用户名: 密码: 验证码:
花后短暂高温渍水逆境对冬小麦产量和品质影响机理及其氮素调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温和渍水是黄淮麦区南部和长江中下游麦区冬小麦(Triticum aestivum L.)生育中后期主要气象灾害因子,随着全球气候变暖,其发生程度及频数都逐渐增加,严重影响小麦产量和品质。氮素是小麦生长发育所必需的大量营养元素之一,合理的氮肥营养是缓解逆境胁迫,调控作物生长、群体发育、提高同化能力的重要措施。试验选用“烟农19”为材料,采用盆栽方式于2010-2012连续两个年度在研究了花后不同时期短暂高温渍水逆境胁迫对冬小麦生理生态、产量和品质的影响及其氮素调控效应,以期为黄淮南部麦区和长江中下游麦区冬小麦后期叶面喷肥防衰和抗渍高产栽培技术提供理论基础。主要研究结果如下:
     1花后短暂高温渍水逆境对冬小麦植株生理的影响及其氮素调控
     (1)花后短暂高温胁迫、渍水胁迫、高温渍水双胁迫均使冬小麦膜脂过氧化程度加剧,旗叶SOD、POD、CAT活性短暂小幅升高后随即显著下降, MDA含量显著高于对照,加速植株衰老。上述逆境胁迫均显著降低小麦根系活力,抑制叶绿体生物合成,叶片叶绿素含量下降,Pn、Gs持续低于对照,Ci持续升高,高温使Tr短暂升高后显著降低,渍水、高温渍水双胁迫均导致小麦旗叶Tr持续低于对照。(2)短暂高温和渍水胁迫互作显著,高温极显著地加重了渍水危害。各逆境胁迫对冬小麦植株生理各指标的不良效应大小为高温渍水双胁迫>渍水胁迫>高温胁迫;籽粒形成期逆境不良胁迫效应显著大于籽粒乳熟期胁迫。(3)氮素补偿缓解各逆境的不良胁迫。(4)旗叶Ci的变化与Pn变化趋势相反,说明光合作用的主要限制因素是非气孔因素,由气孔关闭造成的影响较小。
     2花后短暂高温渍水逆境对冬小麦灌浆特性及产量构成因素的影响及其氮素调控
     (1)花后短暂高温胁迫、渍水胁迫、高温渍水双胁迫均可显著减小冬小麦籽粒体积,降低灌浆速率,缩短灌浆历期,减少穗粒数,降低千粒重与产量,而对穗数无显著影响。(2)高温与渍水交互作用显著,高温加重渍水逆境危害;各逆境不良影响程度为高温渍水双逆境>渍水逆境>高温逆境;籽粒形成期逆境的不良效应比籽粒乳熟期大。(3)氮肥补偿可显著增加冬小麦籽粒体积,提高灌浆速率,延长灌浆历期,提高千粒重与产量,对穗数、穗粒数无显著影响。(4)花后短暂高温渍水情况下,小麦最终千粒重与各灌浆速率参数的相关性大于与各灌浆历期参数的相关性,决定千粒重的主要是籽粒灌浆速率,而各历期参数属次要影响;冬小麦产量与中后期灌浆速率的关联性大于与渐增期灌浆速率的关联性。
     3花后短暂高温渍水逆境对冬小麦籽粒蛋白质合成与积累的影响及其氮素调控
     (1)花后短暂高温胁迫下小麦旗叶GS、籽粒GPT活性先小幅升高,不久显著下降;花后短暂渍水胁迫、高温渍水双胁迫均持续降低旗叶GS、籽粒GPT活性。高温降低籽粒蛋白质累积量,提高蛋白质及各组分含量,降低谷醇比。渍水则降低蛋白质累积量、蛋白质及各组分含量、谷醇比。高温渍水双胁迫提高了醇溶蛋白含量,降低了蛋白质累积量、谷蛋白含量和谷醇比,对清蛋白、球蛋白含量无显著影响。(2)高温和渍水对旗叶GS、籽粒GPT活性、蛋白质累积量的交互效应显著,对蛋白质及各组分含量与谷醇比交互效应不显著。各因素对旗叶GS、籽粒GPT活性、蛋白质累积量、谷醇比的影响程度为高温+渍水>渍水>高温,对蛋白质及组分含量的影响程度为渍水>高温+渍水>高温。籽粒形成期逆境胁迫对旗叶GS、籽粒GPT活性、蛋白质累积量的不良效应显著大于籽粒乳熟期的不良效应,而两时期对蛋白质及组分含量、谷醇比的效应差异不显著。(3)叶面喷氮补偿氮素营养,提高旗叶GS、籽粒GPT活性、籽粒蛋白质累积量、蛋白质含量、清蛋白含量、球蛋白含量及谷蛋白含量,但对醇溶蛋白含量无显著影响,提高谷醇比。(4)相关分析表明,试验中蛋白质合成关键酶活性与籽粒产量、蛋白质累积量、谷醇比显著正相关,与蛋白质含量无显著相关。
     4花后短暂高温渍水逆境对冬小麦籽粒淀粉合成与积累的影响及其氮素调控
     (1)花后短暂高温胁迫、渍水胁迫、高温渍水双胁迫均抑制了淀粉合成原料蔗糖向籽粒的供应,也抑制了淀粉合成系统酶活性,从而导致籽粒淀粉积累量降低。花后高温胁迫下小麦籽粒SS、ADPGPPase、SSS、GBSS活性先小幅升高,不久显著下降。花后渍水胁迫、高温渍水双胁迫均持续降低籽粒SS、ADPGPPase、SSS、GBSS活性。花后高温对籽粒GBSS活性的不良影响比对籽粒ADPGPPase、SSS活性的不良影响小,导致淀粉含量下降,直链淀粉含量上升,支链淀粉含量下降,支直比下降。渍水造成籽粒淀粉含量、支链淀粉含量显著低于对照,对直链淀粉含量影响不显著,支直比下降。(2)高温渍水对淀粉合成相关指标的互作显著,可见高温极显著地加重了渍水危害。籽粒形成期逆境胁迫降低了小麦籽粒蔗糖含量,籽粒SS、ADPGPPase、SSS、GBSS活性,淀粉累积累量下降,不同时期对淀粉组分含量、支直比影响不显著。(3)氮素补偿提高淀粉合成相关酶的活性、淀粉累积量与支直比,降低直链淀粉含量,对淀粉含量,支链淀粉含量无显著影响。
     5花后短暂高温渍水逆境对冬小麦面粉加工品质的影响及其氮素调控
     (1)花后短暂高温提高了面粉的湿面筋含量,改善了粉质参数、拉伸参数,而对糊化温度影响不显著,对其它淀粉糊化参数产生不利影响。花后短暂渍水降低了湿面筋含量,粉质参数、拉伸参数均变劣,对糊化温度影响不显著,提高了其它淀粉糊化参数。由于高温逆境和渍水逆境对小麦籽粒蛋白质含量及组分与淀粉含量及组分具有“对冲”效应,导致与对照相比较,高温渍水双逆境对面粉的淀粉糊化参数产生不利影响,但改善了拉伸参数,而对湿面筋含量与粉质参数无显著影响。(2)不同时期逆境对湿面筋含量与粉质参数、拉伸参数、稀懈值、糊化温度的影响差异不显著,籽粒形成期逆境对峰值粘度、低谷粘度、最终粘度、反弹值显著大于乳熟期逆境。(3)叶面氮肥补偿提高除糊化温度的其它糊化参数、湿面筋与粉质参数、拉伸阻力,对糊化温度、拉伸面积、延伸度、拉伸比例无显著影响。
     在花后短暂高温渍水逆境下,叶面氮素补偿主要通过缓解小麦植株早衰,提高蛋白质、淀粉合成相关酶活性而改善蛋白质、淀粉含量与品质,是缓解逆境不良效应,提高小麦产量与品质的有效途径。
High temperature and waterlogging in the middle and later growing season are the major limiting factors for winter wheat (Triticum aestivum L.) yield and quality improvement in the Southern Huanghuai and Yangtze Valley region of China. Along with the global climate change, both the magnitude and frequency of high temperature and waterlogging are predicted to increase. Nitrogen is one of necessary macro-nutrient for the wheat growth and development. Reasonable application of nitrogenous fertilizers is an important way to alleviate the negative effects of stress, regulate crop growth and development and improve its assimilation capacity. Field experiments with 'Yannong19'(Triticum aestivum L.) by pot method were conducted to investigate the effects of high temperature and waterlogging on physiology and ecology, yield, quality of winter wheat and its nitrogen management in continuous growing seasons from2010to2012in order to provide basic theory for high yield cultivation technology to alleviate high temperature stress, waterlogging stress and senescence of winter wheat by spraying foliar nitrogen in later growth season in the Southern Huanghuai and Yangtze Valley region of China. The main contents and results were below:
     1Effects of transient high temperature and waterlogging after anthesis on physiology of winter wheat and nitrogen management:(1) Compared with control, high temperature stress, waterlogging stress, high temperature+waterlogging double stress after anthesis all increased degree of membrane lipid peroxidation, resulting in activities of SOD, POD, CAT of winter wheat flag leaf increasing slightly briefly and soon dropping significantly and MDA contents under each adverse stress being always higher than those of control, accelerating plant senescence. Each adverse stress after anthesis decreased the wheat root activities, chlorophyll contents, Pn, Gs of winter wheat flag leaf and their Ci rised continually. High temperature stress decreased wheat flag leaf Tr significantly after the briefly rise and waterlogging stress and high temperature+waterlogging double stress both decreased it continually.(2) There were significant interactions between high temperature and waterlogging and high temperature deteriorated the negative effects of waterlogging. According to degree of negative effects in indexes of physiology in winter wheat, the order was waterlogging+high temperature> waterlogging> high temperature. Negative effects of each adverse stress in grain formation stage were higher than those of in milk-ripe stage.(3) Spraying foliar nitrogen alleviated negative effects of each adverse stress.(4) The change trends of Ci and Pn in the flag leaf were opposite in the experiment, which indicated that the factors affecting photosynthesis should be non-stomatal factors.
     2Effects of transient high temperature and waterlogging after anthesis on grain filling characteristics and yield components of winter wheat and nitrogen management:(1) Be consistent with changes of physiological indexes, transient high temperature stress, waterlogging stress, high temperature+waterlogging double stress after anthesis all significantly reduced1000-grain volume, grain filling rate, grain filling duration,1000-grain dry weight, grains per spike and yield of winter wheat, but had no significant effect on spikes.(2) There were significant interactions between high temperature and waterlogging and high temperature deteriorated the negative effects of waterlogging. According to degree of negative effects in indexes of yield components in winter wheat, the order was waterlogging+high temperature> waterlogging> high temperature. Negative effects of each stress in grain formation stage were higher than those of in milk-ripe stage.(3) Spraying foliar nitrogen improved1000-grain volume, grain filling rate, grain filling duration,1000-grain dry weight, and yield of winter wheat,but had no significant on spikes and grains per spike.(4) According to grey correlations between yield and grain filling parameters of winter wheat, the relationships with grain filling rate parameters were more significant than those with grain filling duration parameters and each treatment affected yield of winter wheat mainly by affecting grain filling rates in middle and later grain filling stages.
     3Effects of transient high temperature and waterlogging after anthesis on grain protein synthesis and accumulation of winter wheat and nitrogen management:(1) High temperature stress after anthesis increased slightly activities of flag leaf GS, grain GPT in winter wheat first and soon dropped significantly and waterlogging stress, high temperature+waterlogging double stress both decreased them continually. High temperature reduced protein accumulation, ratio of Glu/Gli, while improved protein content and each protein ingredient content. Waterlogging reduced protein accumulation, protein content and each protein ingredient content, ratio of Glu/Gli. High temperature+waterlogging double stress improved gliadin content, reduced protein accumulation, glutelin content, ratio of Glu/Gli, had no significant effect on contents of albumin, globulin.(2) The interactions between high temperature and waterlogging of flag leaf GS, grain GPT, protein accumulation were significant but those of protein content and each protein ingredient content, ratio of Glu/Gli were not significant. According to degree of negative effects on indexes of grain protein synthesis in winter wheat, the orders of flag leaf GS, grain GPT, protein accumulation, ratio of Glu/Gli were waterlogging+high temperature> waterlogging> high temperature and those of protein content and each protein ingredient content were waterlogging> waterlogging+high temperature> high temperature. The negative effects on flag leaf GS, grain GPT, protein accumulation of each stress in grain formation stage were higher than those of in milk-ripe stage, but there were no significant different on protein content and each protein ingredient content between two stages.(3) Spraying nitrogen compensated nitrogen nutrition, improved flag leaf GS, grain GPT, protein accumulation, protein accumulation, contents of protein, albumin, globulin and glutelin, had no significant effect on gliadin content, and led to improving ratio of Glu/Gli.(4) Correlation analysis indicated that correlation coefficients between activities of key regulatory enzymes involved in protein formation and grain yield, protein accumulation, ratio of Glu/Gli were significant, while correlation coefficient with protein content was not significant.
     4Effects of transient high temperature and waterlogging after anthesis on grain starch synthesis and accumulation of winter wheat and nitrogen management:(1) High temperature stress, waterlogging stress, high temperature+waterlogging double stress after anthesis all inhabited the sucrose, which is starch synthesis materials, supplying to grain, and inhibited the activities of starch synthesis enzymes which resulted in the decrease of grain starch accumulation. High temperature stress after anthesis increased slightly activities of SS、ADPGPPase、SSS、GBSS in winter wheat grain first and soon dropped significantly and waterlogging stress, high temperature+waterlogging double stress all decreased them continually. Compared with the reductions of grain ADPGPPase, SSS activities, high temperature decreased GBSS activities relatively slight, which resulted in increasing amylose content and decreasing amylopectin content, ratio of amylopectin and amylase. Waterlogging decreased grain starch accumulation, starch content, amylopectin content, and ratio of amylopectin and amylose, had no significant effect on amylose content.(2) There were significant interactions between high temperature and waterlogging. Adversity stress in grain formation reduced SS content, grain SS, ADPGPPase, SSS, GBSS activities, starch accumulation. There were no significant different on starch content and each starch ingredient content, ratio of amylopectin and amylase between two stages.(3) Spraying nitrogen improved SS content, grain SS, ADPGPPase, SSS, GBSS activities, starch accumulation, ratio of amylopectin and amylase, decreased content of amylose, and had no significant different on starch content and amylopectin content.
     5Effects of transient high temperature and waterlogging after anthesis on flour processing quality of winter wheat and nitrogen management:(1) High temperature increased flour wet gluten content, improved farinograph parameters, extensograph parameters, had no significant effects on pasting temperature, and had negative effect on other pasting parameters. Waterlogging reduced flour wet gluten content, had negative effect on farinograph parameters, extensograph parameters, had no significant effects on pasting temperature and increased other pasting parameters. Due to high temperature stress and waterlogging stress have a "hedge" effect in contents of starch and its composition, protein and its composition of wheat grain, high temperature+waterlogging double stress had an adverse effects on starch pasting parameters, but improved grain extensograph parameters, and had no significant effects on wet gluten content and farinograph parameters.(2) The negative effects on peak viscosity, hold trough, final viscosity, setback of each stress in grain formation stage were larger than those of in milk-ripe stage, but those of breakdown,pasting temperature,wet gluten content, farinograph parameters and extensograph parameters were not significant.(3) Spraying nitrogen improved wet gluten content, farinograph parameters, and esistance to extension, pasting parameters except pasting temperature and had no significant effects on pasting temperature, extension area, extensibility, and extension ratio.
     Spraying nitrogen improved grain yield and quality of winter wheat mainly through alleviating wheat plant senescence, improving the activities of enzymes related to synthesis of protein, starch and it was an effective way to alleviate negative effects of high temperature stress and waterloging stress.
引文
[1]钟永玲.中国小麦贸易现状及前景展望[J].中国食物与营养,2011,17(12):48-51.
    [2]李里特.中国小麦产业发展的机遇在于传统主食现代化[J].粮食加工,2006,(4):5-8.
    [3]王瑞元.我国粮食加工业的发展趋势[J].中粮食与食品工业,2011,18(5):1-6.
    [4]韩一军.中国小麦产业发展分析[J].农业展望,2006,(3):3-7.
    [5]于格,刘爱民.我国小麦供求平衡研究[J].中国粮食经济,2003,(11):9-11.
    [6]邢素丽,刘孟朝,等.我国小麦资源与综合生产能力研究[J].干旱地区农业研究,2006,(2):169-172.
    [7]翟雪玲,沈贵银.2011年我国农产品市场分析与2012年展望[J].农业展望,2012,3:3-6.
    [8]钟永玲.当前小麦市场特点分析及后期趋势展望[J].农业展望,2012,5:3-8.
    [9]申洪源.2011年我国小麦市场回顾及2012年行情展望[J].现代面粉工业,2012,1:45-48.
    [10]刘晓真.中国小麦产业链问题解析[J].中国科技产业,2004,(6):54-57.
    [11]魏益民.中国优质小麦生产的现状与问题分析[J].麦类作物学报,2004,24(1):95-96.
    [12]姜春明,尹燕枰,刘霞,等.不同耐热性小麦品种旗叶膜脂过氧化和保护酶活性对花后高温胁迫的响应[J].作物学报,2007,33(1):143-148.
    [13]王志敏,张英华,张永平,等.麦类作物穗器官的光合性能研究进展[J].麦类作物学报,2004,24(4):136-139.
    [14]张平平,何中虎,夏先春,等.高温胁迫对小麦蛋白质和淀粉品质影响的研究进展[J].麦类作物学报,2005,25(5):129-132.
    [15]吴宏亮,周续莲,康建宏.花后高温干旱对小麦淀粉形成的研究进展[J].农业科学研究,2011,9:67-71.
    [16]佟汉文,黄荣华,张宇庆,等.小麦、大麦耐渍性种质改良的研究综述[J].湖北农业科学,2007,46(6):1023-1026.
    [17] Mitra R, Bhatia C R. Bioenergetic cost of heat tolerance in wheat crop [J]. Curr Sci,2008,94:1049–1053.
    [18] Barnawal, D., N. Bharti.1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containingrhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylenegeneration [J]. Plant Physiology and Biochemistry,2012,58(10):227-235.
    [19] El-Khalifa A.O. El-Tinay A.H. Effect of fermentation on protein fractions and tannin content oflow and high tannin cultivars of sorghum [J]. Food Chem.1994,49:265–269.
    [20] Souza E J, Martin J M, Guttieri M J. Influence of genotype, environment and nitrogen managementon spring wheat quality [J]. Crop Science,2004,44(2):425–432.
    [21] Almeselmani M, Deshmukh P S, Sairam R K, Kushwaha S R, Singh T P. Protective role ofantioxidant enzymes under heat stress [J]. Plant Sci,2006,171:382–388.
    [22] Gupta R B, Masci S, Lafiandra D. Accumulation of protein subunits and their polymers indeveloping grains of hexaploid wheats [J]. J. Experi. Bot.,1996,47:1377–1385.
    [23] Blumenthal C S, Barlow E W R, Wrigley C W. Growth environment and wheat quality: the effectof heat stress on dough properties and gluten proteins [J]. Journal of Cereal Science,1993,18:2–21.
    [24] Stone P J, Nicolas ME. Wheat cultivars vary widely in their response of grain yield and quality ofshort period of post anthesis heat stress [J]. Australian Journal of Plant Physiology,1994,21:887–900.
    [25] Dickin, E. and D. Wright. The effects of winter waterlogging and summer drought on the growthand yield of winter wheat (Triticum aestivum L.)[J]. European Journal of Agronomy,2008,28(3):234-244.
    [26] Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D. Alterations in photosynthesis and antioxidant enzymeactivity in winter wheat subjected to post-anthesis waterlogging [J]. Photosynthetica,2008,46:21–27.
    [27] Kumutha D, Ezhilmathi K, Sairam R K, Srivastava G C, Deshmukh P S, Meena R C. Waterlogginginduced oxidative stress and antioxidant activity in pigeonpea genotypes [J]. Biol Plant,2009,53:75–84.
    [28] Sharma P K, Sharma S K, Choi I Y. Individual and combined effects of waterlogging and alkalinityon yield of wheat (Triticum aestivum L.) imposed at three critical stages [J]. Physiol Mol BiolPlants,2010,16:317–320.
    [29] Candan N. and L. Tarhan. Tolerance or sensitivity responses of Mentha pulegium to osmotic andwaterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation [J].Environmental and Experimental Botany,2012,75(0):83-88.
    [30] Hossain, M. A., H. Araki, et al. Poor grain filling induced by waterlogging is similar to that inabnormal early ripening in wheat in Western Japan [J]. Field Crops Research,2011,123(2):100-108.
    [31] Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. Physiological and biochemical changes in plantsunder waterlogging [J]. Protoplasma,2010,241:3–17.
    [32] Duff S M G, Chollet R. In vivo regulation of wheat-leaf phosphoeno/pyruvate carboxylase byreversible phosphorylation [J]. Plant Physiology,1995,107:775–782.
    [33] Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogenassimilation and possibilities for improvement in the nitrogen utilization of crops [J]. Journal ofExperimental Botany,2002,53(370):979–987.
    [34]李金才,魏凤珍,王成雨,等.孕穗期渍水逆境对冬小麦根系衰老的影响[J].作物学报,2006,32(9):1355-1360.
    [35] Wrigley C W, Blumenthal C S, Gras P W, Barlow E W R. Temperature variation during grain fillingand changes in wheat-grain quality [J]. Australian Journal of Plant Physiology,1994,21:875-885.
    [36]秦舒浩,张俊莲,孔令娟,等.高温强光下Ca2+对西葫芦幼苗膜质过氧化、抗氧化酶系统及热耗散的影响[J].中国生态农业学报,2012,20(3):343347.
    [37] Edwards G E, Baker N K. Can CO2assimilation in maize leaves be predicted accurately fromchlornphyll fluorescence analysis [J]. Photosyn Res,1993,(37):89-102.
    [38] Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Sci,1981,(2l):43-47.
    [39] Vettakkorumakankav N N, Falk D, Saxena P, et al. A crucial role for gibberellins in stressprotection of plants [J]. Plant Cell Physioogy,1999,(40):542-548.
    [40]张保仁.高温对玉米产量和品质的影响及调控研究[D].泰安:山东农业大学,2003.
    [41]刘萍,郭文善,浦汉春,等.灌浆期高温对小麦旗叶抗氧化酶及膜脂过氧化的影响[J].中国农业科学,2005,38(12):2403-2407.
    [42]郭天财,王晨阳,朱云集,等.后期高温对冬小麦根系及地上部衰老的影响[J].作物学报,1998,24(6):957-962.
    [43]裴红宾,张永清,上官铁梁.根区温度胁迫对小麦抗氧化酶活性及根苗生长的影响[J].山西师范大学学报(自然科学版),2006,20(2):78-81.
    [44]魏乐,杜军华.高温和零上低温对小麦根系含糖量及细胞透性的影响[J].青海师范大学学报(自然科学版),1999,(1):35-39.
    [45]赵辉,荆奇,戴廷波,等.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J].作物学报,2007,33(12):2010-2027.
    [46]徐晓玲,王志敏,张俊平.灌浆期热胁迫对小麦不同绿色器官光合性能的影响[J].植物学报,2001,43(6):571-577.
    [47]刘祚昌,苏德荫.高温对小麦叶绿体核糖体和叶绿素蛋白质生物合成的影响[J].植物学报,1985,27(1):63-67.
    [48]王晨阳,何英,郭天财,等.灌浆期高温胁迫对强筋小麦旗叶叶绿素a荧光参数的影响[J].麦类作物学报,2005,25(6):87-90.
    [49]江华,师生波,许大全.冬季小麦叶片光合作用对温度响应方式的变化[J].植物生理学报,2000,26(1):69-74.
    [50] Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis andgrain-filling of wheat [J]. Plant and Soil,2003,2:57-61.
    [51]郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响[J].中国农业大学学报,1999,4(l):73-76.
    [52] Wiegand C L, Cuellar J A. Duration of grain filling and kernel weight of wheat as affected bytemperature [J]. Crop Science,1981,21:95-101.
    [53]Gibson L R, Paulsen G M. Yield components of wheat grown under high temperature stress duringreproductive growth [J]. Crop Science,1999,39:1841-1846.
    [54]赵龙飞,李潮海,刘天学.作物耐热性研究进展[J].中国农学通报,2012,28(09):11-15.
    [55]王晨阳,郭天财,阎耀礼,等.花后短期高温胁迫对小麦叶片光合性能的影响[J].作物学报,2004,30(1):88-91.
    [56]刘霞,尹燕枰,姜春明,等.花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响[J].应用生态学报,2005,16(11):2117-2121.
    [57]郅胜军,李如意,魏凤珍,等.花后不同时期高温处理和行距对不同品种小麦旗叶光合特性的影响[J].安徽农业大学学报,2008,35(3):340-345.
    [58]胡吉帮,王晨阳,郭天财,等.灌浆期高温和干旱对小麦灌浆特性的影响[J].河南农业大学学报,2008,42:(6):597-608.
    [59]蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响[J].植物生理学通讯,2000,36(2):110-113.
    [60]魏凤珍,李金才,尹钧,等.不同生育时期根际土壤渍水逆境对冬小麦N、P、K素营养的影响[J].水土保持学报,2006,20(3):162-165.
    [61]王琼,张春雷,李光明,等.渍水胁迫对油菜根系形态与生理活性的影响[J].中国油料作物学报,2012,34(2):157-162.
    [62]常江,李金才.渍水对小麦氮磷钾营养效应的研究[J].土壤学报,1999,36:423-427.
    [63]李金才,魏凤珍,余松烈,等.孕穗期渍水对冬小麦根系衰老的影响[J].应用生态学报,2000,11(5):723-726.
    [64]张阳,李瑞莲,张德胜,等.涝渍对植物影响研究进展[J].作物研究,2011,25(2):420-424.
    [65]武文明,陈洪俭,李金才,等.氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响[J].作物学报,2012,38(6):1088-1096.
    [66]吕军.渍水对冬小麦生长的危害及其生理效应[J].植物生理学报,1994,20(3):221-226.
    [67]赵辉,戴廷波,姜东,等.高温下干旱和渍水对冬小麦旗叶光合特性和物质运转的影响[J].应用生态学报,2007,18(2):333-338.
    [68]谭维娜,戴廷波,荆奇,等.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报2007,27(2):314-317.
    [69]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及生理活性的影响[J].作物学报,1996,22(6):712-719.
    [70]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182.
    [71]李金才,董琦,余松烈.不同生育期根际土壤淹水对小麦品种光合作用和产量的影响[J].作物学报,2001,27(4):434-441.
    [72]武文明,李金才,陈洪俭,等.氮肥运筹方式对孕穗期受渍冬小麦穗部结实特性与产量的影响[J].作物学报,2011,37(10):1888-1896.
    [73]蔡士宾,曹阳,方先文.小麦灌浆期渍水和高温对植株早衰和籽粒增重的影响[J].作物学报,1994,20(4):457-463.
    [74]戴廷波,赵辉,荆奇,等.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响[J].生态学报,2006,26(11):3670-3676.
    [75] Bhullar S S, Jenner C F. Effects of temperature on the conversion of sucrose to starch in thedeveloping wheat endosperm [J]. Aust.J. Plant Physiol.,1986,13:605-615.
    [76] Smith C J, Whitfield D M. Nitrogen accumulation and redistribution of late applied of15C labelledfertilizer by wheat [J]. Field Crop Res,1990,24:221-228.
    [77]谢祝捷,姜东,曹卫星,等.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响[J].植物生理与分子生物学报,2003,29(4):309-316.
    [78] Benzian B. Protein concentration of grain in relation to some weather and soil factors during17years of English winter-wheat experiment [J]. J Sci Food Agric,1986,37:435-444.
    [79] Sofield I, Evans L T, Cook M G,et al. Factors influencing the rate and duration of grain filling inwheat [J]. Aust. J. Plant Physiol.,1977,4:785-797.
    [80] Randall P J, Moss H J. Some effect of temperature regime during grainfilling on wheat quality [J].Aust J Agric Res,1990,41:602-617.
    [81] Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat varietytrials with reference to high temperature stress [J]. Australian Journal of Agricultural Research,1991,42:325-334.
    [82] Carceller J L, Aussenac T. Size characterization of glutenin polymers by HPSEC-MALLS [J].Journal of Cereal Science,2001,33:131-142.
    [83] Hurkman W J, DuPont F M, Altenbach S B. BiP, HSP70, NDK and PDI in wheat endosperm. II.Effects of high temperature on protein and mRNA accumulation [J]. Physiologia Plantarum,1998,103:80-90.
    [84] Tribo E, Tribo-Blondel A M. Environmental effects on wheat grain growth and composition [J].Aspects of Applied Bio.,2001,64:91-101.
    [85] Ciaffi M, Tozzi L, Borghi B,et al. Effects of heat shock during grain filling on the gluten proteincomposition of bread wheat [J]. J.Cereal Sci.,1996,24:91-100.
    [86] Clvde Don, George Look Hart, Hamid Naeem. Heat stress and genotype affect the gluteninparticles of the glutenin macropolymer-gel fraction [J].Journal of Cereal Science,2005,42:69-80.
    [87]吴翠平,贺明荣,张宾,等.氮肥基追比与灌浆中期高温胁迫对小麦产量和品质的影响[J].西北植物学报,2007,27(4):0734-0739.
    [88]周苏玫,王晨阳,张重义,等.土壤渍水对冬小麦根系生长及营养代谢的影响[J].作物学报,2001,27(5):673-679.
    [89]郑春芳,姜东,戴廷波,等.花后盐与渍水逆境对小麦籽粒产量及蛋白质和淀粉积累的影响[J].应用生态学报,2009,20(10):2391-2398.
    [90]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用型小麦籽粒品质的影响[J].水土保持学报,2004,18(1):193-196.
    [91]张保军,樊虎玲.环境条件对小麦蛋白质的影响研究进展[J].水土保持研究,2002,9(2):61-63.
    [92]范雪梅,姜东,谢祝捷,等.花后干旱和渍水下对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    [93]洪剑明,柴小清,曾晓光,等.小麦硝酸还原酶活性与营养诊断和品种选育研究[J].作物学报,1996,22(5):634-637.
    [94] Peeters K M U, VanLaere J. Amino acid metabolism associated with N-mobilization from the flagleaf of wheat (Triticum aestivum L.) during grain development [J]. Plant Cell and Environment,1994,17:131-141.
    [95]周竹青,李继伟,邓祥宜,等.小麦颖果韧皮部细胞ATPase活性及其与籽粒光合同化物积累关系[J].中国农业科学,2009,42(7):2314-2325.
    [96] Greeny T W, Hannah L C. Enhanced stability of maize endosperm ADP-glucose pyrophosphory-lase is grained through mutants that alter subunit interactions [J]. Proc Natl Acad Science USA,1998,95:13342-13347.
    [97]程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J].作物学报,2001,27(2):201-206.
    [98] Denyer K. The isolation and characterization of novel low amylose mutants of Pisum sativum L [J].Plant Cell Enrion,1995,18:1019-1026.
    [99]刘晓冰,李文雄.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的初步研究[J].作物学报,1996,22(6):736-740.
    [100]方先文,姜东,戴廷波,等.小麦淀粉组分的积累规律[J].江苏农业学报,2002,18(3):139-142.
    [101]王东,于振文,王旭东,等.硫营养对小麦籽粒淀粉合成及相关酶活性的影响[J].植物生理与分子生物学学报,2003,29(5):437-442.
    [102] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions [J]. Aust. JPlant Physiol,1994,21(6):791-806.
    [103] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation andcarbohydrate metabolism in the grain of two cultivars: I. Immediate responses [J]. Aust J PlantPhysiol,1991,18:165.177.
    [104] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduced starch deposition in wheatendosperm by reducing the activity of soluble starch synthase [J]. Planta,1993,191:342-348.
    [105]闫素辉,尹燕枰,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响[J].作物学报,2008,34(6):1092-1096.
    [106]张保仁,董树亭,胡昌浩,等.高温对玉米籽粒淀粉合成及产量的影响[J].作物学报,2007,33(1):38-42.
    [107] Altenbach S B, Dupont F M, Kothari K M,et al. Temperature,water and fertilizer influence thetiming of key events during grain development in a US spring wheat [J]. J. Cereal Sci.,2003,37:9-20.
    [108]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响[J].作物学报,2000,26(4):399-405.
    [109] Jenner C F. The physiology of starch and protein deposit in the endosperm of wheat.Australian [J].Journal of Plant Physiology,1991,18:211-226.
    [110]刘萍,郭文善,浦汉春,等.灌浆期短暂高温对小麦淀粉形成的影响[J].作物学报,2006,32(2):182-188.
    [111]王珏,封超年,郭文善,等.花后高温胁迫对小麦籽粒淀粉积累及晶体特性的影响[J].麦类作物学报,2008,28(2):260-265.
    [112]赵辉,戴廷波,荆奇,等.灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响[J].作物学报,2006,32(3):423-429.
    [113]李诚永,蔡剑,姜东,等.花前渍水预处理对花后渍水逆境下扬麦9号籽粒产量和品质的影响[J].生态学报,2011,31(7):1904-1910.
    [114]张林生,张保军,汪沛洪,等.施氮水平对小麦籽粒发育过程中氨基酸含量的影响[J].西北植物学报,2002,22(3):646-650.
    [115]姚大年,刘广田,朱金宝.基因型和环境对小麦品种淀粉性状和面粉粘度参数的影响[J].粮食与饲料工业,1999,6:1-4.
    [116]李永庚,于振文,张秀杰,等.小麦产量与品质对灌浆不同阶段高温胁迫的响应[J].植物生态学报,2005,29(3):461-466.
    [117] Musgrave M E. Waterlogging effects on yield and photosynthesis in eight wheat cultivars [J].Crop Sci.,1994,34:1314-1320.
    [118]王立秋,靳占忠.水肥因子对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67-73.
    [119]王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响[J].莱阳农学院学报,2002,19(1):7-9.
    [120]王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报,2003,23(3):417-421.
    [121] Rharrabti Y, Royo C, Villegas D, et al. Durum wheat quality in Mediterranean environments IQuality expression under different zones, latitudes and water regimes across Spain [J]. Field CropsResearch,2003,80:123-131.
    [122] YANG Wei-di, CHEN Hong-hao, WANG Mei-nan. Screening of wheat cultivars for high tempera-ture resistance to stripe rust from wheat resources in Huanghuai growth area [J]. AgriculturalScience&Technology,2008,9(3):89-91.
    [123]李利红,梁书荣,曲小菲,等.外源钙对高温强光胁迫下小麦叶中蛋白激酶活性和D1蛋白磷酸化的影响[J].植物生理学通讯,2009,46(5):427-430.
    [124]李晓玲,骆炳山.油菜素甾醇类物质对小麦孕穗期抗渍性的影响[J].麦类作物学报,2000,20(1):63-66.
    [125]张洪华,贺明荣,刘永环,等.氮、硫肥与灌浆后期高温胁迫对小麦籽粒产量和品质的影响[J].生态学杂志,2008,27(2):162-166.
    [126]刘永环,贺明荣,王晓英,等.不同氮肥基追比例对高温胁迫下小麦籽粒产量和品质的影响[J].生态学报,2009,29(11):5930-5935.
    [127]魏凤珍,李金才.精播栽培技术对孕穗期渍水小麦产量和生理特性的影响[J].中国农学通报,2000,(2):186-188.
    [128]姜丽娜,李春喜,代西梅.不同氮肥处理对小麦生育后期旗叶生理活性的影响[J].沈阳农业大学学报,1999,30(6):609-612.
    [129]王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报,2002,22(2):55-59.
    [130]李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质及组分含量的影响[J].中国粮油学报,2001,16(2):6-8.
    [131]武际,郭熙盛,王允青,等.氮肥基追比例对烟农19小麦氮素吸收利用及产量和品质的影响[J].麦类作物学报,2008,28(6):1021-1027.
    [132]李姗姗,赵广才,常旭虹,等.追氮时期对强筋小麦产量、品质及其相关生理指标的影响[J].麦类作物学报,2008,28((3):461-465.
    [133]王月福,于振文,李尚霞,等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学,2002,35(9):1071-1078.
    [134]张宝军,蒋纪芸.小麦籽粒品质及其影响因素分析[J].国外农学一麦类作物,1995,4:29-32.
    [135]毛凤梧,赵会杰,徐立新,等.水氮运筹对小麦品质形成的调控效应[J].河南农业大学学报,2001,35(1):13-15.
    [136]丁锦峰,陈芳芳,王云翠,等.后期追氮时期对扬麦20花后光合物质生产力和产量的影响[J].扬州大学学报(农业与生命科学版,2012,33(3):56-62.
    [137]范雪梅,姜东,谢祝捷,等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报,2005,16(10):1883-1888.
    [138]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162.
    [139]范雪梅,姜东,戴廷波,等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680-685.
    [140]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:123–127.
    [141]高俊凤.植物生理学试验指导[M].北京:高等教育出版社,2006:59–60
    [142]陈建勋,王晓峰.植物生理学实验指导(第二版).广州:华南理工大学出版社,2006:72-73.
    [143] Al-Khatib K, Paulsen G M. Mode of high temperature injury to wheat during grain development[J]. Physiologia Plantarum,1984,61(3):363-368.
    [144] Farquhar S P, Sharkey T D. Stomatal conductance and photosynthesis [J]. Anne Rev Plant Physiol,1982,33:317-345.
    [145] Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: the activation stateof Rubisco as a limiting factor in photosynthesis [J]. Physiol Plant,2004,120:179–186.
    [146] Liao C T, Lin C H. Physiological adaptation of crop plants to flooding stress [J]. Proc Natl SciCounc ROC (B),2001,25:148–157.
    [147]郭天财,岳艳军,马冬云,等.追氮时期对冬小麦籽粒灌浆及淀粉特性的影响[J].麦类作物学报,2007,27(5):836–840.
    [148]薛香,吴玉娥,陈荣江,等.小麦籽粒灌浆过程的不同数学模型模拟比较[J].麦类作物学报,2006,26(6):169–171.
    [149]刘培,蔡焕杰,王健.土壤水分胁迫下冬小麦籽粒灌浆特性的研究[J].节水灌溉,2010,1:1-4.
    [150]杨茹,马富裕,何海兵,等.滴灌春小麦的籽粒灌浆特性[J].麦类作物学报,2012,32(4):743-746.
    [151]韩占江,郜庆炉,吴玉娥,等.小麦籽粒灌浆参数变异及与粒重的相关性分析[J].种子,2008,6:27–30.
    [152]余松烈.山东小麦[M].北京:中国农业出版社,1996:42-43.
    [153]刘萍,郭文善,浦汉春,等.花后短暂高温对小麦籽粒蛋白质含量的影响及其生理机制[J].作物学报,2007,33(9):1516-1522.
    [154]敬海霞,王晨阳,冯辉,等.花后高温胁迫对郑麦9023品质的影响[J].西北农业学报,2010,19(11):48-51.
    [155]上海植物生理学会.现代植物生理学试验手册[M].北京:科学出版社,1999:32-33.
    [156] Douglas C D, Kuo T M, Felker F C. Enzymes of sucrose and hexosemetabolismin developingkernels of two inbreds of maize [J]. Plant Physiol,1988,86:1013-1019.
    [157] NakamuraY, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of ricegrains[J]. Plant Cell Physiology,1989,30(6):833-839.
    [158] MoCornick K M, Panozza J F, Hong S H. A swelling power test for selecting potential noodlequality in wheat [J]. Aust. J. Agric.Res.,1991,42:317-323.
    [159] Xiao-Tang Ju, Guang-Xi Xing, Xin-Ping Chen, Shao-Lin Zhang. Reducing environmental risk byimproving N management in intensive Chinese agricultural systems [J]. PNAS.2009,106(9):3041–3046.
    [160] K F Bronson&I R P Fillery. Fate of nitrogen-15-labelled urea applied to wheat on a waterloggedtexture-contrast soil [J]. Nutrient Cycling in Agroecosystems,1998,51:175–183.
    [161] J R Freney, C J Smith&A R Mosier. Effect of a new nitrification inhibitor (wax coated calciumcarbide) on transformations and recovery of fertilizer nitrogen by irrigated wheat [J]. FertilizerResearch,1992,32:1-11.
    [162]胡博,樊明寿,郝云凤.农田土壤硝态氮淋洗影响因素及阻控对策研究进展[J].中国农学通报,2011,27(27):32-38.
    [163]李建敏,王振林,尹燕枰,等.不同蛋白质含量小麦品种籽粒形成期氮代谢及相关酶活性的比较[J].中国农业科学,2009,42(9):3078–3086.
    [164] Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling ofindica-japonicarice (Oryza sativa) hybrids [J]. Physiol Plant,2001,112:470-477.
    [165] Stoddard F L. Survey of starch particle-size distribution in wheat and related species [J]. CerealChem,1999,76:145-149.
    [166] Zeng M, Morris C F, Batey I L, et al. Sources of variation for starch gelatinization,pasting andgelation properties in wheat [J]. Cereal Chem,1997,74(1):63-71.
    [167] Tsai C Y. The function of waxy locus in starch synthesis in Maize endsperm [J]. Biochem. Genet.,1997,11:83-96.
    [168] Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat starch[J]. Aust. J. Agrie. Res.,1998,49(5):757-766.
    [169]刘锐,魏益民,张波.小麦蛋白质与面条品质关系的研究进展[J].麦类作物学报,2011,31(6):1183-1187.
    [170]赵广才,常旭虹.施氮量对不同强筋小麦产量和加工品质的影响[J].作物学报,2006,32(5):723-727.
    [171]张翼涛,李硕碧,张联会.不同栽培条件与小麦籽粒品质的关系[J].干早地区农业研究,1991,9(2):16-21.
    [172] Sissons M J, Egan N E, Gianibelli M C. New insights into the role ofgluten on durum pastaquality using reconstitution method [J]. Cereal Chem,2005,82:601-608.
    [173]王晓英,贺明荣.水氮耦合对济麦20籽粒蛋白质组分及品质的影响[J].作物学报,2007,33(1):126-131.
    [174]姚凤娟,贺明荣,贾殿勇,等.花后灌溉对小麦籽粒贮藏蛋白聚合程度和面团流变学特性的影响[J].植物生态学报,2010,34(3):271-278.
    [175]马少康,赵广才,常旭虹,等.不同水氮处理对济麦20蛋白质组分和加式品质的影响[J].麦类作物学报,2010,30(3):477-481.
    [176] Guttieri M J, McLean R, Stark J C, et al. Managing irrigation and nitrogen fertility of hard springwheats for optimum bread and noodle quality [J]. Crop Science,2005,45(5):2049-2059.
    [177]王小燕,于振文.灌水时期和灌水量对小麦氮代谢相关酶活性和籽粒蛋白质品质的影响[J].西北植物学报,2009,29(7):1415-1420.
    [178]上官周平.小麦13C分辨率和水分利用效率对氮素与水分的响应[J].植物营养与肥料学报,2000,6(3):345-348.
    [179]李淑文,文宏达,薛宝民,等.小麦高效吸收利用氮素的生理生化特性研究进展[J].麦类作物学报,2003,23(4):131-135.
    [180]赵广才,常旭虹,杨玉双,等.叶面喷施不同营养元素对冬小麦产量和品质的影响[J].麦类作物学报,2011,31(4):689–694.
    [181]王宪泽,张树芹,田纪春,等.喷洒亚硫酸氢钠对小麦籽粒产量和蛋白质含量的影响[J].中国农业科学,2002,35(3):277-281.
    [182] Fillery I R P, McInnes K J. Components of the fertilizer nitrogen balance for wheat production onduplex soils [J]. Aust. J. Exp Agric,1992,32:887–899.
    [183]戴廷波,邹铁祥,荆奇,等.氮、钾水平对小麦籽粒蛋白质合成关键酶活性的影响[J].生态学报,2009,29,(9):4976–4982.
    [184]江洪芝,晏本菊,谭飞泉,等.氮肥施用量及施用时期对小麦品质性状的影响[J].麦类作物学报,2009,29(4):658-662.
    [185]盛婧.不同类型专用小麦籽粒淀粉形成及其与加工品质的关系[D].扬州:扬州大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700