用户名: 密码: 验证码:
不同油茶品种果皮的化学成分与抗炭疽病之间关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶(Camellia oleifera Abel.)是中国南方地区重要的木本油料树种,近年来被安面积种植。油茶炭疽病(Colletotrichum gloeosporioides Penz.)是油茶最主要的病害,发生普遍而严重,一般落果率在30%-50%之间,甚至50%以上。但据长期观察发现:生长在同一油茶林分内,不同油茶植株间抗性差异很安。本论文研究的目的是:1.在室内外病情调查研究的基础上,筛选不同抗病等级的植株作为测试对象;2.在生长季节,对不同抗性植株进行相关生理生化参数的测定,并分析其各物质的含量及变化趋势;3.对不同抗病的油茶品种进行亲缘关系及多样性分析,比较其不同抗性品种在分子水平上的差异;4.采用高分辨液质联用分析法,找出不同抗病品种的差异性物质。具体研究内容如下:
     1.在植物生长时期,定期对不同抗性品种的果皮内含物进行测定分析,结果表明:果皮中单宁含量呈下降趋势(高抗0.50-0.32,中抗0.46-0.24,高感0.48-0.45),但不同抗性品种之间单宁含量差异不显著(P=0.6597>0.05)。与单宁相反,花青素含量在生长季节则呈现上升趋势,如高抗、中抗、高感品种的果皮花青素含量分别增长了77.3%、69.4%和51.5%,至8月份以后合成速率减慢。不同抗性品种的花青素含量差异达到极显著水平(p=0.0063<0.01),尤其在5月份,高抗品种花青素含量的增长速率高出高感品种12.1%。
     2.在5-9月间,油茶抗病品种和感病品种间果皮的pH值差异达到显著水平(p=0.0278),尤其在7月份,感病品种pH值均在5以上,但抗病品种的pH值则稳定在4-5之间,抗病品种pH值明显低于感病品种。缓冲液容量随着果实的成熟度增加呈上升的趋势(高抗6.2-7.43,中抗5.33-7.46,高感5.45-7.12)。各油茶品种缓冲容量在6-7月份增长较快,但不同抗病品种间的差异不显著(p=0.7984)。
     3.三类抗病品种的油茶果实酶活性测定表明:抗病品种PPO、POD和PAL活性随果实成熟度的增加均有升高的趋势。在三种酶中:(1)PPO活性增长的速度较感病品种快,尤其在5月份,抗病品种PPO酶活比感病品种高出18U·g~(-1)min~(-1)。感病品种初期也呈上升趋势,但从7月份开始,PPO酶活呈现下降趋势,至9月份下降了14U·g~(-1)min~(-1)。不同抗病品种的PPO酶活之间差异极显著(P=0.0001)。(2)POD活性增长速率也是高抗品种快于感病品种,在5月份两者相差达6.2%。中抗、高感品种的酶活在8月份以后均呈下降趋势,酶活分别下降了10、17U·g~(-1)min~(-1),可能由于细胞代谢毒素增加,导致保护酶的功能逐渐下降。各抗性品种之间PPO活性差异极显著(p=0.0001)。(3)在5月份,高抗品种的PAL活性分别比中抗、感病品种提高了17%和30%;7月份,感病品种酶活逐步下降,而高抗和中抗品种仍维持上升趋势。不同油茶品种PAL活性之间的差异达到显著水平(p=0.0004)。
     4.油茶果实的可溶性糖含量从幼果期到成熟期总体呈递增趋势。在5-9月份,三类不同抗性的油茶品种可溶性糖含量分别增长了60.9%、58.6%和40%,且5月份高抗品种可溶性糖含量比感病品种高45%。各油茶品种之间的可溶性糖含量差异达到显著水平(p=0.0171)。
     5.不同发病植株的果皮提取物对自由基清除率之间的差异达到显著水平(p=0.0032)。果皮提取液在2.0mg/mL时对自由基清除率均很高,但高抗品种更加明显,加入样品20min后的清除率最低为(89.43±0.34)%,最高达到(91.46±0.32)%,显著高于中抗和感病品种。
     6.本文共采集30个样株,分别来自于皖南黄山、皖西舒城和皖东凤阳等地选育的抗病性较强的油茶良种以及感病植株(对照)。采用AFLP分子标记方法对其进行亲缘关系及遗传多样性分析,筛选出一对多态性较高的引物进行AFLP分析,产生了147个扩增带,其中,129(87.76%)条是多态性条带,有效等位基因数ne为1.37,Nei’s期望杂合度He为0.23,Shannon多态性信息指数I为0.36。采用UPGMA方法,对30个油茶样株建成的树枝状图,其遗传相似系数介于0.40到0.85之间,平均相似系数为0.63。在62.0%GS处,30个油茶品种被划分为6类。Cluster A只包含感病的安州小青;Cluster C1只包含抗病的安州小红;cluster C2只包含抗病的安州安红,且C1和C2在57%GS处聚类在一起(B1);Cluster D1只包含感病的舒城品种-重感安青;Cluster D2包含了25个品种,在65%GS处,Cluster D2又可以分为2个类群,即E1:包含14个品种和E2包含11个品种(感病和抗病品种个数分别为5和6)。
     7.通过高分辨液质联用分析法对高抗的攸县油茶、抗病的安州安红以及感病的安州小青叶片的甲醇提取物进行了成分分析。高抗的攸县油茶叶片中阴离子共有25种化合物,阳离子21种化合物,攸县油茶叶片中化合物安多是酚类、黄酮类、生物碱类、氨基酸以及具有抗菌特性的物质,如(2S,3R)-2-氨基十四碳-3-醇(Xestoaminol C)等;安州安红叶片中阴离子有30种化合物,阴离子以黄酮类及酚类物质为主,也有莽草酸等次生代谢物质;阳离子有30种化合物,以生物碱类、氨基酸、酰胺类物质等为主;安州小青阴离子化合物有18种,有少许的黄酮类和酚类物质,如莽草酸、绿原酸等为主;阳离子有28种化合物,以生物碱类和氨基酸等为主。
Camellia oleifera Abel. is an important edible oil tree species from Southern China.Anthracnose, caused by Colletotrichum gloeosporioides (Penz.), is responsible for morethan50%of C. oleifera production loss, and C. oleifera varieties differ in their resistanceto anthracnose.1. The aim of this study was to Assess resistance mechanisms bymonitoring physiological and biochemical parameters of differentially resistant cultivarsduring the development of C. oleifera;2. Genetic relationship and diversity amongdifferent disease-resistant Camellia oleifera varieties were analyzed to further distinguishbetween varieties at the molecular level;3. The key bioactive materials which wererelavant with resistance were deterimined and studied by HPLC-DAD-MS. The specificresearch was as follows:
     1. C. oleifera fruit coats were analyzed between May and September for tannins,anthocyanins. Tannin contents generally declined at the developmental stage (highlyresistant0.50-0.32, medium resistant0.46-0.24, highly susceptible0.48-0.45), whereas nosignificant difference was found in tannin levels between differentially disease-resistantcultivars (P>0.05). The growth rate of highly resistant varieties was12.1%higher than ofsusceptible ones in May. On the contrary, the anthocyanin contents of fruit coats in highlyresistant, medium resistant and highly susceptible varieties grew by77.3%,69.4%and51.5%, respectively, and the synthesis rate of anthocyanins changed mildly after August.The anthocyanin contents differed significantly among different cultivars (P <0.01).
     2. There was no significant difference in pH levels between the disease-resistantvarieties and the susceptible ones at the developmental stage (P <0.05). In July, fruit coats insusceptible varieties reached a pH value of5, while resistant varieties had a pH of4-5. Thebuffer capacity of different cultivars generally rose with increasing maturation (highlyresistant6.2-7.43, medium resistant5.33-7.46, highly susceptible5.45-7.12). In addition, thebuffer capacity of different cultivars increased rapidly from June to August. Buffer capacitydid not differ significantly between different cultivars (P>0.05).
     3. PPO, POD and PAL activity in the fruit coats of highly resistant, medium resistantand susceptible strains were determined. The results demonstrate that activity of the three enzymes generally rose with increasing maturity.
     (1) PPO activity in highly resistant plants increased more rapidly during May-Augustand increased slowly after September, especially in May. PPO activity was18U·g~(-1)min~(-1)higher than in highly susceptible plants. PPO activity of medium resistant and highlysusceptible cultivars rose slowly in the first three months, and then declined in August andSeptember. PPO activity of highly susceptible varieties decreased by14U·g~(-1)min~(-1)from Julyto September. PPO activity differed significantly between disease-resistant and susceptiblevarieties (P <0.01).
     (2) POD activity of disease-resistant varieties was higher than of susceptible ones, andthe increase rate of highly resistant varieties was6.2%higher than in highly susceptiblevarieties in May. POD activities of medium resistant and highly susceptible varietiesdeclined after August by10U·g~(-1)min~(-1)and17U·g~(-1)min~(-1), respectively. There wassignificant difference in PPO activity between disease-resistant and susceptible varieties (P=0.0001).
     (3) In May, PAL activity of high resistant cultivars was higher than that of mediumresistant and high susceptible by17%and30%, respectively. In July, PAL activity ofsusceptible cultivars declined gradually, whereas that of high resistant and mediumresistant cultivars still increased. PAL activity was significantly different betweendisease-resistant and susceptible cultivars (P=0.0004).
     4. Soluble sugar contents of fruit coats gradually increased from the fruitlet period tomaturity period. From May to September, the soluble sugar contents in highly resistant,medium resistant and highly susceptible varieties rose by60.9%,58.6%and40%,respectively. Soluble sugar contents of highly resistant varieties were45%higher than ofhighly susceptible ones. Soluble sugar contents differed significantly betweendisease-resistant and susceptible varieties (P <0.05).
     5. The free radical scavenging capacities of fruit coat extracts from highly resistant,medium resistant and highly susceptible varieties of C. oleifera were determined. The resultsdemonstrate that fruit coat extracts with a concentration of2.0mg/mL had strong freeradical-scavenging capacity in different incidence cultivars, and that fruit coat extracts from highly resistant varieties had the highest scavenging capacity with a value of91.46%±0.32%.The free radical scavenging capacity of fruit coat extracts differed significantlybetween different cultivars (P <0.05).
     6. Colletotrichum gloeosporioides (anthracnose) is the most destructive disease whichcauses severe economic losses in Camellia spp.. A study was conducted to establish ifgenotypes identified as resistant or susceptible to anthracnose in China could bedistinguished using molecular markers. A total of30unrelated C. spp. genotypes wereselected from three ecotype regions (Huangshan, Shucheng and Fengyang) in Anhuiprovince. Resistant selection was based on disease severity in plants following detachedfruit inoculation. One AFLP selective primer combinations were used to genotype theseaccessions, resulting in147amplified bands. Of these,129(87.76%) informativepolymorphic bands were used for genetic diversity analysis. Genetic similarity coefficientsranged from0.40to0.85among the resistant accessions, indicating high genetic diversityamong them. Cluster analysis grouped the30accessions into two major clusters based onpolymorphic bands. This study provides genetic diversity for future breeding of C. spp. foranthracnose resistance.
     7. Methanol and mixed solvent of choroform and ethyl acetate extracts from leaves ofC.yuhsiensis Hu of high resistant cultivar, Huizhou-dahong of resistant variety andHuizhou-xiaoqing of susceptible variety were analyzed with HPLC-DAD-MS.C.yuhsiensis leaf was rich in25negative compounds and21positive compounds. Thesecompounds mostly were phenolics, flavonoids, alkaloids, amino acid and someantibacterial properties, e.g. the (2S,3R)-2-amino fourteen carbon-3-alcohol(Xestoaminol C).30negative compounds in Huizhou-dahong leaf were mostly flavonoidsand phenolic substances. In addition, there were secondary metabolites, e.g. shikimic acid;30positive compounds in Huizhou-dahong leaf were mostly alkaloids, amino acids, andamides etc.18negative compounds in Huizhou-xiaoqing leaf were a few flavonoids andphenolics, e.g. shikimic acid, chlorogenic acid;28positive in Huizhou-xiaoqing leaf weremostly alkaloids and amino acid.
引文
Hanover, J. W.1964. Comparative biochemstry and phsiology of western white pine(Pinus monticola Dougl.) resistant and susceptible to infection by the blister rustfungus (Cronartium ribicola Fischer). Abstr. of Thesis in Dissert. Abstr.,25(3):1447.
    Ostrofsky, W. D. Shortle, W. C., Blanchard, R. O.1984. Bark phenolics of Americanbeech (Fagus grandifolia) in relation to the beech bark disease[J]. Eur. J. For. Path,14(1):52-59.
    Cahill, D. M., Bennett, I. J., McComb, J. A.1993. Mechanisms of resistance toPhytophthora cinnamomi in clonal, micropropagated Eucalyptus marginata[J].PlantPathology,42(6):685-872.
    向玉英,围舜明,侯艳。1993,杨树溃疡病与树皮酚类化合物关系的研究[J].森林病虫通讯,(1):5-7.
    Langhans, V. E., Hedin, P. A., Graves, C. H. Jr.1978. Fungitoxic chemicals in Pecantissue[J]. Plant Disease Reporter,62(10):894-898.
    Cline, S., Neely, D.1984. Relationship between juvenile-leaf resistance to anthracnose andthe presence of juglone and hydrojuglone glucoside in black walnut[J].Phytopathology,74(2):185-188.
    Lewis, R. A.1975. Quantitative assessment and possible biochemical indicators ofvariation in resistance to fusiforme rust in loblolly pine. Dissertation AbstractsInternational B.36(1):15-16.
    蒋仲芳,黄柔湘,秦国伟,等.毛冬青化学成分的研究Ⅲ:四种三萜皂甙的分离与鉴定[J].中草药,1991,22(7):291-294.
    姜一平,冯锋,谢宁,等.毛冬青的化学成分[J].药学与临床研究,2008,16(3):163-165.
    李会平.抗光肩星天牛优良黑杨无性系选择及抗虫机制的研究[D].保定:河北安安安学,2001.
    李会平,王志刚,杨敏生,等.杨树单宁与酚类物质种类及含量与光肩星天牛危害之间关系的研究[J].河北安安安学学报,2003,26(1):36-39.
    黄安庄,阎晔辉,张彦广,等.树木单宁含量和抗桑天牛的关系[J].河北省科学院学报,1996,(3):293-295.
    李典谟,周立阳.协同进化--昆虫与植物的关系[J].昆虫知识,1997,34(1):45-49.
    王绍卿,童本群,时兴春.栗树枝条中酚类化合物含量与抗栗瘿蜂性状的关系[J].辽宁林安科技,1997,(2):48-51.
    Bempoba B J T.树木对侵染的保护性反应:西伯利亚冷杉对天牛及其相关的微小真菌的抗性指标[J]. Jiecobe Jiehe,1995,(6):34-42.
    Hirotaka Torikata,Shuichiro Matsui. On the polyphenolic of the contents of them to theresistance to chestnut gall wasps[J]. Japan Soc Hort Sci,1996,35:89-97.
    Auger M A, Bastien C, Geri C. Edibility of different clones of Scots pine for Diprion piniL (.Hym., Diprionidae). III. Prospects for the genetic improvement of Scots pine[J].Journal of Applied Entomology,1991,111(3):270-277.
    Eom T, Son D, Lee S. Resistance to pine gall-midge and phenolic acid content in pineneedles[J]. Journal of the Korean Wood Science and Technology,1998,26(3):33-40.
    Hulme M A. Resistance by translocated Sitkaspruce to damage by Pissodes strob (iColeoptera:Curculionidae) reIated to tree phenology[J]. J Econ Entomol,1995,88:1525-1530.
    董传媛.油茶炭疽病的发生与植株内含物和酶活性的关系研究[D].安安安安安学学位论文,2009
    程方,叶建仁,刘戈,等.针褐斑病菌毒素处理后湿地松组培苗PAL、PPO、SOD活性变化研究[J].林安科学研究,2012,25(4):521-525
    唐明,陈辉,商鸿生. VA菌根真菌提高杨树抗溃疡病机制的研究[J].林安科学,2000,36(2):87-92
    邢会琴,李敏权,徐秉,等.过氧化物酶和苯丙氨酸解氨酶与苜蓿白粉病抗性的关系[J].草地学报,2007,15(4):376-380
    Chance B, Maehly A C. Assay of catalase and peroxidases [J]. Methods Enzymol.,1955,2:764-775
    Ford T W, Simon E W. Peroxidase and glucose-6-phosphate dehydrogenase levels incotyledons of Cucumis stativa [J]. J. Exp. Bot.,1972,23:423-437
    Manoranjan K, Dinabandhu M. Catalase, peroxidase, and polyphenoloxidase activitiesduring rice leaf senescence[J]. Plant Physio.,1976,57:315-319
    Batra G K. Polyphenoloxidase and peroxidase activities associated with acquiredresistance and its induction by2-thiouracil in virus-infected soybean[J]. PhysiologicalPlant Pathology,1975,5:239
    Seevers P M. The role peroxidase isoenzymes in resistance to wheat stem rust disease [J].Plant physiology,1971,48(3):353
    Veech J A. Localization of peroxidase infected tobaccos susceptible and resistant to blankshank[J]. Phytopathology,1969,59:566-571
    李敏权.苜蓿根和根颈腐烂病的病原及种质抗病性的研究[D].甘肃安安安学学位论文,2002
    Yubedee A G.Role of polyphenol oxidase, peroxidase and total phenol content indifferential resistance of Dioscorea species to Fusarium moniliforme.Indian Journal ofAgricultural
    梁喜龙,郑殿峰,左豫虎等.病害逆境下寄主植物生理生化指标的研究现状与展望[J].安安安安科学,2006,34(15):3576-3578,3581
    王海华,曹赐生,高健.植物抗病性的遗传基础及其分子机制[J].湘潭师范学院学报,2000,21(6):88-92
    刘祖祺,张石城.植物抗性生理学[M].北京:中国安安出版社,1994
    Culver J N, Lindbeck A G C, Dawson W O. Virus-host interactions:induction of choloticand necrotic responses in plant by tobacco mosaic virus[J]. Ann Rev Plant Pathol,1991(29):193-217
    Balachandran S,Hull R J,Martins R A,et al. a Influence of environmental stress onbiornass partitioning in transgenic tobacco plants expressing the movement protein oftobacco mosaic virus[J]. Plant Physiology,1997,1l5:475-481
    Gates D W,Gaudauskas R T.Photosynethesis,respiration and evidence of a metabolicinhibitor in corn infected with maize dwarf mosaic virus[J]. Phytopathology,1969,59:575-580
    Goodnan R N,Kiraly Z,Wood K R. The biochemistry and physiology of plant disease [M].Column:University of Missouri Press,1986
    Naderi M, Berger P H. Pathogenesis-reded protein la is induced in potato virus Y-infectedas well as by coat protein targeted to chloroplasts[J].Physiological and Molecular PlantPathology,1997(51):41-44
    Montalbini P,Buchanan B B.Effect of rust infection on photophorylation by isolatedchloroplasts [J].Physio Plant Path,1974,4:191-196
    Berry Man C A,Eamus D, Farrar J F. Water relations of leaves of barley infected withbrown rust [J]. Physiol molplant path,1991(38):393-405
    许志刚.普通植物病理学[M].北京:中国安安出版社,1997
    阚光锋.烟草品种对野火病的抗性鉴定与生化抗病机制研究[D].泰安:山东安安安学,2002
    余叔之.植物生理与分子生物学[M].北京:科学出版社,1992:417-423
    李兰真,赵会杰,杨会武,等.小麦锈病与活性代谢的关系[J].植物生理学报,1999,35(2):115-117
    Overeen J C, Threlfail D R. Biochemical aspect of plant parasite relationships [M].NewYork: Academic Press,1976:134
    杨家书.植物苯丙氨酸类代谢与小麦对白粉病抗性的关系[J].植物病理学报,1986,16(3):169-173
    秦海滨.丛枝菌根真菌对温室黄瓜生长及抗病性的影响研究[J].北京:中国安安科学院,蔬菜学,2008
    李赤,于莉,刘付东标,等.富贵竹中可溶性糖、蛋白质含量与细菌性茎腐病的关系[J].吉林安安安学学报,2007,29(6):620-622
    曹志华,束庆龙,张鑫.2011.安安油茶病害发生与识别[J].安安林安科技,37(1):55-58.
    段琳,杨光道,束庆龙,等.2005.油茶果皮颜色对炭疽病的抗性的影响[J].经济林研究,23(2):9-12.
    李翠英,廖明安,刘远鹏,等.2003.金花梨变异单系抗病性及抗寒性研究[J].干旱地区安安研究,21(3):137-140.
    李海燕,刘惕若,甄艳.2006.辣椒品种对疫病的抗性研究--氨酸、丙二醛与可溶性糖在抗病中的作用[J].中国安学通报,22(11):315-317.
    尚庆茂,张志刚.2008.亚精胺对黄瓜幼苗灰霉病的诱抗作用[J].应用生态学报,19:
    825-830.
    束庆龙,张良富.2009.中国油茶[M].北京:中国林安出版社,1-4.
    唐明,陈辉,商鸿生.2000. VA菌根真菌提高杨树抗溃疡病机制的研究[J].林安科学,36(2):87-92.
    王学奎.2006.植物生理生化实验原理和技术[J].北京:高等教育出版社.
    魏国强,朱祝军,李娟,等.2004.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的
    研究[J].应用生态学报,15:2147-2151.
    杨光道,束庆龙,段琳,等.2004.主要油茶品种对炭疽病的抗性研究[J].安安安安安学学报,31(4):480-483.
    庄瑞林.1988.中国油茶[M].北京:中国林安出版社.
    庄瑞林,黄爱珠,董汝湘,等.1992.油茶19个高产新品种的选育研究[J].林安科学研究,5(6):619-627.
    Abyari M R, Heidari R, Jamei R.2006. The effects of heating, UV irradiation and pH onstability of siahe sardsaht grape anthocyanin-copigment complex[J]. J. Biol. Sci.,6:638-645.
    Ahmad P, Salem M A, Sharma S.2010. Roles of enzymatic and nonenzymaticantioxidants in plants during abiotic stress[J]. Crit. Rev. Biotechnol.,30(3):161-175.
    Aist J R, Brushnell W R.1991. Invasion of plants by powdery mildew fungi, and cellularmechanisms of resistance. In: Cole, G.T. and H.C. Hoch (Eds.) The fungal spore anddisease interaction in plants and animals[M]. Plenum Press, New York, pp.321-345.
    Azevedo-Neto A D, Prisco J T, Enéas-Filho J, et al.2006. Effect of salt stress onantioxidative enzymes and lipid peroxidation in leaves and roots of salt tolerant andsalt sensitive maize genotypes[J]. Environ. Exp. Bot.,56:87-94.
    Balasundram N., Bubb W, Sundram K, et al.2003. Antioxidants from palm (Elaeisguineensis) fruit extracts[J]. Asia Pac. J. Clin. Nutr.,12(Suppl): S37.
    Bolwell P P, Page A, Pislewska M, et al.2001. Pathogenic infection and the oxidativedefenses in plants apoplast[J]. Protoplasma,217:20-32.
    Del Bubba M, Giordani E, Pippucci L, et al.2009. Changes in tannins ascorbic acid andsugar content in astringent persimmons during on-tree growth and ripening and inresponse to different postharvest treatments[J]. J. Food Compos. Anal.,22:668-677.
    Fadda A, Mulas M.2010. Chemical changes during myrtle (Myrtus communis L.) fruitdevelopment and ripening[J]. Sci. Hort.,125:477-485.
    Gross, G G.1999. Biosynthesis, biodegradation, and cellular localization of hydrolyzabletannins: Recent advances in phytochemistry. In: Lewis, N.G., J.T. Romeo and G.H.N.Towers (Eds.) Phytochemicals in Human Health Protection, Nutrition and PlantDefenses. Plenum Press, New York, pp.185-213.
    Harinasut P, Poonsopa D, Roengmongkoi K, et al.2003. Salt effects on antioxidantenzymes in mulberry cultivar[J]. ScienceAsia,29:109-113.
    Kanchana-udomkan C, Taylor P W J, Mongkolporn O.2004. Development of a bioassayto study anthracnose infection of chili fruit caused by Colletotrichum capsici[J]. ThaiJ. Agric. Sci.,37:293-297.
    Kennedy J A, Matthews M A, Waterhouse J A.2000. Changes in grape seed polyphenolsduring fruit ripening[J]. Phytochemistry,55:77-85.
    Kim D, Lee K W, Lee H J.2002. Vitamin C equivalent antioxidant capacity (VCEAC) ofphenolic phytochemicals[J]. J. Agr. Food Chem.,50:3113-3717.
    Kulkarni A P, Aradhya S M.2005. Chemical changes and antioxidant activity inpomegranate arils during fruit development[J]. Food Chem.,93:319-324.
    Leister D,2004. Tandem and segmental gene duplication and recombination in theevolution of plant disease resistance gene[J]. Trends Genet.,20:116-122.
    Liu X, Zhao M, Wang J, et al.2008. Antioxidant activity of methanolic extract emblicafruit (Phyllanthus emblica L.) from six regions in China[J]. J. Food Compos. Anal.,21:219-228.
    Mazau D, Esquerré-Tugayé M T.1986. Hydroxyproline rich glycoprotein accumulation inthe cell walls of plants infected by various pathogens[J]. Physiol. Mol. Plant P.,29:147-157.
    Mbouobda H D, Fotso-Djocgoue P F, Omokolo N D, et al.2010. Benzo-(1,2,3,)-thiadiazole-7-carbothioic S-methyl ester (BTH) stimulates defense reactions inXanthosoma sagittifolium[J]. Phytoparasitica,38:71-79.
    McClendon J H,1960. The occurrence of variety enzymes hydrolyzing cell wallpolysaccarides in apples rotted by Btryosphaeria ribis[J]. Phytopathology,50:258-261.
    Mittler R, Vanderauwera S, Gollery M, et al.2004. Reactive oxygen gene network ofplants[J]. Trends Plant Sci.,9:490-498.
    Montes C, Vicario I M, Raymundo M, et al.2005. Application of tristimulus colorimetryto optimize the extraction of anthoycanins from Jaboticaba (Myricia Jaboticaba Berg.)[J]. Food Res. Int.,38:983-988.
    Montri P, Taylor P W J, Mongkolporn O.2009. Pathotypes of Colletotrichum capsici thecausal agent of chili anthracnose in Thailand[J]. Plant Dis.,93:17-20.
    Palmer H J, Paulson K E.1997. Reactive oxygen species and antioxidants in signaltransduction and gene expression[J]. Nutr. Rev.,55:353-361.
    Plummer D T,1987. Practical Biochemistry[M]. McGraw-Hill, New York.
    Reynertson K A, Wallace A M, Adachi S, et al.2006. Bioactive depsides and anthocyaninsfrom jaboticaba (Myrciaria cauliflora)[J]. J. Nat. Prod.,69:1228-1230.
    Sekmen A H, Türkan I, Takio S.2007. Differential responses of antioxidative enzymes andlipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitivePlantago media[J]. Physiol. Plantarum,131:399-411.
    Sudhakar C, Lakshmi A, Giridarakumar S.2001. Changes in the antioxidant enzymeefficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaClsalinity[J]. Plant Sci.,16:613-619.
    Takakura Y, Che F S, Ishida Y, et al.2008. Expression of a bacterial flagellin gene triggersplant immune responses and confers disease resistance in transgenic rice plants[J].Mol. Plant Pathol.,9:525-529.
    Vvedenskaya I O, Vorssa N.2004. Flavonoid composition over fruit development andmaturation in American cranberry, Vaccinium macrocarpon Ait[J]. Plant Sci.,167:1043-1054.
    Wong S Y, Grant I R, Friedman M, et al.2008. Antibacterial activities of naturallyoccurring compounds against Mycobacterium avium subsp. paratuberculosis[J]. Appl.Environ. Microb.,74:5986-5990.
    Yang Y, Han C, Liu Q, et al.2008. Effect of drought and low light on growth andenzymatic antioxidant system of Picea asperata seedlings[J]. Acta Physiol. Plant.,30:433-440.
    Zhang X, Yang G D, Yang J, et al.2012. Physiological mechanism of resistance toanthracnose of different Camellia varieties[J]. Afr. J. Biotechnol.,11(8):2026-2031.
    陈永忠,张智俊,谭晓风(2005)油茶优良无性系的RAPD分子鉴别[J].中南林学院学报,25(4):40-45.
    李铁柱,田安伦,乌云塔娜,等.四倍体油茶的鉴定及变异[J].林安科学,2009,45(3):150-154.
    束庆龙,张良富(2009)中国油茶[M].北京:中国林安出版社.
    王保明,陈永忠,谭晓风,彭邵锋,石明旺(2008)应用ISSR分析油茶无性系的遗传多样性[J].东北林安安学学报,36(6):19-36.
    温强,雷小林,叶金山,江梅,左继林,黄丽莉,江香梅,徐林初(2008)油茶高产无性系的ISSR分子鉴别[J].中南林安科技安学学报,28(1):39-43.
    张国武,钟文斌,乌云塔娜,谭晓风,杜天真(2007)油茶优良无性系ISSR分子鉴别[J].林安科学研究,20(2):278-282.
    张智俊(2002)油茶优良无性系组织培养、RAPD分子鉴别和cDNA文库构建的研究[D].株洲:中南林学院博士论文.
    庄瑞林(1988)中国油茶[M].北京:中国林安出版社.
    Ashton PS. Dipterocarpaceae. In: Van Steenis CGGJ (ed.)[J]. Flora Malesiana I,1982,9:237-552.
    Capdevielle FM (2001) Evaluation of discriminant analysis procedure combiningagronomic and molecular marker information for germplasm improvement in rice.MS thesis. Louisiana State University, Baton Rouge.
    Chatterjee SN, Nagaraja GM, Srivastava PP, Naik G (2004) Morphological and molecularvariation of Morus laevigata in India. Genetica121:133-143.
    Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of Africancassava (Manihot esculenta Grantz) germplasm resistant to the cassava mosaicdisease (CMD). Theor Appl Genet100:678-685.
    Gottwald H, Parameswaran N (1966). Das sekund re Xylem der FamilieDipterocarpaceae[J]. Botanische Jahrbücher für Systematik, Pflanzengeschichte undPflanzengeographie,85:410508
    Ji ZP, Guo XS (1992) The occurrence characteristics of camellia anthracnose and itscontrol. For Sci Technol4:70-72.
    Jin AX, Zhou GY, Li H (2009) Progress, problem and prospect of oil camellia anthracnoseresearch. For Pest Disease28:27-31.
    Lei ZG (2004) Analysis of Camellia oleifera Germplasm resources by RAPD. MS thesis.South China Agricultural University.
    Lokko Y, Dixon A, Offei S, Danquah E, Fregene M (2005) Assessment of geneticdiversity among African cassava Manihot esculenta Grantz accessions resistant to thecassava mosaic virus disease using SSR markers. Genet Resour Crop Evol53:1441-1453.
    Lucia L, Francesa S, Gabriella S, Gaetano L, Franceso L, Massimo Z (2011).Characterization of Italian grasspea(Lathyrus sativus L.) germplasm using agronomictraits, biochemical and molecular markers. Genet Resour Crop Evol58:425-437.
    Lu LL, Zhou GY, Li H, Song GT (2009) Isolation and screening of antagonistic fungiagainst Colletotrichum gloeosporioides. Nonwood For Res27:54-56.
    Mario AP, Linda M, Pasquale C, Clara F. Agronomical, quality, and molecularcharacterization of twenty Italian emmer wheat (Triticum dicoccon) accessions. GenetResour Crop Evol (2009)56:299-310.
    Mcharo M, LaBonte DR, Mwanga ROM, Kreigner A (2005) Associating molecularmarkers with virus resistance to classify sweet potato genotypes. J Am Soc Hort Sci130:355-359.
    Miano DW, LaBonte DR, Clark CA (2008) Identification of molecular markers associatedwith sweet potato resistance to sweet potato virus disease in Kenya. Euphytica160:15-24.
    Mignouna HD, Dixon AGO (1997) Genetic relationships among cassava clones withvarying levels of resistance to the African mosaic disease using RAPD markers. Afri JRoot Tuber Crops2:28-32.
    Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics,1978,89:583-590.
    Pagnotta MA, Mondini L, Codianni P, Fares C (2009) Agronomical, quality, andmolecular characterization of twenty Italian emmer wheat (Triticum dicoccon)accessions. Genet Resour Crop Evol56:299-310.
    Rohlf FJ. NTSYS-pc version2.0Numerical taxonomy and multicviate analysis system[M]. Exeter Software, Setauket, New York,1998.
    Tileye F,Hilde N,Igor V. Analysis of genetic diversity in the endangered tropical treespecies Hagenia abyssinica using ISSR markers[J]. Genet Resour Crop Evol,2007,54:947-958.
    Vos P, Hogers R, Bleeker M, Reijans M, et al. AFLP: a new technique for DNAfingerprinting [J]. Nucleic Acids Res,1995,23:4407-4414.
    Yang GD, Duan L, Shu QL, Huang CC (2007) Relationship of anthocyanidin content,sugar content, PAL activity and Colletotrichum gloeosporioides in peel of oil tea tree.Sci Silvae Sin43:100-104.
    Yang GD, Shu QL, Duan L, Chen CY, Zheng HB (2004) Resistance of main cultivars ofoil tea to Colletotrichum gloeosporioides. J Anhui Agric Univ31:480-483.
    Yeh FC, Yang RC, Boyle T. POPGENE version1.31. Microsoft window-based freeware for population genetic analysis[J]. Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada,1999. Availablefree athttp://www.ualberta.ca/fyeh/.
    Zhao J, Jing P, Li N. Analysis of genetic variation within and among Ulva pertusa(Ulvaceae, Chlorophyta) populations using ISSR markers[J]. Chinese ScienceBulletin,2010,55(8):705-711.
    Zhou GY, Liu JN, Dong XN, Song GT, Gou ZH (2010) Resistance to anthracnose inCamellia oleifera induced by antagonistic bacteria. For Pest Disease29:1-3.
    姜登钊,吴家忠,刘红兵,等.百部药材的生物碱类成分及生物活性研究进展[J].2011,(39)1:19097-19097.
    陈醒,杨光明,蔡宝昌.棘豆属植物生物碱类成分结构特征和生理活性研究进展[J].南京中医药安学学报,2011,27(1):95-97.
    李玉林,廖志新,杜玉枝,等.棘豆属植物化学成分研究概况[J].天然产物研究与开发,2002,14(5):75-79.
    马彦梅,周文明,杨新娟.棘豆属植物化学成分和药理作用的研究进展[J].西北林学院学报,2005,20(2):167-170.
    于荣敏,李铣,宋丽艳,等.小花棘豆毒性生物碱的研究[J].中国中药杂志,1991,16(3):160-163.
    匡海学.中药化学[M].北京:中国中医药出版社,2003:338.
    从浦珠.质谱学在天然有机化学中的应用[M].北京:科学出版社,1987:404-406.
    Zhao BY, Liu ZY, Wang JJ, et a1. Isolation and NMR study on swains nine fromlocoweed,Astragalus strictus[J]. Agr. Sci. China,2009,8(1):115-120.
    孟协中,胡向群,张如明,等.黄花棘百的毒性生物碱的研究[J].宁夏安学学报:自然科学版,1994,15(2):67-70.
    霍星华.镰形棘豆生物碱成分研究及毒性评价[D].陕西:西北安林科技安学,2008.
    魏启华,赵博光.披针叶黄华生物碱及其生物活性[J].南京林安安学学报,2000,24(5):73-76.
    Dennis JW, Koch K, Yousefi S, et al. Growth inhibition of human melanoma tumorxenografts in athymisnude mice by swains nine[J]. Cancer Res,1990,50:1867-1872.
    Sun JY, Zhu MZ, Wang SW, et a1. Inhibition of the growth of human gastric carcinoma invivo and in vitro by swainsonine[J]. Phytomedicine,2007,(14):353-359.
    Pillir A, Oliverica MCF. Recent progress in the chemistry of the stemona alkaloids[J]. NatProd Rep,2000,17(1):117-127.
    丛晓东,徐国钧,金蓉鸾,等.百部生药学研究Ⅸ.中国百部属植物块根中总生物碱的测定与评估[J].药学学报,1992,27(7):556.
    Xu RS. Some bioactive natural products from Chinese medicinal plants[J]. BioactiveNatural Products (PartB),2000,21:729.
    Lu LH, Ye WC, ZHAO SX, et al. Chemical constituents of Stemona sessilifolia[J].Zhongguo Yaoke Daxue Xuebao,2005,36(5):404-408.
    刘超,王洪庆,李保明,等.紫芝子实体的化学成分研究[J].中国中药杂志,2007,32(3):235-237.
    陈晓梅,杨峻山,郭顺星,等.石斛小菇中的甾酵类化合物[J].药学学报,2000,35(5):
    367-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700