用户名: 密码: 验证码:
枯草芽孢杆菌(Bacillus subtilis RN-61)抗菌蛋白的纯化及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究开发生防菌对经济林病害进行生物防治,是目前病害防治的研究方向,具有重要的理论意义和实际应用价值。本文针对目前经济林病害发生严重,使用化学农药不符合对经济林产品无公害和可持续发展要求这一难题,较系统的研究了应用于经济林病害防治的高效广谱拮抗细菌。本研究为获得应用于经济林病害防治的高效广谱拮抗细菌菌株,从土样中分离到103株细菌。采用平板对峙培养法,发酵产物活性测定法结合筛选拮抗菌株,根据16S rRNA基因分析以及生理生化反应鉴定筛选出的菌种。结果表明:菌株RN-61和RN-88对棉花红腐病(Fusarium moniliforme)、辣椒炭疽病(Colletotrichum gloesporioides)、茄子黄萎病(Verticillium dahliae)、马铃薯十腐病(Fusarium solani)、玉米青枯病(Ralstonia solanacearum)、辣椒根腐病(Fusarium vasinfectum)、黄瓜霜霉病(Pseudoperonospora cubensis)、李干腐病(Polvporus hirsutus)、草莓灰霉病(Botrytis cinerea)和桃褐腐病(Monilinia fructicola)10种病原真菌有明显抑制作用;菌株RN-61和RN-88的发酵液对桃褐腐病的抑制率最大在80%以上;对棉花红腐病、辣椒炭疽病的抑制率最小,在25%以上。经鉴定:菌株RN-61与枯草芽孢杆菌,相似度为99%,菌株RN-88与荧光假单胞杆菌的相似度也为99%,分别将其命名为Bacillus subtilis RN-61和Pseudomonas fluorescens RN-88。
     通过单因素试验,在LB培养基的基础上做了改良,获得最适宜Bacillus subtilisRN-61抑菌物质产生的发酵配方:酵母提取物为碳源,大豆蛋白胨为氮源,其为培养基的优化结果。在对培养条件进行优化后,获得培养时间为24h,转速为180rpm,温度为37℃,pH为6.5,接菌量为10%为最佳培养条件。
     对该菌的代谢产物进行环境稳定性测试分析,发现产生的抑菌物质粗提物不耐强酸,在偏酸、中性和强碱的条件下活性变化不大,紫外线对其活性也没有显著影响。温度对该抑菌物质的活性影响不强。
     本试验利用柱层析技术从Bacillus subtilisRN-61发酵液中分离和纯化了枯草芽孢杆菌RN-61抗菌蛋白质。利用80%饱和度的硫酸铵提取的Bacillus subtilisRN-61粗蛋白质经DEAE-Cellulose柱层析后获得10个蛋白质吸收峰,其中第二个峰收集液具有抑菌活性,再将流分2收集液经层析柱Sephadex G-25gel层析后获得3个吸收峰,其中第二个峰收集液具有抑菌活性,将该活性蛋白进行通过SDS-PAGE进行观察,发现该蛋白质的分子量约为32.0kDa。
     针对枯草芽孢杆菌RN-61的抗菌蛋白质的特性,应用现代串联质谱仪(Q-TOF)技术对抗菌蛋白质进行了鉴定。经过电喷雾四极杆飞行时间串联质谱分析后(Q-TOF)后获得了6个肽序列标签,氨基酸序列分别为INHNIAALNTLNR; LSSGLR; AGDDAAGLAISEK; NSQDGISLIQTAEGALTETHAILQRTEFNGK; LGAVQNRLEHTINNLS; ASGENLTAAESRIRDVDMAK; EMSEFTKNNI LSQASQAMLAQANQQPQNVLQLLR.利用肽序列标签进行鉴定,通过MASCOT数据库检索发现该抗菌蛋白质与枯草芽孢杆菌的鞭毛蛋白有显著相关性,相似度达到了44%。查新发现鞭毛蛋白的抗菌活性尚未见报道。
     为了证实该蛋白的抑菌作用,用编码该蛋白的基因用Bacillus subtilisRN-61基因组DNA做模板,对其进行克隆。并将克隆的FLA-61基因插入表达载体pET28a(+),构建重组表达质粒pET28a-FLA61,将其转化到大肠杆菌E.coli中在IPTG诱导下表达该蛋白。将该菌的代谢产物对桃褐腐病原菌进行生物测定,结果表明具有较高的抑菌活性。96小时后,其对病原真菌的抑制率达到了36.72%。鉴于其较好的抑菌活性,我们将对其抑菌机制进行进一步研究。
An antifungal bacterial strain was isolated from soil samples collected from different agricultural sites in Beijing, China. An novel antifungal protein was also isolated and identified from the bacteria strain. In this study, Fusarium moniliforme、Colletotrichum gloesporioides、 Verticillium dahliae、Fusarium solani、Ralstonia solanacearum、Fusarium vasinfectum、 Pseudoperonospora cubensis、Polvporus hirsutus、Botrytis cinerea、Monilinia fructicola was used as indicators to screen antifungal bacteria. The bacteria were identified, based on their biochemical characteristics, which showed the highest antifungal activity, were selected for further identification by partial sequence analysis of their16S rRNA genes. Because of the effective antifungal activity of the strain RN-61and RN-88, it was investigated.The strain RN-61shared99%similarity with that of Bacillus subtilis subsp. subtilis str, named Bacillus subtilis RN-61, which was exhibited the hightest antifungal activity.The medium and culture conditions of the strain RN-61were optimized by single factor experiments.In the investigation of the culture condition, the major ingredients being investigated included carbon sources and nitrogen sources. The optimal antifungal activity production condition were determined as follows:initial pH6.5,culture temperature at37℃, culture time24h, rotation rate180rpm, soybean peptone10.0g/L, yeast extract5g/L.The antifungal metabolites from the bacteria B.subtilis RN-61were further purified by consecutive chromatographic fractionations including ion exchange chromatography and gel filtration chromatography. The purified fractions were tested for their antifugal effect.the result showed that the fraction B had the best effect with the inhibition of40.94%after96h culture.The purified fraction B was shown to have a relative low molecular weight of32kd by sodium dodecyl sulphate poly-acrylamide gel electrophoresis (SDS-PAGE).Antifungal protein was ideniified with Q-TOF after digested with trypsin. six Peptides were get.six peptides sequenee was INHNIAAL NTLNR;LSSGLR; AGDDAAGLAISEK; NSQDGI SLIQTAEGAL TETHAILQRTEFNGKK: LGAVQNRLEHTINNLS: ASGENLTAAE SRIRDVDMAK EMSEFTKNNI LSQASQAMLA QANQQPQNVLQLLR.These peptides were used to search in MASCOT database:we found the protein was observed related with this antifungal Protein.The protein was flagllin. LC/ESI-MS analysis confirmed the fraction from the metabolites of B.subtilis RN-61which has the strongly inhibition to the indicator that formed as a result of a novel protein belonged to the flagellin family. A flagellin gene (FLA-RN61) was amplified from the B.subtilis RN-61genome by using specifically designed PCR primers. The sequence analysis showed the new cloned gene had a degree of91%identity to a known FLA gene in a new different B.subtilis. The sequence was also expressed in E.coli and showed high antifungal effect. We report here the isolation of a new antifungal bacteria from soils in Beijing China that may be very well adapted to the environmental conditions of this area. We also first report the complete cloning of the new antifungal gene which is belongs to the flagellin family. Due to their high antifungal activity, the bacteria and the novel protein isolated from this work merit further study as a potential biological agents for the organic food production in agriculture.
引文
[1]Abo- El- Dohab M K. Antagonism among strains of Pseudomonas solanacearum[J]. Phytopathol,59(7):1005-1007.
    [2]Agrebi R, Haddar A, Hmidet N, et al. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26:Purification,biochemical and molecular characterization [J].Process Biochemistry,2009,44:1252-1259
    [3]Akpa E, Jacques P, Wathelet B, et al. Influence of culture conditions on lipopeptide production by Bacillus subtilis[J]. Applied Biochemistry and Biotechnology,2001,93(1):551-561.
    [4]Andro T, Chambost J P, Kotoujansky A, et al. Mutation of Erwinia chrysanthemi defective in secretion of pectinase and celluase[J]. Bacteriol,1984,160(3):1199-1203.
    [5]Anith K N, Radhakrishnan N V, Manomohandas T P.Screening of antagonistic bacteria for biological control of nursery wilt of black pepper[J]. Microbiological Research,2003,158(2):91-97.
    [6]Bender C L. Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronative production[J]. Physiol Molec Plant Pathol,1987,30:273-283.
    [7]Bo D M, Perlman D. Peptide Antibiotics. Science[J].1969,163:352-358
    [8]Boller T. Vacuolar localization of etylene-indueed chitinase in bean leaves[J]. Plant Physiol,1984,74:442-444
    [9]Broghe K, Chel L, Holliday M et al. transgenic Plants with enhanced resistance to the funga pathogen Rhizoctonia solani.[J].Seience,1991, 254:1194-1197
    [10]Bulla L A J, Hoch J A. Biology of the Bacilli. In:Demain A L,Solomn N A. ed. Biology of industrial microorganisms.1985,57-781
    [11]Cheng X C, Jensen P R, Fenical W..et al. new aromatic tetraols produced by an estuarine bacteria of the genus Strepromyces(Aotinomyeetos)[J]. Journal Natural Products,1999,62(4):608-610.
    [12]Chiang C L, Chang C T, Sung H Y. Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1 [J].Enzyme and Microbial Technology,2003,32:260-267.
    [13]Chung Y J, Hansen J N. Determination of the sequence of spa E and identification of a promoter in the Bacillus subtilis (spa) [J].Bacteriol, 1992,174(20):6699-6702.
    [14]Cupples D A. Isolation and characterization of a bacterocin produced by Pseudomonas solanacearum[J]. Journal of GeneralMicrology, 1978,109(2):195-303.
    [15]Cupples D, Sen J. Isolation and characterization of a bacterocin produced by Pseudomonas solanacearum [J]. Journal of General Micrology,1978,109(2): 293-303.
    [16]David J M. Studies on β-glucanase some properties of a bacterial endo-β-1, 3-glueanase system [J].Biochem,1973,135:11-18
    [17]Echandi E. Production propertia and morphology of bacteriocin from Erwinia chrysanthemi [J]. Phytopathol,1979,69(10):1204-1207.
    [18]Elizabeth A, Emmert B, Handelsman J. Biocontrol of plantdisease:a (Gram-) positive perspective [J]. FEMS Microbiology Letters,1999,171:1-9.
    [19]Ellis J G, Kerr A. Agrobacterium:Genetic studies on agracin 84 production and biolog ical control of crown gall[J], Physiol Plant pathol,1979, 15:311-319.
    [20]Emmert E A B..Handelsman J. Biocontrol of Plant disease:a(Gram-) Positive Perspective[J]. FEMS Microbiol Letter,1999,171:1-9.
    [21]Fernando P. The historical delivery of antibiotics from microbial natural products-Can history repeat[J]. Bilchem Pharmacol,2006,71:981-990.
    [22]Fogliano V, Ballio A, Gallo M, et al. Lipodesipeptides and fungal cell well-degrading enzymes act synergistically in biological control[J]. Molecular Plant- Micro Interaction,2002,15(4):323-333.
    [23]Franky R G T, Kristel F, Valentina K et al. Small cysteine-rich antifungal proteins from Radish:Their role in host defense. Plant Cell,1995,7:573-588
    [24]Girlanda M, Perotto S, Moennel L Y, et al. Impact of biocontrol of Pseudomonas fluorescens and a genetically modified derivative on the diversity of cultivable fungi in the cucumber rhizosphere[J]. Applied and Environmental Microbiology,2001,67(4):1851-1864.
    [25]Gordon R E.芽孢杆菌[M].菜妙英,刘聿太译.北京;中国农业出版社,1983.
    [26]Guo D S, Zhao B G, Li R G, et al. Purification of Flagellin of Pseudomonas fluorescens GcM5-1A Carried by the Pine Wood[J]. Russian Journal of Nematology,2008,16(2):151-157
    [27]Hansen J N. antibiotics synthesized by posttranslational modification[J]. Annual Rev.Microbiol,1993,47:535-564.
    [28]Heungens K, Parke J L. Postinfection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDR1[J]. Phytopathology, 2001,91:383-391.
    [29]Hoffman R M, Turner J G. Occurrence and specificity of an endo Polygalacturonase inhibitor in Pisum sutivum[J]. Physiol Plant Pathol,1984, 24:49
    [30]Howie W, Joe L, Newbigin E et al. Transgenic tobacco plants which express the chiA gene from serratia marceseens have enhanced tolerance to Rhizoctonia solani[J], Transgenic Researeh.1994,3:90-98
    [31]Humphery-Smith I. Proteome research:Complementarity and limitations with respect to the RNA and DNA worlds[J]. Electrophoresis,1997,18: 1217-1242
    [32]Jones J D G, Dean C, Gidomi P et al. Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters[J]. Mol Gen Genet,1988,212:536
    [33]Joshi S B, harucha C, Desai A J. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. [J]Bioresource Technology,2008,99:4603-4608.
    [34]Katz E, Demain A L. The peptide antibiotics of Bacillus:Chemstry, biogensis and possible functions[J]. Bacteriol Rev,1977,41:449-474.
    [35]Kinsella K, Schulthess C P, Morris T F, Stuart J D. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry,2009,41:374-379.
    [36]Kless H, Sitrit Y, Chet L et al. Cloning of the gene eoding for chitobiase of Serratia marcescens[J]. Mol Gen Genet,1989,217:471
    [37]Knox, O G G, Killham K, Leifert C. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis [J]. Applied Soil Ecology,2000,15(2):227-231.
    [38]Konisky J. Colicins and other bacteriocins with estabilished modes of action[J]. Ann Rev Microbiol,1983,36:125-144.
    [39]Leah R, Tommerup H, Svendsen L B et al. Biochemical and molecular characterization of three barley seed Proteins with antifungal Properties [J]. J biol Chem,1991,266:1564-1570
    [40]Lee N K, Yeo I C, Park J W, et al. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus[J]. Journal of Bioscience and Bioengineering,2010,110(3):298-303
    [41]Li F, Rong-ping L, Jin L, et al. Study on a protein kinaseslysis activity of Bacillus subtilis HW-2:Selection of liquid fermentation conditions[J]. Progress in Biotechnology,1997,17(3):31-33.
    [42]Liaudet L, Murthy K G, Mabley J G et al. Comparison of inflammation, or-gan damage, and oxidant stress induced by Salmonella enterica serovar Muenchen flagellin and serovar Enteritidis lipopolysaccharide [J]. Infect Immun,2002,70(1):192-198.
    [43]Ligin J M, Hill D S, Hammer P E, et al. Genetic modification of Pseudomonas that enhance biological disease control[J]. Acta Horticulture, 1999,54:53-60.
    [44]Logermann J, Jach G, Tomnerup H et al. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco Plants[J]. Bio/technology,1992,10:305-308
    [45]Lsaacs R D, Fraser C M, Norris S J, et al. complete genome sequence of Treponema pallidum, the syphilis spirochete[J]. Science 1998,218:375-388
    [46]Martin D F. Distribution of β-glueanases within the genus Bacillus[J]. APPI Environ Microbiol,1980,40(6):1136-1138
    [47]Mauch F, Mauch-Mani B, Boller T. antifungal hydrolases in pea tissue II: inhibition of fungal growth by combinations of chitinase and β-1, 3-glueanase 1988,88:936-942
    [48]Michael A, Torsch V, Brvce C. Bacteriocin from Bacillus megaterium ATCC 19213:comparative studies with megacin A-216[J]. Bacteriol, 1983,155(2):866-871.
    [49]Neuhaus J M, Ahl G P, Hinz U et al. High level expression of a tobacco chitinase gene in-Nicotiana syhestris. Susce Ptibility of transgenic Plants to Cercospora nicotianae infection[J]. Plant Mol Biol,1991,16:141-151
    [50]Nijkamp H J, Lang R S, Stuitje A R, et al. The complete nucleotide sequence of the bacteriocinogenic plasmid C10DF13[J]. Plasmid,1986,16(2):135-160.
    [51]Nomura M. Colicins and related bacteriocins[J]. Ann Rev Microbiol, 1967,21:257-284.
    [52]Noriyasu I, Shahedur R M, Takashi A. Production of iturin A homologues under different culture conditions[J]. Journal of Environmental Sciences, 2009(Suppl.):S28-S32.
    [53]Ohno A, Ano T, Shoda M. Effect of temperature change and aeration on the production of antifungal peptide anti-biotic iturin by Bacillus subtilis NB22 in liquid cultivation[J]. Journal of Fermentations and Bioengineering, 1993,75(6):463-465.
    [54]Oppenheim A B, Chet L. Cloned chitinases in fungal plant pathogen control strategies[J]. Trends Biotechnol,1992,10:392
    [55]Ordenilieh A, Elad Y, Chet L. The role of chitinase of Serraria marcescens in biocontrol of Sclerotium rolfsii [J]. PhytoPathology,1988.78(1):84-88
    [56]Park J Y, Okada G, Takahashi M. Screening of fungal antagonists against yellow of cabbage caused by Fusarium oxysporum f. sp. Conglutinans [J] Mycoscience,2002,437:447-45.
    [57]Payne G. Evidence for a third structural class of (3-1,3-glueanase in tobacco[J]. Plant MolBiol,1990,15:797-808
    [58]Peypoux F, Guinand M, Michel G, et al. Structure of iturin A, an antibiotic from Bacillus subtilis[J]. Biochemistry,1978,17(19):3992-39961
    [59]Peypoux F, Pommier M T, Ptak M, et al. Revised structure of mycosubtilin, a peptidiolipid antibiotic from Bacillus subtilis [J]. Antibiotics,1986,39(5): 636-641.
    [60]Philips W R. Cloning and expression of a strptomyces plieatus chitinase (chitinase-63) in Eseherichia coli [J]. J Biol Chem,1988,233(1):443-447
    [61]X Q L, Yong G. The optimization of fermentation conditions of nattokinase[M]. Journal of South China University of Technology:Natural Science Edition,1999,27(5):127-130.
    [62]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [63]Rahman M S, Ano T, Shoda M. Second stage production of iturinA by induced germination of Bacillus subtilis RB14 [J]. Journal of Biotechnology, 2006,125(4):513-515.
    [64]Ramphal R, Balloy V, Jyot J, et al. Control of Pseudomonas aeruginosa in the Lung Requires the Recognition of Either Lipopolysaccharide or Flagellin[J]. Immunology,2008,181(1):586-592.
    [65]Ridout C J. Enzyme activity and electrophoretic profile of extracellular protein indueed in Trichoderma spp. by cell walls of Rhizoctoniasolani. J gen Mierobiol,1986,132:2345-2352
    [66]Saligkarias I D, Gravanis F T, Epton H A S. Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US7 and Candida oleophila strain I-182:in vivo studies[J]. Biological control,2002,25:143-150.
    [67]Samac D A, Shah D M. Inereased diseased susee Ptibility of Arabidopsis Plants expressing chitinase antisense RNA[J]. Plant Physiol, 1993,102(2)Suppl:112
    [68]Schgger H, Jagow V G. Tricine-Sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa [J].Analytical Biochemistry,1987,166:368-379.
    [69]Sehlumbaum A, Maueh F, Vogeli U et al. Plant chitinases are potent inhibitors of fungal growth[J]. Nature,1986,324:365
    [70]Shapira R. Control of Plant diseases by chitinase expressed from cloned DNA in Escheriehia coli.[J] PhytoPathology,1989,79:1246-1249
    [71]Shoda M. Bacterial control of plant diseases[J]. Journal of Bioscience and Bioengineering,2000,89(6):515-521.
    [72]Simi K. The chitinase eneoding Tn7- based chiA gene endows Pseudomonas fluorescens with the capacity to control Plant Pathogens in soil[J]. Gene,1994,147:81-83
    [73]Stirpe F, Barbieri L, Battelli M G et al. Ribosome-inaetivating proteins from Plants:Present status and future Prospects [J]. Bio/Technology.1992, 10:405-412
    [74]Sunclheim L, Alan R P, Albert H E. Molecular cloning of the chitinase gene from Seratia marcesoms and their expression in Pseudomonas spp. [J]. Physiological and Molecular Plant Pathology,1988,33:483-491.
    [75]Suresh S, Prasad M S. Extracellular proease from Pseudomonas spp. (CL1457)active against Xanthomonas campestris [J]. Process Biochemistry, 2002,37(6):611-621.
    [76]Tagg J R. Bacteriocins of gram- positive bacteria[J]. Bacteriol Rev, 1976,40(3):722-756.
    [77]Tashiro M, Hashrno K, Shiozaki M et al. The complete amino acid sequence of rice bran trypsin inhibitor[J]. J Bioehem,1987,102:297-306
    [78]Toubart P, Desiderio A, Salvi G et al. Cloning and characterization of the gene encoding the endopolyglacturonase inhibiting protein of Phaseolus vulgaris L.[J]. Plant,1992,2:367-373
    [79]Vanittanakom N, Loeffler W, Koch U, et al. Fengycin A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-31 [J]. Antibiotics, 1986,39(7):888-9011
    [80]Vidaver A K. Prospects for control of phytopathogenic bacteria by bacteriophage and bacteriocins[J]. Ann Rev Phytopathol,1976,24:451-465.
    [81]Vigers A J, Roberts W K, Selitrennikoff C P. A new fammily of plant antifungal Proteins[J]. Mol Plant Microb Inter,1991,4:315-323
    [82]Wakayama S, Ishikawa F, Eishi K. Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus[J]. Antimicrobiol Agents and Chemotherapy,1984,26(6):936-940.
    [83]Ward E R et al. Differential regulation of β-1,3-glucanase messager RNAs in response to pathogen infection [J]. PlantPhysiol,1991,96:390-397
    [84]Watanabe T, Tsukamoto T, Shirata A. Potential of an antagonistic bacterium isolate obtained from Lentinus lepideus basidiospores as a biocontrol agent. [J] Mycoscience,2000,41:79-82.
    [85]Woloshuk C P, Meulenhoff J S, Sela B M et al. Patbogen-induced Proteins with inhibitory activity toward phytoPhthora infections[J]. Plant Cell,1991, 3:619-628
    [86]Zhao B G, Futai K, Sutherland J R, et al. Pine Wilt Disease [M]. New York: Springer Publishing Company,2008:50-259.
    [87]Zimmerman S B, Schwartz C D, Richard L, et al. Difficidin and oxydifficidin:novel broad spectrum[J]. Antibiotics,1987,40(12):1677-1681.
    [88]别小妹,陆兆新,吕凤霞,等.Bacillus subtilis fmbR抗菌物质的分离和鉴定[J].中国农业科学,2006,39(11):2327-2334.
    [89]陈金春,陈国强.微生物实验指导[M].北京:清华大学出版社,2005.
    [90]陈年春.农药生物测定技术[M]北京:北京农业大学出版社,1991.
    [91]陈三凤,刘德虎,李季伦.植物几丁质酶的结构、基因及其表达[J].生物工程进展,1998,18(2):33-36
    [92]陈志谊,刘荣,刘永锋.水稻纹枯病拮抗细菌B-916的选育[J].中国生物防治,2003,19(1):15-18.
    [93]陈志谊,陆凡,刘春祥,等.水稻纹枯病拮抗细菌B-916培养条件与发酵配方的研究[J].西南农业学报,1999,12(1):76-81.
    [94]陈志谊,高太东,严大富,等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].中国生物防治,1997,13(2):75-78.
    [95]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报,2003,25(5).732-737.
    [96]程元荣,郑卫.微生物生物活性物质的研究进展[J].中国抗生素杂志 2002(10):632-640.
    [97]储炬.现代工业发酵调控学[M].北京:化学工业出版社,2002,251.
    [98]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [99]董国菊,李文英,刘翠平,等.烟草疫霉拮抗菌株P-72-10的鉴定及其拮抗代谢产物初步分析[J].植物病理学报,2012,43(3):297-305
    [100]高学文,姚仕义,Huong P,等.枯草芽孢杆菌BZ菌株产生的表面活性素变异体的纯化和鉴定[J],微生物学报.2003,5(43),647-752.
    [101]顾真荣,马承铸,韩长安.枯草芽孢杆菌G-3防治植病盆栽试验[J].上海农业学报,2002,18(1):77-80.
    [102]顾真荣,马承铸,韩长安.产儿丁质酶芽孢杆菌对病原真菌的抑菌作用[J].上海农业学报,2001,17(4):88-92.
    [103]何晨阳,王金生.水稻白叶枯病毒性基因缺失菌株的构建及其在生防上的作用[J].南京农业大学学报,1994,17(增刊):17-22.
    [104]何红,蔡学清,洪永聪,等.辣椒内生细菌的分离及拮抗菌的筛选[J].中国生物防治.2002,18(4):171-175.
    [105]何礼远.细菌在植物病害生物防治上的应用研究进展[J],生物防治通报,1985,8(1):18-31.
    [106]侯勇,赵文华.一株拮抗放线菌GLP-27菌株发酵液抗菌谱及稳定性的研究[J].绿色科技.2011,7(7):235-237.
    [107]胡海文,杨海清,王朋.桃褐腐病菌拮抗细菌的分离筛选与鉴定[J].中国农学通报,2009,25(12):195-200.
    [108]胡剑,赵永岐,工岳五.枯草杆菌BS-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究[J].微生物学通报,1997,24
    [109]胡瑞萍,张铎,张丽萍,等.枯草芽孢杆菌BSD-2一种抗菌肽的分离纯化与鉴定[J].华北农学报.2011,26(6):201-206
    [110]胡忠,杨增明,王钧.天麻球茎中一种抗真菌蛋白的分离和部分特性[J].云南植物研究,1988,100:373-380
    [111]纪明山,李艳丽;谷祖敏,等番茄叶霉病拮抗细菌H402发酵条件研究[J].河南农业科学,2007,12(1):36-38.
    [112]江流,徐锦堂,孙勇如,等.编码天麻抗真菌蛋白的检测及免疫及免疫荧光定位[J].植物学报,1993,35:593-599
    [113]焦新安,张国强,文其乙,等.沙门氏菌鞭毛蛋白基因高效表达系统的构建,[J]中国兽医学报,1998,18(3):241-243.
    [114]金桩,彭健,胡新文,等.枯草芽孢杆菌MBS的培养条件优化研究[J].黑龙江畜牧兽医,2010(3):111-114.
    [115]孔健.农业微生物技术[M].北京:化学工业出版社,2005:46.
    [116]李长松.拮抗性细菌生物防治植物土传病害的研究进展[J].生物防治通报,1992,8(4):168-172.
    [117]李刚,文景芝,吴凤芝,等.连作条件下设施黄瓜根际微生物种群结构及数量消长[J].东北农业大学学报,2006,37(4):444-448.
    [118]李洪连,王守正.根际微生物与植物病害[J].河南农业大学学报,1989,23(4):401-408.
    [119]李隽,胡卓逸,蔡萍.二氢嘧啶酶产生菌的筛选及发酵条件的研究[J].药物生物技术,1996(2):90-94.
    [120]李瑞芳,赵玉峰,魏建,等.具有稻瘟病菌拮抗活性的枯草芽孢杆菌的分离与鉴定[J].河南农业科学,2010(3):63-66.
    [121]李盛楠.荧光假单胞菌GcMS-IA鞭毛蛋白对黑松的作用机理及蛋白酶抑制剂防治松褐天牛的应用研究[C].青岛大学硕士学位论文.2010,05:4-16
    [122]林东,徐庆,刘忆舟,等.枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J],农业生物技术学报,2001,9(1):77-80
    [123]林福呈.枯草芽孢杆菌产生的拮抗物质对西瓜枯萎孢子萌发的影响[J].浙江农业大学学报,1990,16(增刊2):235-240.
    [124]林运萍,谭志琼,张荣意.香蕉冠腐病拮抗细菌B68的发酵条件[J].热带作物学报,2006,27(2):82-83.
    [125]刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析[J].微生物学报,1999,39(5):441-4471
    [126]刘翠娟,段琦梅,安德荣.抗真菌拮抗放线菌的筛选及摇床发酵条件的优化[J].微生物学杂志,2004,24(4):12-14.
    [127]刘虹,顾红雅,陈新,等.水稻中一种抗真菌蛋白的分离与特性分析[M].高技术通讯,1994,4(2):22-26
    [128]刘进元,潘乃,陈章良.抗菌蛋白的纯化及性质[J].微生物学报,1993,33(4):268-273
    [129]刘小妹.陈秀容.两株芽孢杆菌无菌液抗菌谱级稳定性测定[J].中国生物防治,2003,(3):101-143
    [130]刘伊强,王雅平,潘乃,等.拮抗菌TG26的鉴定及其抗菌蛋白BN的纯化和部分特性[J]-植物学报,1994,36(3):197-2031
    [131]刘永峰,陈志谊,张杰,等,枯草芽孢杆菌B-916胞外抗菌蛋白质的性质[J].江苏农业学报,2005,21(4):288-293.
    [132]刘志俊,段渝峰.生物农药新概念新发展[J].农药科学与管理,2003,24(7):28-32.
    [133]柳凤,欧雄常,何红,等.红树内生细菌AmS2菌株对芒果炭疽病菌的抑制作用[J].植物保护学报,2010,37(5):453-458.
    [134]吕跃冬,王勇,张文革,等.绿色木霉烯酰吗啉水分散片剂防治黄瓜枯萎病及作用机理初探[J].湖北农业科学,2006,47(9):1035-1037.
    [135]裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性[J].微生物学报,1999,39(4):344-491
    [136]彭兵,张树斌,贾宇.枯草芽孢杆菌菌株A抗菌蛋白的分离纯化及抗真菌机理[J].中国农业科学,2011,44(1):67-74.
    [137]彭于发.工程荧光菌93防治小麦全蚀病研究简报[J].生物防治通报,1991,7(4):181-182.
    [138]钱铭铺,发酵工程最优化控制[M].南京:江苏科学技术出版社,1998.
    [139]乔宁,李美芹,郭宝太.山东寿光地区番茄黄化曲叶病毒外壳蛋白基因克隆及其在大肠杆菌中的表达[M].中国蔬菜,2012(6):35-40.
    [140]邱德文.我国生物农药现状分析与发展趋势[J].植物保护,2007,32(5)27-32.
    [141]任欣正,章健.青枯假单胞菌细菌素的研究[J].南京农业大学学报,1993,16(30):63-67.
    [142]任欣正.植物病原细菌的鉴定和分类[M].北京:中国农业出版社,1994.
    [143]萨姆布鲁克,弗里奇,曼里阿蒂斯.分子克隆实验指南(第二版)[M].金冬雁,黎阵枫,侯云德.译.北京:科学出版社,1998:16-33.
    [144]邵彦坡,方丽萍,魏少鹏,等.海洋放线菌B5菌株发酵液抗菌谱及稳定性研究[J].西北农业学报,2007,16(3):248-251.
    [145]沈锦玉,尹文林,曹铮,等.枯草芽孢杆菌B115抗菌蛋白的分离纯化及部分性质[J],水生生物学报,2005,29(6):589-693.
    [146]舒群芳,徐锦堂,孙勇如.编码天麻抗真菌蛋白cDNA的分子克隆[J].植物学报,1995,37:685-26
    [147]童有仁,马志超,陈卫良,等.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析[J],微生物学报.1999,39(4):339-403.
    [148]汪雪静,卜春亚,靳永胜,等.草莓根腐病菌拮抗细菌的分离与鉴定[J].园艺学报,2011,38(9):1657-1666
    [149]王东昌.链霉菌S-10菌株发酵条件的研究[J].吉林农业大学学报,2001,25(1):34-36.
    [150]王光华,Raaijmakers J M.生防细菌产生的拮抗物质及其在生物防治中的作用[J].应用生态学报,2004,15(6):1100-1104.
    [151]王金生.细菌素在植物细菌病害生防中的应用[J].生物防治通报,1985,1(2):36-48.
    [152]王瑞菊,赵奎华,刘长远.甜瓜枯萎病土壤拮抗菌的初步筛选[J].沈阳农业大学学报,2005,36(2):164-166.
    [153]王玉梅,祁红英,郭建华.植物土传病害的微生物防治研究进展[J].世界农业,2008,13(1):37-39.
    [154]王岳,方金瑞.抗生素[M].北京:科学出版社,1988.
    [155]王政逸.拮抗立枯丝核菌的细菌菌株筛选及其防治试验[J].浙江农业大学学报,1990,16(增刊2):191-195.
    [156]吴磊明,余晓东.影响抗生素效价的研究[J].实用医学杂志,1996,12(7):486-487.
    [157]吴文君.植物化学保护实验技术导论[M].西安:陕西科学技术出版社,1988:43-73.
    [158]相望年.中国真菌学与植物病理学文献[M].北京:科学出版社,1957.
    [159]肖冬光.微生物工程原理[M].北京:中国轻工业出版社,2004:70-80.
    [160]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白质X98Ⅲ的纯化与性质[J],微生物学报,1998,38(1):13-19.
    [161]谢凤行,赵玉洁,周可,等.产胞外淀粉酶枯草芽孢杆菌的分离筛选及其紫外诱变育种[J].华北农学报,2009,24(3):78-82.
    [162]谢明,陈新,翟礼嘉,等.一种水稻蛋白酶抑制剂新基因的克隆及其结构分析[J].植物学报,1996,38:444-50
    [163]熊礼宽,周华,国外医学传染病流行病学分册[M],1996,26:270-273
    [164]徐刘平,尹燕妮,等.拮抗细菌对土传病原菌的作用机理[J].中国生物防治,2006,22(1):10-14.
    [165]许凤春,董美玉,张玲玲,等.放线菌G1-8菌株发酵液抗菌谱及稳定性的研究[J].生物技术.2008,11(4):81-83.
    [166]杨国平,任欣正,王金生,等.K84的生防效果与土壤农杆菌Ti质粒类型[J].生物防治通报,1986,2(1):25-30.
    [167]杨金艳.枯草芽孢杆菌XM16分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].河南农业科学,2009(12):78-81.
    [168]杨丽荣,王正军,薛保国.解淀粉芽孢杆菌YN-1抑菌蛋白TasA基因的克隆及原核表达.基因组学与应用生物学[J].2010,29(5):823-828.
    [169]杨丽英,马国顺.均匀设计在微生物发酵条件优化试验中的应用[J].太原师范学院学报,2009,8(3):23-25.
    [170]姚翠萍,王和玉,杨帆,等.枯草芽孢杆菌液态培养条件优化及其代谢产物分析[J].酿酒科技,2010,194(8):43-45.
    [171]游春平,肖爱萍,曹明星.稻瘟病拮抗细菌有效成份初步测定[J].仲恺农 业技术学院学报,2002,15(4):28-33.
    [172]游春平,肖爱萍,李湘民.稻瘟病菌拮抗微生物的筛选及鉴定[J].江西农业大学学报,2001,23(4):519-521.
    [173]张波,白红进,付骋宇,等.农用抗生素产生菌Z139菌株的稳定性[J].植物保护,2004,30(5):26-29.
    [174]张丽,孙书娥.利用微生物防治植物病害研究进展[J].农药研究与应用,2010,14(6):10-13.
    [175]张西锋,李万芬.枯草芽孢杆菌GMP还原酶基因(guac)突变株的构建[J].安徽农业科学,2011,39(5):2556-2558.
    [176]张宇,张敏,叶亚军,等.稻瘟病生防放线菌菌株All发酵液中抗菌物质的稳定性测定[J].中国农学通报,2005,21(6):315-316
    [177]赵刚,吴元华.一株链霉菌发酵液的抗菌谱及稳定性[J].农药,2006,45(8):525-528.
    [178]周与良,邢来君.真菌学[M].北京:高等教育出版社,1986,28-31
    [179]周晓梅,刘强,王瑛璐.拮抗菌生物防治农作物病害的研究进展[J].吉林师范大学学报(自然科学版),2010(4):36-39.
    [180]周鑫钰,朱宏建,雷湘华,等.植物内生放线菌应用研究进展[J].江西农业学报.2010,22(12):87-90.
    [181]朱昌雄,蒋细良,孙东园,等农用抗生素—中生菌素[J].精细与专用化学品,2002,(16):14-17.
    [182]宗兆锋,钮绪燕,李君彦,等.西瓜枯萎病颉颃菌的筛选研究[J].西北农业大学学报,1995,32(2):60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700