulation of simple sugars in developing cottonbolls as influenced by night temperatures. Crop Science.1972,12:752-754
    Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink forcarbon in plants. Metabolic Engineering.2002,4(1):22-28
    DeLuca L B, Orr R S. Crystallite orientation and spiral structure of cotton. Part I. Nativecottons. Journal of Polymer Science.1961,54(160):457-470
    Dhindsa R S, Beaslay C A, Ting I P. Osmoregulation in cotton fiber. Plant Physiology.1975,56:394-398
    Dimitropoulou K K. Hormonal influences on fiber development. Cotton Physiology.1986:361-373
    Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism indeveloping kernels of two inbreds of maize. Plant Physiology.1988,86(4):1013-1019
    Douglas R D. Color stability of new-generation indirect resins for prosthodontic application.The Journal of Prosthetic Dentistry.2000,83(2):166-170
    DuPont F M, Hurkman W J, Vensel W H, Chan R, Lopez R, Tanaka C K, Altenbach S B.Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected bytemperature and mineral nutrition during grain development. Journal of Cereal Science.2006,44:101-112
    Endrizzi J E, Turcotte E L, Kohel R J. Genetics, cytology, and evolution of Gossypium.Advances in Genetics. Caspari E W, John G S, Academic Press.1985,23:271-375
    Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. CurrentOpinion in Biotechnology.2001,12(2):155-160
    Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of citrusjuices. Molecules.2007,12(8):1641-1673
    Gokani S J, Thaker V S. Physiological and biochemical changes associated with cotton fiberdevelopment: IX. Role of IAA and PAA. Field Crops Research.2002,77(2–3):127-136
    Grayer R J, Harborne J B. A survey of antifungal compounds from higher plants,1982–1993.Phytochemistry.1994,37(1):19-42
    Gross K C, Pharr D M. A potential pathway for galactose metabolism in cucumis sativus L., aslachyose transporting species. Plant Physiology.1982,69:117-121
    Haigler C, Ivanova-Datcheva M, Hogan P, Salnikov V, Hwang S, Martin K, Delmer D.Carbon partitioning to cellulose synthesis. Plant Molecular Biology.2001,47(1-2):29-51
    Hua S J, Wang X D, Yuan S N, Shao M Y, Zhao X Q, Zhu S J, Jiang L X. Characterization ofpigmentation and cellulose synthesis in colored cotton fibers. Crop Science.2007,47(4):1540-1546
    Hunter R S, Harold R W. The measurement of appearance. Wiley. New York, Instruments forthe Chromatic Attributes of Object Appearance.1987:296-320
    Huwyler H R, Franz G, Meier H. Changes in the composition of cotton fibre cell walls duringdevelopment. Planta.1979,146(5):635-642
    ISO-6865. Feeding stuffs-Determination of crude fiber content-Method with intermediatefiltration.2000
    Jaquet J P, Buchala A J, Meier H. Changes in the non-structural carbohydrate content ofcotton (Gossypiums spp.) fibers at different stages of development. Planta.1982,156:481-486
    Jasdanwala R T, Sing Y D, Chinoy J J. Auxin metabolism in developing cotton hairs. Journalof Experimental Botany.1977,28(5):1111-1116
    Judd D B, Wyszecki G. Color in business, science and industry. Wiley. New York, Tools andTechnics.1975:105-170
    Kohel R J. Genetic analysis of fiber color variants in cotton. Crop Science.1985,25(5):793-797
    Kohel R J, Richmond T R. Isolines in cotton: effects of nine dominant Genes. Crop Science.1971,11(2):287-289
    Krakhmalev V A, Paiziev A A. About arrangement of the hairs on the epidermis of cottonseed. Journal of Central European Agriculture.2006,7(2):259-266
    Lang A G. The origin of lint and fuzz hairs of cotton. Journal Agricultural Research.1938,56(7):507-521
    Lerner S E, Seghezzo M L, Molfese E R, Ponzio N R, Cogliatti M, Rogers W J. N-and S-fertiliser effects on grain composition, industrial quality and end-use in durum wheat.Journal of Cereal Science.2006,44:2-11
    Li C, Guo W, Zhang T. Fiber initiation development in Upland cotton (Gossypium hirsutumL.) cultivars varying in lint percentage. Euphytica.2009,165(2):223-230
    Malcolm Brown Jr R, Saxena I M, Kudlicka K. Cellulose biosynthesis in higher plants.Trends in Plant Science.1996,1(5):149-156
    Maltby D, Carpita N C, Montezinos D, Kulow C, Delmer D P. Beta-1,3-glucan in developingcotton fibers: structure, localization, and relationship of synthesis to that of secondary wallcellulose. Plant Physiology.1979,63(6):1158-1164
    Martin L K, Haigler C H. Cool temperature hinders flux from glucose to sucrose duringcellulose synthesis in secondary wall stage cotton fibers. Cellulose.2004,11:339-349
    Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K. MS/MSspectral tag-based annotation of non-targeted profile of plant secondary metabolites. ThePlant Journal.2009,57(3):555-577
    McGuire R G. Reporting of objective color measurements. HortScience.1992,27(12):1254-1255
    Meier H, Buchs L, Buchala A J, Homewood T.(1→3)-β-D-Glucan (callose) is a probableintermediate in biosynthesis of cellulose of cotton fibres. Nature.1981,289:821-822
    Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall of the cottonfiber during development. Plant Physiology.1977,59:1088-1097
    Mendoza F, Dejmek P, Aguilera J M. Calibrated color measurements of agricultural foodsusing image analysis. Postharvest Biology and Technology.2006,41(3):285-295
    Moyano E, Martínez-Garcia J F, Martin C. Apparent redundancy in myb gene functionprovides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. ThePlant Cell.1996,8(9):1519-1532
    Murthy M S S. Never say dye: the story of coloured cotton. Resonance.2001,6(12):29-35
    Nijveldt R J, van Nood E, van Hoorn D E, Boelens P G, van Norren K, van Leeuwen P A.Flavonoids: a review of probable mechanisms of action and potential applications. TheAmerican Journal of Clinical Nutrition.2001,74(4):418-425
    O'Kelly J C. The use of14c in locating growth regions in the cell walls of elongating cottonfibers. Plant Physiology.1953,28(2):281-286
    Osorio C, Franco M S, Casta o M P, González-Miret M L, Heredia F J, Morales A L. Colourand flavour changes during osmotic dehydration of fruits. Innovative Food Science&Emerging Technologies.2007,8(3):353-359
    Paakkari T, Serimaa R. A study of the structure of wood cells by x-ray diffraction. WoodScience and Technology.1984,18(2):79-85
    Pan Z, Sun D, Sun J, Zhou Z, Jia Y, Pang B, Ma Z, Du X. Effects of fiber wax and cellulosecontent on colored cotton fiber quality. Euphytica.2010,173(2):141-149
    Ramsey J C, Berlin J D. Ultrastructure of early stages of cotton fiber differentiation.Botanical Gazette.1976,137
    Ray P M. Radioautographic study of cell wall deposition in growing plant cells. Journal cellbiology.1967,35(3):659-674
    Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced bynitrogen and potassium nutrition. European Journal of Agronomy.2006,24:282-290
    Richmond T R. Inheritance of green and brown lint in upland cotton. Agronomy Journal.1943,35(11):967-975
    Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fibercell initiation in ovule epidermis and alterations in sucrose synthase expression and carbonpartitioning in developing seeds. Plant Physiology.1998,118(2):399-406
    Ruan Y L, Chourey P S, Delmer D P, Perez-Grau L. The differential expression of sucrosesynthase in relation to diverse patterns of carbon partitioning in developing cotton seed.Plant Physiology.1997,115(2):375-385
    Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expressionrepresses cotton fiber cell initiation, elongation, and seed development. The Plant Cell.2003,15(4):952-964
    Ruan Y L, Xu S M, White R, Furbank R T. Genotypic and developmental evidence for therole of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover.Plant Physiology.2004,136(4):4104-4113
    Ryser U. Cotton fiber: developmental biology, quality, improvement, and textile processing.Cotton fiber: developmental biology, quality, improvement, and textile processing. BasraA S. New York, Food Products Press.1999:1-45
    Ryser U, Holloway P J. Ultrastructure and chemistry of soluble and polymeric lipids in cellwalls from seed coats and fibres of Gossypium species. Planta.1985,163(2):151-163
    Ryser U, Meier H, Holloway P J. Identification and localization of suberin in the cell walls ofgreen cotton fibres (Gossypium hirsutum L., var. green lint). Protoplasma.1983,117(3):196-205
    Salnikov V V, Grimson M J, Seagull R W, Haigler C H. Localization of sucrose synthase andcallose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma.2003,221(3-4):175-184
    Saxena I M, Brown Jr R M. Cellulose synthases and related enzymes. Current Opinion inPlant Biology.2000,3(6):523-531
    Schmitzer V, Osterc G, Veberic R, Stampar F. Correlation between chromaticity values andmajor anthocyanins in seven Acer palmatum Thunb. cultivars. Scientia Horticulturae.2009,119(4):442-446
    Schmutz A, Buchala A J, Ryser U. Changing the dimensions of suberin lamellae of greencotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acidelongases. Plant Physiology.1996,110(2):403-411
    Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. Changes inlevels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant andCell Physiology.1997,38(3):375-378
    Siddiqui A, Nazzal S. Measurement of surface color as an expedient QC method for thedetection of deviations in tablet hardness. International Journal of Pharmaceutics.2007,341(1–2):173-180
    Stewart J M. Fiber initiation on the ovule (Gossypium hirsutum). American Journal of Botany.1975,62(7):723-730
    Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains andcarotenoids. The Plant Journal.2008,54(4):733-749
    Tarczynski M C, Byrne D N, Miller W B. High performance liquid chromatography analysisof carbohydrates of cotton-phloem sap and honeydew produced by Bemisia tabaci feedingon cotton. Plant Physiology.1992,98:753-756
    Tewolde H, Fernandez C J. Fiber quality response of pima cotton to nitrogen and phosphorusdeficiency. Journal of Plant Nutrition.2003,26:223-235
    Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Changes in the sugar composition andmolecular mass distribution of matrix polysaccharides during cotton fiber development.Plant and Cell Physiology.2002,43(4):411-418
    Waghmare V N, Koranne K D. Colored cotton present status, problems and future potentials.The Indian Journal of Genetics and Plant Breeding.1998,58(1):1-15
    Ware J O. Inheritance of lint colors in upland cotton. Agronomy Journal.1932,24(7):550-562
    Wertafer J M, Brown R M. Electron microscopy of the cotton fiber new observations on cellwall formation. Cytobios.1976,15:111-138
    Williamson R E, Burn J E, Hocart C H. Towards the mechanism of cellulose synthesis.Trends in Plant Science.2002,7(10):461-467
    Worley S, Ramey H H, Harrell D C, Culp T W. Ontogenetic model of cotton yield. CropScience.1976,16(1):30-34
    Wyszecki G, Stiles W S. Color science. Wiley. New York, Concepts and Methods,Quantitative Data and Formulas.1982:13-116,168,223
    Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y. Cotton flavonoid structuralgenes related to the pigmentation in brown fibers. Biochemical and Biophysical ResearchCommunications.2007,358(1):73-78
    Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis. Science.2003,299(5605):396-399
    Yang Y M, Xu C N, Wang B M, Jia J Z. Effects of plant growth regulators on secondary wallthickening of cotton fibres. Plant Growth Regulation.2001,35(3):233-237
    Yannikakis S A, Zissis A J, Polyzois G L, Caroni C. Color stability of provisional resinrestorative materials. The Journal of Prosthetic Dentistry.1998,80(5):533-539
    Yatsu L Y, Mod R R, Kolattukudy P E. Cytochemical studies of green-colored cotton fibers.Plant Physiology.1983,(1):72-73
    Zhang M L, Song X L, Sun X Z, Wang Z L, Li Z T, Ji H, Xu X L, Li J P. The relationshipbetween cellulose content and the contents of sugars and minerals during fiberdevelopment in colored cotton cultivars. Cellulose.2012,19(6):2003-2014
    Zhang M L, Song X L, Sun X Z, Wang Z L, Zhao Q L, Li Z T, Ji H, Xu X L. Patterns of colorformation in different fibers during development of colored cotton (Gossypium hirsutum L.)cultivars. Australian Journal of Crop Science.2011,5(13):1796-1800
    Zhu S W, Gao P, Sun J S, Wang H H, Luo X M, Jiao M Y, Wang Z Y, Xia G X. Genetictransformation of green-colored cotton. In Vitro Cellular&Developmental Biology-Plant.2006,42(5):439-444
    Zhu Z J, Schultz A W, Wang J H, Johnson C H, Yannone S M, Patti G J, Siuzdak G. Liquidchromatography quadrupole time-of-flight mass spectrometry characterization ofmetabolites guided by the METLIN database. Nature Protocols.2013,8(3):451-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700