用户名: 密码: 验证码:
猕猴桃果实采后冷害发生生理机制及调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猕猴桃果实皮薄、汁多、营养丰富,是人们喜爱的水果之一。猕猴桃为呼吸跃变型桨果,常温下货架期短易软烂,低温能延长其贮藏期,但猕猴桃果实对低温较敏感,冷藏条件下很容易诱发冷害。而冷害症状在低温状态下多不表现,待贮藏温度上升或脱离低温环境后,其冷害症状才逐步表现。冷害导致贮藏中和出库后货架期大量腐烂,这已成为猕猴桃果实采后冷链物流的最大障碍。目前猕猴桃果实采后研究多集中在生理变化特点及贮藏保鲜技术上,有关其果实冷害鲜有报道。因此研究猕猴桃果实冷害发生机理,并运用适当的调控措施减轻或抑制冷害,对改善和提高采后猕猴桃果实贮运技术水平,提高流通效益具有重要的理论和实践意义。
     本论文研究不同采收成熟度、逐步降温和低温预贮(low temperature conditioning,LTC)两种物理降温方式以及外源腐胺(Put)化学处理对猕猴桃果实冷害发生的影响及其机制,为猕猴桃贮运技术体系的建立提供参考。研究结果分述如下:
     1.研究了不同成熟度对‘徐香’猕猴桃果实冷害、品质、呼吸、乙烯、相对膜透性、丙二醛含量和抗氧化酶活性的影响。结果显示:(1)Ⅰ可溶性固形物(TSS):4.5%~5.5%)、Ⅱ(TSS:6.5%~7.5%)和Ⅲ(TSS:8.0%~9.0%)3个不同采收成熟度的‘徐香’果实低温贮藏效果和冷害程度差异较大:采收Ⅰ果实失重率和腐烂率较高,较早表现木质化、水渍化等冷害症状,冷害率和冷害指数也较高,贮后货架期结束时硬度、可滴定酸、可溶性固性物和维生素C含量明显下降。而Ⅱ和Ⅲ两采收期出现木质化和水渍化等冷害症状较晚,冷害率和冷害指数较低,而且在贮后货架期结束时仍保持较高可溶性固形物和维生素C含量。与Ⅱ相比较,Ⅲ采收期果实的失重率和腐烂率较高,贮后货架期结束时果肉硬度、可滴定酸和维生素C含量较小,因此,‘徐香’果实适宜贮藏的采收期为Ⅱ。(2)猕猴桃果实发生冷害时呼吸速率、乙烯释放量和相对膜透性均异常增加。而Ⅱ采收期‘徐香’果实显著降低呼吸和乙烯释放,并保持较高的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等抗氧化酶活性,抑制膜脂过氧化程度,从而减轻果实冷害的发生。这些结果说明Ⅱ采收成熟度果实冷害相对较低可能与保持较高的抗氧化酶活性有关。
     2.首先研究了不同降温处理对‘徐香’果实冷害、失重率、腐烂率和品质的影响,发现逐步降温可显著降低‘徐香’猕猴桃冷害指数、冷害率、腐烂率和失重率,并保持较高的果肉硬度、可溶性固性物、可滴定酸和维生素C含量,其中逐步降温2(10℃→5℃2d→2℃2d→0±0.5℃)的效果最好。
     在上述研究的基础上,选用逐步降温2探索逐步降温处理对减轻‘徐香’果实冷害的作用,通过研究逐步降温处理对‘徐香’果实呼吸、乙烯和活性氧代谢的影响,以揭示其减轻果实冷害的机理。结果显示:‘徐香’果实发生冷害时呼吸速率、乙烯释放量和相对膜透性均异常增加,SOD、CAT、POD、APX等酶活性降低,丙二醛(MDA)大量累积。逐步降温处理有效降低冷藏‘徐香’果实的冷害指数和冷害率,抑制呼吸速率和乙烯释放量的增加,保持较高的SOD、CAT、POD、APX酶活性,并降低O_2~(·—)和H_2O_2含量,显著减少膜脂过氧化产物MDA的积累,抑制相对膜透性的增加。这说明,逐步降温减轻‘徐香’果实冷害与活性氧清除酶活性的提高及活性氧积累的降低有关。
     3.研究了不同LTC处理对‘海沃德’果实冷害、失重率、腐烂率和品质的影响,发现LTC可显著降低‘海沃德’冷害指数、冷害率、腐烂率和失重率,并保持较高的果肉硬度、可滴定酸、可溶性固性物和维生素C的含量,其中LTC5(12℃,3d)处理的效果最好。在此基础上,通过研究LTC5处理对‘海沃德’果实活性氧代谢、脂氧合酶(LOX)活性和內源激素的影响,以掲示LTC处理减轻‘海沃德’果实冷害的作用机制。结果表明,LTC处理保持较高的SOD、CAT、POD及APX抗氧化酶活性和较低的LOX酶活性,并降低O_2~(·—)生成速率和H_2O_2含量,抑制MDA和相对膜透性上升,同时积累较低GA_3,并保持较高ABA、IAA、ZR水平和ABA/IAA、ABA/GA_3比例,最终减轻‘海沃德’果实的冷害症状。这些结果说明,LTC处理可维持活性氧代谢平衡,积累较少的GA_3,并保持较高ABA、IAA、ZR水平和ABA/IAA、ABA/GA_3比例,从而减轻果实冷害的发生。
     4.研究了不同浓度(1mmol·L~(-1)、2mmol·L~(-1)、4mmol·L~(-1))Put处理对‘红阳’果实冷害、品质、腐烂率和失重率的影响,结果发现2mmol·L~(-1)Put处理可显著减少‘红阳’果肉木质化和水渍化等冷害症状的表现,减少果实失重率和腐烂率,并保持较高果肉硬度、可滴定酸和维生素C含量。在此基础上研究了2mmol·L~(-1)Put处理对‘红阳’呼吸、乙烯、活性氧代谢、ASA-GSH循环,內源多胺、LOX酶活性以及膜脂脂肪酸的影响,以掲示Put处理减轻‘红阳’果实冷害的机理。结果显示:
     (1)猕猴桃果实的冷害与内源亚精胺(Spd)、精胺(Spm)含量的降低有关。内源Spd和Spm的积累水平与冷害的发生程度存在明显的负相关性,相关系数分别为R=–0.9255和R=–0.9133。而Put处理提高‘红阳’内源Put、Spd、Spm含量,说明外源Put诱导了內源多胺含量的增加,从而有助于减轻猕猴桃果实冷害。
     (2)Put处理显著抑制了‘红阳’果实呼吸速率和乙烯释放速率,保持较高POD、SOD、CAT、APX、脱氢抗坏血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)活性及还原型谷胱甘肽(GSH)、抗坏血酸(ASA)抗氧化物质含量,积累较少的氧化型谷胱甘肽(GSSG)和脱氢抗坏血酸(DHA),保持较高的GSH/GSSG和ASA/DHA比例,并抑制O_2~(·—)和H_2O_2积累,降低了果实中MDA含量和相对膜透性,减轻‘红阳’果实冷害。说明, Put处理提高‘红阳’果实抗冷性与保持较高的抗氧化物质含量和抗氧化酶活性以及降低膜脂过氧化程度密切相关。
     (3)猕猴桃果实的冷害与LOX酶活性上升以及亚油酸、亚麻酸含量的降低密切相关。 Put处理抑制‘红阳’果实LOX活性上升,提高了亚油酸、亚麻酸不饱和脂肪酸相对含量,降低了棕榈酸和硬脂酸等饱和脂肪酸相对含量,抑制膜脂肪酸不饱和度和不饱和指数下降。说明,Put处理是通过降低‘红阳’果实LOX活性,抑制膜脂不饱和脂肪酸相对含量的下降,保持较高的膜脂肪酸不饱和度和不饱和指数,从而增强了‘红阳’果实抗冷性,减轻果实冷害的发生。
Kiwifruit as an important fruit is popular for its thin skin, juiceful texture and rich innutrient. The kiwifruit, as a typical kind of respiratory climactic fruit, undergoes rapidsoftening with severe decay after harvest, which shortens its shelf life. Cold storageeffectively inhibits fruit softening and extends the postharvest life of kiwifruits. However,kiwifruit is susceptible to chilling injury when protractedly stored at inaptitude temperatures.CI symptoms of kiwifruit are characterized by the appearance of concave spot in the skin,grainy tissue in the outer pericarp and the development of diffuse pitting in association with awater-soaked appearance. These symptoms become most severe after fruit is transferred toambient temperature. CI increase susceptibility to decay, which become a major obstacle topostharvest storage and transportation. At present, most study focus on storage of kiwifruit.Little information is available on the CI of kiwifruit. Thus, it is crucial to study themechanism and regulation of chilling injury in postharvest kiwifruit for storage andtransportation.
     In this paper,it was investigated that the effect of different harvested maturity, gradualcooling, low temperature conditioning (LTC) and exogenous putrescine (Put) on chillinginjury in kiwifruit and the possible mechanisms. The results were as follows:
     1. The effects of different harvested maturities on chilling injury, fruit quality,respirationand ethylene production, relative membrane permeability, malonaldehyde (MDA) content andthe activities of antioxidant enzymes in kiwifruit (Actinidia deliciosa cv.‘Xuxiang’) duringcold storage were investigated. The results showed as follows:
     (1) The storage qualities and chilling injury of kiwifruit were much difference amongⅠ (TSS:4.5%~5.5%), Ⅱ(TSS:6.5%~7.5%), Ⅲ(TSS:8.0%~9.0%) in low temperaturestorage. Compared to fruits of Ⅱ and Ⅲ, the fruits of Ⅰmaturity showed early CI symptomscharacterized by flesh grainy and water-soaked, maintained higher weight loss ratio, decayrate, chilling injury index and chilling injury incidence. In addition, the fruits ofⅠ maturityshowed a decrease in firmness, total soluble solids (TSS), titratable acidity (TA) and VCat theend of storage and shelf life. However, the fruits of Ⅲmaturity maintained higher weight lossratio, decay rate, and lower firmness, TA and VCthan these of Ⅱ maturity. Thus,the best harvest maturity grade for kiwifruit storage performed well was Ⅱmaturity.
     (2) The respiration rate, ethylene production and the relative membrane penetrabilityabnormally increased under chilling stress. However, the fruits of Ⅱm aturity maintainedlower respiration and ethylene production, induced the increase in the activities of superoxidedismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD),reduced lipid peroxidation and alleviated chilling injury. These results indicated thatⅡmaturity retard chilling injury in ‘Xuxiang’ fruit which may be related to enhancing theactivities of antioxidant enzymes.
     2. The ‘Xuxiang’ Kiwifruit were treated by direct cooling and gradual cooling todeterminate the effect of cooling pattern on chilling injury, weight loss ratio, decay rate andfruit quality. The gradual cooling treatment significantly reduced chilling injury index,chilling injury incidence, weight loss ratio and decay rate, maintained higher firmness, TSS,VCand TA. It was found that treatment2(10℃→5℃2d→2℃2d→0±0.5℃) was mosteffective in ‘Xuxiang’ fruit.
     On the basis of above results, the gradual cooling2in ‘Xuxiang’ fruit was chosen toinvestigate the effects of gradual cooling on chilling injury and the influence on active oxygenmetabolism. The results showed that the respiration rate, ethylene production, relativemembrane permeability and malonaldehyde (MDA) contents increased, while the activities ofCAT, SOD, POD and APX decreased during the development of CI symptom. However,thegradual cooling treatment significantly alleviated chilling injury, reduced respiration andethylene production, and inhibited the accumulation of MDA and the increase in relativemembrane permeability. Moreover,the gradual cooling treatment maintained higher activitiesof SOD, CAT, APX and POD than direct cooling fruit during the storage, and kept lowerlevels of superoxide anion production rate (O_2~(·—)) and H_2O_2content. These results indicatedthat gradual cooling treatment retard chilling injury in ‘Xuxiang’ fruit which may be related toenhancing the activities of active oxygen scavenging enzymes and reducing the accumulationof active oxygen.
     3. The effects of LTC on chilling injury, weight loss ratio, decay rate and fruit quality inkiwifruit (Actinidia deliciosa cv.‘Hayward’) during cold storage were investigated. Thetreatment with LTC was more effective in reducing chilling injury index and chilling injuryincidence, while maintaining higher level of firmness, TSS, TA and VC. We found that LTC5(12℃,3d) treatment was the optimal treatment to alleviate chilling injury and maintainhigher quality of kiwifruit. Thus LTC5treatment was chosen to to test the effects of LTCtreatment on chilling injury and the possible mechanisms in kiwifruit. The results showed thatLTC treatment inhibited the accumulation of MDA and the increase in relative membrane permeability. Furthermore, LTC treatment decreased accumulation of H_2O_2and O_2~(·—)and theactivity in lipoxygenase (LOX), while increased the activities of CAT, SOD, POD and APX inkiwifruit. The treatment also maintained higher levels of the endogenous ABA, IAA and ZR,lower GA_3levels, and higher ratio of ABA/GA_3and ABA/IAA. These results indicated thatthe effect of LTC treatment on alleviating CI of kiwifruit may be due to its ability to improveantioxidant enzyme activities and reduce ROS accumulation, maintain higher levels of theendogenous ABA, IAA and ZR, lower GA_3levels, and higher ratios of ABA/GA_3andABA/IAA.
     4. Kiwifruit (Actinidia chinensis cv.‘Hongyang’) were treated with differentconcentrations of Put (1mmol·L~(-1),2mmol·L~(-1),4mmol·L~(-1)) to investigate the effect onchilling injury, weight loss ratio, decay rate and fruit quality. We found that treatment with2mmol·L~(-1)Put treatment was most effective in reducing in CI symptoms of grainy andwater-soaked, decreasing weight loss ratio and decay rate and maintaining higher level offirmness, TA and VC. Thus,2mmol·L~(-1)Put treatment was chosen to investigate the possiblemechanisms of alleviating chilling injury. The results showed as follows:(1) Chilling injurywas related to the reduction of endogenesis Spd and Spm of kiwifruit. The accumulation levelof endogenesis Spm and Spd and chilling injury index appeared remarkable negativecorrelation, R=–0.9255and R=–0.9133. However, exogenous Put treatment increased thecontents of endogenesis Put、Spd and Spm. These results indicated that exogenous Puttreatment reducing in chilling injury may be related to improving endogenous polyaminecontent.
     (2) Exogenous Put treatment alleviated chilling injury, inhibited respiration andethylene production, maintained higher level of GSH and ASA and lower level of GSSG andDHA, and kept higher ratio of GSH/GSSG and ASA/DHA. The activities of SOD、POD、CAT、APX、DHAR、MDHAR、GR were also induced by exogenous Put treatment. In addition,this treatment inhibited the accumulation of MDA, H_2O_2and O_2~(·—)and the increase inrelative membrane permeability. These results suggested that the effect of exogenous Puttreatment on alleviating chilling injury of kiwifruit may be attributed to its ability to enhanceantioxidant enzyme activities and the content of antioxidants and decrease lipid peroxidation.
     (3) Chilling injury was related to increase of LOX activity and the decrease of linoleicacid (C18:2) and linolenic acid (C18:3). Exogenous Put treatment inhibited increased of LOXactivity, maintained higher relative contents of linoleic acid (C18:2) and linolenic acid(C18:3), and showed the lower relative contents of palmitic acid (C16:0) and stearic acid(C18:0). In addition, this treatment inhibited the decrease in index of unsaturated fatty acidsand unsaturated degree of fatty acids. These results suggested that the enhancement of chilling tolerance and the alleviation of chilling injury in kiwifruit by exogenous Put treatment may bedue to the decrease of LOX activity, inhibiting decrease in relative content of unsaturated fattyacids of membrane lipids and maintaining higher unsaturated degree of fatty acids.
引文
蔡琰,余美丽,邢宏杰,狄华涛,裴娇艳,许凤,郑永华.2010.低温预贮处理对冷藏水蜜桃冷害和品质的影响,农业工程学报,26(6):334~338
    曹健康,姜微波,赵玉梅.2007.果蔬采后生理实验指导.北京:中国轻工业出版社:128~129
    陈贵林,肖凯.1998.低温胁迫下西葫芦嫁接苗伤流液中激素含量的变化.植物生理学通讯,34(6):452~453
    陈健华,张敏,车贞花,卢佳华,谢晶,邵偲偲,张白玫,李一凡.2012.不同贮藏温度及时间对黄瓜果实冷害发生的影响.食品工业科技,33(9):11~15
    陈金印,陈明,甘霖.2002.猕猴桃采后生理及贮藏技术研究.江西农业大学学报,24:477~487
    陈金印,陈明,甘霖.2005.1-MCP处理对冷藏‘金魁’猕猴桃果实采后生理和品质的影响.江西农业大学学报,27(1):1~5
    陈金印,曾荣,李平.2003.猕猴桃冷藏过程中生理生化变化.食品科学,24(2):138~141
    陈坤明,宫海军,王锁民.2004.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,24(2):329~336
    陈昆松,李松,张上隆等.1999. ABA和IAA对猕猴桃果实成熟进程的调控.园艺学报,26(2):81~86
    陈昆松,徐昌杰.1999.脂氧合酶与猕猴桃果实后熟软化的关系.植物生理学报,(2):138~144.
    陈昆松,徐昌杰,许文平,吴敏,张上隆.2003.猕猴桃和桃果实脂氧合酶活性测定方法的建立.果树学报,20(6):436~438.
    丁建国.2003.1-MCP对称猴桃果实后熟软化的调控及其机理研究[硕士学位论文].杭州:浙江大学
    董晓庆,饶景萍,田改妮,张举印,廖小月.2009.草酸复合清洗剂对红富士苹果贮藏品质的影响.园艺学报,36(4):577~582
    都凤华,王秀春,郭菊曼等.1997.李子贮藏温度及冷害的研究.吉林农业大学学报,19(3):91~96
    段学武,庞学群,张昭其.2000.草菇低温贮藏及有关生理变化研究.热带作物学报,21(4):75~79
    冯志宏,赵迎丽,李建华,闫根柱,王亮,王春生.2009.亚精胺处理对大久保桃果实冷敏性的影响.农业机械学报,40(12):151~155
    刚成诚,李建龙,王亦佳,陈奕兆,范娟.2012.利用不同化学方法处理水蜜桃保鲜效果的对比研究.食品科学,33(06):269~273
    高慧,饶景萍,2007,冷害对贮藏油桃膜脂脂肪酸及相关酶活性的影响,西北植物学报,27(4):710~714
    高慧.2007.油桃果实冷害及冷害生理机制研究.[博士学位论文].杨凌:西北农林科技大学
    高俊凤.2000.植物生理学实验技术.西安:世界地图出版社,192~199
    郜海燕,陈杭君,陈文炬.2009.采收成熟度对冷藏水蜜桃果实品质和冷害的影响.中国农业科学,42(2):612~618
    韩雅珊.1999.类胡萝卜素的研究进展.中国农业大学学报,4(1):5~9
    胡位荣,张昭其,季作探,刘顺枝.2004.冷害对荔枝果皮膜脂过氧化和保护酶活性的影响.华南农业大学学报,25(3):6~9
    黄永红,王江勇,徐玉芳.2006. FACA柔性气调库中CO2浓度对猕猴桃果实品质及耐藏性的影响.落叶果树,(5):37~39
    纪秀娥,杜红阳.2006.多胺与水果、蔬菜贮藏时的冷害关系.周口师范学院学报,23(5):90~92
    季作梁,张昭其,王燕.1994.芒果低温贮藏及其冷害的研究.园艺学报,21(4):111~116
    蒋迎春,余武安.1999.中华猕猴桃品种魁蜜和红心乙烯生成潜力及ACC合成酶和氧化酶基因表达差异.北方园艺,4:13~14
    焦桂芝,孙井泉.2010.浅析西瓜冷害的症状及防御措施.吉林蔬菜,2:57~59
    金鹏,吕慕雯,孙萃萃,郑永华,孙明.2012. MeJA与低温预贮对枇杷冷害和活性氧代谢的影响.园艺学报,39(2):461~468
    孔祥佳,林河通,陈雅平,王春辉,林艺芬.2011.低温贮藏对"长营"橄榄果实采后生理和品质的影响.包装与食品机械,29(2):1~5
    李可横.2006.几种常见水果得贮藏条件.农家参谋,2006,4:28
    李丽萍,韩涛.1998.果蔬采后冷害的控制.北京农学院学报,13(1):122~130
    李青芝,王红星.2008.多胺与采后果蔬贮藏时冷害的关系研究.安徽农业科学,36(25):11087~11088
    李雪萍,张昭其,戴宏芬,季作梁.2000.低温锻炼对冷藏芒果膜脂过氧化作用的影响.华南农业大学学报,21(4):15~17
    梁华俤,潘林娜,魏勤.1993.猕猴桃果实采后Vc变化规律及其稳定性.食品科学,5:3~5
    林河通,陈莲,陈绍军,林娇芬,赵云峰.2005.橄榄果实采后生物学研究进展.福建农林大学学报(自然科学版),34(4):464~469
    刘宾,王学君,毛江胜,邓立刚,王雪,赵平娟,王文正,李桂凤.2009.精胺处理对凯特杏低温贮藏期间生理特性的影响.食品科学,30(22):358~360
    刘俊,吉晓佳,刘友良.2002.检测植物组织中多胺含量的高效液相色谱法.植物生理学通讯,38(6):596~598
    刘旭峰.2005.猕猴桃栽培新技术.杨凌:西北农林科技大学出版社
    刘延娟,董明,王强.2010.热处理对‘皖翠’猕猴桃贮藏生理及品质的影响.安徽农业科学,38(16):8636~8638
    刘祖祺,张连华.1990.用放射免疫法分析柑桔耐冷锻炼中游离和结合脱落酸的变化.园艺学报,17(3):197~202
    刘祖祺,林定波.1993. ABA/GA3调控特异蛋白质与柑桔的耐冷性.园艺学报,20(4):335~340
    刘祖祺,张石城.1994.植物抗性生理学.北京:中国农业出版:40~45
    龙翰飞,陈建学,李彩屏.1988.中华猕猴桃最佳采收期指标研究.果树科学,5(2):65~69
    陆旺金,张昭其,季作梁.1999.热带亚热带果蔬低温贮藏冷害及御冷技术.植物生理学通讯,35(2):158~163
    逯明辉,娄群峰,陈劲枫.2004.黄瓜的冷害及耐冷性.植物学通报,21(5):578~586
    吕建国,颉建明,吴小华,颉敏华,李梅.2009.保鲜剂和贮藏温度对青椒果实贮藏品质的影响.农产品加工,(7):21~23
    罗正荣.1989.植物激素与抗寒力的关系.植物生理学通讯.(3):1~5
    罗自生.2002.热处理诱导采后柿果抗冷性机理的研究.[博士学位论文].杭州:浙江大学
    马锋旺,李嘉瑞.1994.不同采收期对猕猴桃果实和种子性状的影响.陕西农业科学,(6):19
    马文月.2004.植物冷害和抗冷性的研究进展.安徽农业科学,32(5):1003~1006
    孟雪雁.2001.不同温度下桃贮藏效果及冷害症状的发生.山西农业大学学报,21(1):66~69
    缪颖,毛节锜,沈淦卿,章红升.1992.采前石灰水加IAA和GA处理对“玉露”水蜜桃贮藏性的影响.浙江大学学报(农业与生命科学版),(3):65~69
    欧毅,曹照春.1996.葡萄采前喷钙和IAA对果实生理生化及耐贮性的影响.西南农业学报,(3):110~115
    潘永贵,谢江辉.2009.现代果蔬采后生理.北京:化学工业出版社:120~123
    庞学群,陈燕妮,黄雪梅,汪跃华,胡位荣,张昭其.2008.冷害导致砂糖橘果实品质劣变.园艺学报,35(4):509~514
    乔勇进,冯双庆,李丽萍,张绍铃,刘招龙.2005.多胺处理对黄瓜冷害及品质的影响.吉林农业大学学报,27(1):55~58
    乔勇进,孙蕾,房用,周绪宝.2003.多胺在果蔬冷藏中生理效应和作用机制.经济林研究.21(1):14~17
    曲凌慧,林志强,车永梅,谢鹏,刘新.2009.三个葡萄品种叶片中激素变化与抗寒性关系的研究.北方园艺,(6):1~5
    任小林.1995.亚精胺对李果实乙烯产生与呼吸速率的影响.植物生理学通讯,31(3):186
    任亚梅.2009.猕猴桃果实叶绿素代谢及生理特性研究.[博士学位论文].杨凌:西北农林科技大学
    芮怀瑾,尚海涛,汪开拓,金鹏,唐双双,曹士峰,郑永华.2009.热处理对冷藏枇杷果实活性氧代谢和木质化的影响.食品科学,30:304~308
    生吉萍,申琳,罗云波.1999.果蔬成熟和衰老中的重要酶-脂氧合酶.果树科学,16(1):72~77
    田红炎,祝庆刚,饶景萍.2011.采前二氧化氯处理对‘海沃德’猕猴桃的防腐保鲜效果.植物生理学报,47(12):1167~1172
    沈成国.2001.植物衰老生理与分子生物学.北京:中国农业出版社:10~18
    孙芳娟,韩明玉,赵彩萍.2009.不同采收成熟度油桃贮藏效果及果肉细胞超微结构观察.果树学报,26(4):450~455
    孙兆军.2012.猕猴桃成为陕西省水果中收益最高产业.中国果业信息,29(1):54
    谭兴和.2004.冷热处理降低萘李冷害的机理研究[博士学位论文].长沙:湖南农业大学
    唐津忠,鲁晓翔.2002.玉米醇溶蛋白保鲜猕猴桃研究.粮油与油脂,(3):6~7
    唐燕,杜光源,马书尚,张继澍.2008.1-甲基环丙烯对猕猴桃贮藏品质和蛋白质组分的影响.西北农林科技大学学报(自然科学版),36(9):151~155
    王锋,谭兴和,甘霖,吴永尧,王若仲,李清明.2006.冷冲击处理对萘李内源激素含量及蛋白质变化的影响.食品科学,21(1):71~74
    王慧,张艳梅,王大鹏,刘达玉,张正周,秦文.2013.热激处理对青椒耐冷性及抗氧化体系的影响.食品科学,34(3):312~316
    王勇,陆旺金,张昭其,谢会.2003.ABA和腐胺处理减轻香蕉果实贮藏冷害.植物生理与分子生物学学报,(29):549~554
    王贵禧,韩雅珊,于梁,1994a.猕猴桃果实乙烯代谢的研究.北京农业大学学报,20(4):408~412
    王贵禧,韩雅珊,于梁.1994b.猕猴桃总淀粉酶活性与果实转化的关系.园艺学报.21(4):329~333
    王贵禧,王友升,梁丽.2005.不同贮藏温度模式下大久保桃果实冷害及其品质劣变研究.林业科学研究,18(2):114~119
    王洪春.1980.植物膜结构功能.植物生理通讯.20:80~84
    王丽萍,王鑫,邹春蕾.2008.低温弱光胁迫下辣椒内源激素含量的变化.辽宁农业科学,(2):24~26
    王仁才,谭兴和,吕长平.2000.猕猴桃不同品系耐贮性与采后生理生化变化.湖南农业大学学报,26(1):46~49
    王三根.2000.细胞分裂素在植物抗逆和延衰中的作用.植物学通报,17(2):121~126
    王善广,张华云,郭埋.2000.生物膜与果树抗寒性.天津农业科学,6(1):37~40
    王绍华,杨建东,段春芳,高俊燕,杨世品,李进学,张永祥,岳建强.2013.猕猴桃果实采后成熟生理与保鲜技术研究进展.中国农学通报,29(10):102~107
    王晓云,邹琦.2002.多胺与植物衰老关系研究进展.植物学通报,18(1):11~20
    王阳光,茅林春.2001.热处理对桃果实的酶活性变化及膜脂肪酸的影响.食品科学,22(4):72~74
    王玉萍,饶景萍,杨青珍,李萌,索江涛,赵海亮.2013.猕猴桃3个品种果实耐冷性差异研究.园艺学报,40(2):341~349
    魏云潇,王兰菊,胡青霞.2006.多胺与果蔬采后冷害及衰老的关系.安徽农业科学,34(16):4093~4094
    吴彬彬,饶景萍,李百云,赖勤毅,张海燕.2008.采收期对猕猴桃果实品质及其耐贮性的影响.西北植物学报,28(4):0788~0792
    吴珍龄,胡国权,王康.1998.激动素(KT)对冷害稻苗的保护作用研究.西南农业大学学报,20(4):351~354
    夏向东,于梁,赵瑞平.2001.苦瓜适宜贮藏温度的研究.食品科学,22(8):77~79
    夏源苑,饶景萍,辛付存.2010.1-MCP处理对‘红阳’和‘徐香’猕猴桃保鲜效果的影响.北方园艺,(24):180~183
    熊兴淼,饶景萍,戴思琴,方其帜.2006.冷激处理对油桃贮藏品质和抗氧化酶活性的影响.西北植物学报,26(3):473~477
    闫师杰,梁丽雅,陈计峦,李晓丹,胡小松.2010.降温方法对不同采收期鸭梨采后果心褐变和膜脂组分的影响.农业工程学报,26(8):356~362
    杨德兴,戴京晶,庞向宇,蔡群香,王兰菊.1991.采后猕猴桃果实乙烯产生的变化及其与衰老的关系.园艺学报,18(4):313~317
    杨途熙,魏安智,郑元,杨恒,杨向娜,张睿.2007.高效液相色谱法同时分离测定仁用杏花芽中8种植物激素.分析化学研究简报,35(9):1359-1361.
    叶昕,李昆同.2011.‘红阳’猕猴桃采收成熟度及1-MCP对果实保鲜的效果.四川农业大学学报,29(3):374~377
    尹尚军,祝渊.2001.猕猴桃冷藏过程中成熟特性及贮藏特性的研究.浙江万里学院学报,14(2):47~50
    俞明光.1999.猕猴桃果实生理及其保鲜技术.江西林业科技,1:11~14
    张创峰,朱艳丽,刘淑兰,段眉会,阎晓琳,王彩盈.2012.近几年华优猕猴桃在栽培发展中存在的问题和对策.中国果菜,(5):7~8
    张海燕,饶景萍,戴斯琴,王婷,吴彬彬,刘丽丽.2007.外源腐胺对油桃采后生理及与其相关酶活性的影响.植物生理学通讯,43(6):1061~1064
    张海燕,饶景萍,郭敏.2008.外源腐胺对油桃贮藏冷害的影响.西北农林科技大学学报(自然科学版),36(7):40~44
    张俊巧.2007.果蔬低温保鲜低温伤害综述.广西园艺,18(5):71~73
    张四奇.2007.枇杷果实低温冷害机理及热处理对减轻冷害效应的研究.[硕士学位论文].厦门:集美大学
    张银志,孙秀兰,刘兴华.2003,低温胁迫和变温处理对李子生理特性的影响,食品科学,24(2):134~38
    张宇,饶景萍,孙允静,李珊珊.2010.1-甲基环丙烯对甜柿贮藏中冷害的控制作用.园艺学报,37(4):547~552
    张昭其,李雪萍,洪汉君.2000.外源腐胺减轻芒果冷害的研究.福建农业学报,15(2):32~36
    赵文恩,韩雅珊,乔旭光.1999.类胡萝卜素清除活性氧自由基的机理.化学通报,(4):25~27
    赵迎丽,李建华,施俊凤,张晓宇,王亮,王华瑞.2009.缓慢降温对石榴果实冷害发生及生理变化的影响.中国农学通报,25(18):102~105
    赵迎丽,王春生,郝利平.2003.青椒果实低温贮藏及冷害生理的研究.山西农业大学学报,23(2):129~132
    赵颖颖,陈京京,金鹏,袁若皙,李会会,郑永华.2012.低温预贮对冷藏桃果实冷害及能量水平的影响.食品科学,33(4):276~281
    赵云峰,郑瑞生.2010.冷害对茄子果实贮藏品质的影响.食品科学31(10):321~325
    郑永华,李三玉,席玙芳,苏新国,易云波.2000.多胺与枇杷果实冷害的关系,植物学报,42(8):824~827
    周会玲,饶景萍.2002.几种保鲜方法对秦美称猴桃常温贮藏效果的研究.西北农业学报,11(2):67~70
    周娴,郁志芳,杜传来,王佳红.2004.几种林果低温贮藏的冷害及其调控研究进展.南京林业大学学报(自然科学版),28(3):105~110
    左进华,陈安均,孙爱东,罗云波,朱本忠.2010.番茄果实成熟衰老相关因子研究进展.中国农业科学,43(13):2724~2734
    Achard P, Genschik P.2009. Releasing the brakes of plant growth: how GA3shutdown DELLA proteins. J.Exp. Bot,60:1085~1092.
    Aebi H.1984. Catalase in vitro. Methods Enzymol,105:121~126
    Ahmad P, Jaleel C A, Salem M A, Nabi G, Sharma S.2010. Roles of enzymatic and nonenzymaticantioxidants in plants during abiotic stress. Crit Rev Biotechnol,30:161~175
    Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C.2010. Polyamines: molecules withregulatory functions in plant abiotic stress tolerance. Planta,231:1237~1249
    Alcázar R, Cuevas J C, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio A F, Altabella T.2011. Integration of polyamines in the cold acclimation response. Plant Science,180:31~38
    Ambukol J, Zanol G C, Sekozawa Y, Sugaya S, Gemma H.2013. Reactive oxygen species (ROS)scavenging in hot air preconditioning mediated alleviation of chilling injury in banana fruits. Journalof Agricultural Science,5(1):319~331
    Antunes M D C, Sfakiotakis E M.2002. Chilling induced ethylene biosynthesis in ‘Hayward’ kiwifruitfollowing storage. Scientia Horticulturae,92:29~39
    Antunes M D C, Sfakiotakis E M.2008. Changes in fatty acid composition and electrolyte leakage of‘Hayward’ kiwifruit during storage at different temperatures. Food Chem,110:891~896
    Ariel R V, Gustavo A M, Alicia R C, Pedro M C.2006. Effect of heat treatment on strawberry fruit damageand oxidative metabolism during storage. Postharvest Biol.Technol,40:116~122
    Aurelio B G, Misael V G, José C C, Armando C L, José A V.2010. Effect of gradual cooling storage onchilling injury and phenylalanine ammonialyase activity in tomato fruit. Journal of Food Biochemistry,34:295~307
    Aghdam M S, Asghari M, Khorsandi O, Mohayeji M.2012a. Alleviation of postharvest chilling injury oftomato fruit by salicylic acid treatment. J Food Sci Technol,1:1~16
    Aghdam M S, Asghari M, Moradbeygi H, Mohammadkhani N, Mohayeji M, Rezapour-Fard J.2012b.Effect of postharvest salicylic acid treatment on reducing chilling injury in tomato fruit. Rom.Biotechnol. Lett,17:7466~7473
    Aghdam M S.2013a. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. JFood Sci Technol,50(5):1029~1033
    Aghdam M S, Bodbodak S.2013b. Physiological and biochemical mechanisms regulating chillingtolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. ScientiaHorticulturae,156:73~85
    Aghdam M S, Mohammadkhani N.2013c. Enhancement of chilling stress tolerance of tomato fruit bypostharvest brassinolide treatment. Food Bioprocess Technol.(DOI10.1007/s11947-013-1165-x)
    Barman K, Asrey R, Pal R K.2011. Putrescine and carnauba wax pretreatments alleviate chilling injury,enhance shelf life and preserve pomegranate fruit quality during cold storage. Scientia Horticulturae,130:795~800
    Bassal M, E-Hamahmy M.2011. Hot water dip and preconditioning treatments to reduce chilling injuryand maintain postharvest quality of navel and valencia oranges during cold quarantine. PostharvestBiology and Technology,60:186~191
    Bauchot A D, Hallett I C, Redgwell R J, Lallu N.1999. Cell wall properties of kiwifruit affected by lowtemperature breakdown. Postharv Biol Technol,16:245~255
    Bennett A B.2002. Biochemical and genetic determinants of cell wall disassembly in ripening fruit: ageneral model. Hortscience,37(3):447~449
    Biolatto A, Vazquez D E, Sancho A M, Carduza F J, Pensel N A.2005. Effect of commercial conditioningand cold quarantine storage treatments on fruit quality of ‘Rouge La Toma’ grapefruit (Citrus paradiseMacf.). Postharvest Biology and Technology,35(2):167~172
    Boonsiri K, Ketsa S, Van Doorn W G.2007. Seed browning of hot peppers during low temperature storage.Postharv Biol Technol,45:358~365
    Bower J P, Cutting J G M, Trruter A B.1990. Container atmosphere as influencing some physiologicalbrowing mechanisms in stored fuerte avocados. Aeta Hortic,269:315~321
    Bregoli A M, Ziosi V, Biondi S, Claudio B, Costa G, Torrigiani P.2006. A comparison between intact fruitand fruit explants to study the effect of polyamines and aminoethoxyvinylglycine (AVG) on fruitripening in peach and nectarine (Prunus persica L. Batch). Postharvest Biology and Technology,42:31~40
    Burdon J, Lallu N, Francis K, Boldingh H.2007. The susceptibility of kiwifruit to low temperaturebreakdown is associated with pre-harvest temperatures and at-harvest soluble solids content.Postharvest Biology and Technology,43:283~290
    Burdon J, Lallu N, Pidakala P, Barnett A.2013. Soluble solids accumulation and postharvest performanceof ‘Hayward’ kiwifruit. Postharvest Biology and Technology,80:1~8
    Cai C, Xu C J, Shan L L, Li X, Zhou C H, Zhang W S, Ferguson L, Chen S K.2006. Low temperatureconditioning reduces postharvest chilling injury in loquat fruit. Postharvest Biol.Technol,41:252~259
    Cai Y T, Cao S F, Yang Z F, Zheng Y H.2011. MeJA regulates enzymes involved in ascorbic acid andglutathione metabolism and improves chilling tolerance in loquat fruit. Postharvest Biology andTechnology,59:324~326
    Candan A P, Graell J, Larrigaudière C.2008. Roles of climacteric ethylene in the development of chillinginjury in plums. Postharvest Biology and Technology,47(1):107~112
    Cao S F, Zheng Y H, Wang K T, Jin P, Rui H J.2009. Methyljasmonate reduces chilling injury andenhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem,115:1458~1463
    Cao S F, Hu Z C, Zheng Y H, Lu B H.2010. Synergistic effect of heat treatment and salicylic acid onalleviating internal browning in cold-stored peach fruit. Postharvest Biol. Technol.58:93~97
    Cao S F, Yang Z F, Cai Y T, Zheng YT.2011. Fatty acid composition and antioxidant system in relation tosusceptibility of loquat fruit to chilling injury. Food Chem,127:1777~1783
    Cao S F, Yang Z F, Zheng Y H.2012. Effect of1-methylcyclopene on senescence and quality maintenanceof green bell pepper fruit during storage at20℃. Postharvest Biology and Technology,70:1~6
    Cao S F, Cai Y T, Yang Z F, Joyce D C, Zheng Y H.2014. Effect of MeJA treatment on polyamine, energystatus and anthracnose rot of loquat fruit. Food Chemistry,145:86~89
    Castro-Mercado E, Martinez-Diaz Y, Roman-Tehandon N, Gareia-Pined E.2009. Biochemical analysis ofreactive oxygen species production and antioxidative responses in unripe avocado (Persea amerieanaMill var Hass)fruits in response to wounding. Protoplasma,235:67~76
    Chan H T J.1988. All alleviation of chilling injury in papayas. Hortseience,23:868~870
    Chen B X, Yang H Q.2012.6-benzylaminopurine alleviates chilling injury of postharvest cucumber fruitthrough modulating antioxidant system and energy status. J Sci Food Agric,65~73
    Crisosto C H, Crisosto G M.2001. Understanding consumer acceptance of early harvested ‘Hayward’kiwifruit. Postharvest Biology and Technology,22(3):205~213
    Cutting J G M, Wolstenholme B N.1992. Maturity and water loss effects on avocado (Persea amerieanaMill.) postharvest physiology in cool environments. J.Hortic.Sci.67:569~575
    Daie J, Campbell W F.1981. Response of tomato plants to stressful temperatures increase in abscisic acidconcentrations. Plant Physiology,67(1):26~29
    Dhindsa R S, Dhindsa P P, Thorpe T A.1981. Leaf senescence: Correlated with increased levels ofmembrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase andcatalase. J.Exp.Bot,32:93~101
    Ding Z S, Tian S P, Zheng X L, Zhou Z W, Xu Y.2007. Responses of reactive oxygen metabolism andquality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress.Physiologia Plantarum,130:112~121
    Donadon J R, Durigan J F, Morgado C M A, Santos L O.2012. Cold storage of ‘Hass’ avocado. RevistaBrasileira De Fruitcultura,31(04):981~989
    Dong J F, Yu Q, Lu Li, Xu M J.2012. Effect of yeast saccharide treatment on nitric oxide accumulation andchilling injury in cucumber fruit during cold storage. Postharvest Biology and Technology,68:1~7
    Fan H, Feng S.1995. The correlation of polyamine with CI of peach and pear and the treatments forallevating CI. Proc Intl Symp Posthavest Sci Technol Hort Crops, Beijing, China, Agricul Sci Press:40~43
    Feng Z H, Zhao Y L, Li J H, Yan G Z, Wang L, Wang C S.2009. Effect of spermidine on chillingsensitivity of ‘Okubao’ peach. Transactions of the Chinese Society for Agricultural Machinery,40(12):151~155
    Fukushimaa T, Yamazakia M, Tsugiyama T.2003. Chilling-injury in cucumber fruits.I.Effects of storagetemperature on symptoms and physiological changes. Sci Hortic-Amsterdam,6:185~197
    Fung R, Wang C, Smith D, Gross K C,Tian M.2004. MeSA and MeJA increase steady state transcriptlevels of alternative oxidase and resistancea gainst chilling injury in sweet peppers(Capsicum annuumL). Plant Science,166:71l~719
    Gao H Y, Tao F, Song L L, Chen H J, Chen Y J, Zhou W X, Mao J L, Zheng Y H.2009. Effectsof short-term N2treatment on quality and antioxidant ability of loquat fruit during cold storage.J Sci Food Agric,89:1159~1163
    Gerasopoulos D, Drogoudi D P.2005. Summer-pruning and preharvest calcium chloride sprays affectstorability and low temperature breakdown incidence in kiwifruit. Postharv Biol Technol,36:303~308
    Gerasopoulos D, Chlioumis G, Sfakiotakis E.2006. Non-freezing temperatures below zero induce lowtemperature breakdown of kiwifruit at harvest. J Sci Food Agric,86:886~890
    Given N K, Venis M A, Grierson D.1988. Hormonal regulation of ripening in the strawberry, anon-climacteric fruit. Planta,174:402~406
    González-Aguilar G A, Gayosso L, Cruz R, Fortiz J, Báez R, Wang C Y.2009. Polyamines induced by hotwater treatments reduce chilling injury and decay in pepper fruit. Postharvest Biol Technol,18:19~26
    Grace S C, Logan B A.1996. Acclimation of foliar antioxidant systems to growth irradiance in threebroad-leaved evergreen species. Plant Physiology,112:1631~1640
    Groppa M D, Benavides M P.2008. Polyamines and abiotic stress: Recent advances. Amino Acids,34:35~45
    Gupta K, Dey A, Gupta B.2013. Plant polyamines in abiotic stress responses. Acta Physiol Plant,35:2015~2036
    Guye M G, Vigh L, Wilson J M.1986. Polyamine titre in relation to chilling-sensitivity in phaseolus sp. JExp Bot,37:1036~1043
    Harman J E.1981. Kiwifruit maturity. Orchardist N Z,54:126~130
    Hammerschmidt R, Nuckles E M, Kuc J.1982. Lignification as amechanism for induced systemicresistance in cucumber. Physiol Plant Pathol Physiol,20:61~71
    Hong S J, Lee S K.1996. Changes in endogenous putrescine and the relationship to the ripening of tomatofruits. Journal of Korean Society for Horticultural Science,37:369~373
    Hu Q H, Fang Y, Yang Y T, Ma N, Zhao L Y.2011. Effect of nanocomposite-based packaging onpostharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. FoodResearch International,44(6):1589~1596
    Jawandha S K, Gill M S, Singh N, Gill P P S, Singh N.2012. Effect of post-harvest treatments ofputrescine on storage of mango cv. Langra S. African Journal of Agricultural Research,7(48):6432~6436
    Jiang Y M, Chen F.1995. A study on polyamine change and browning of fruit during cold storage of litchi.Posthanest, Biol. Technol,5:245~250
    Jin P, Wang K T, Shang H T, Tong J M, Zheng Y H.2009. Low-temperature conditioning combined withmethyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food andAgriculture,89:1690~1696
    Khana A S, Singh Z, Abbasi N A.2007. Pre-storage putrescine application suppresses ethylene biosynthesisand retards fruit softening during low temperature storage in ‘Angelino’ plum. Postharvest Biologyand Technology,46:36~46
    Kienzle S, Sruamsiri P, Carle R, Sirisakulwat S, Spreer W, Neidhart S.2011. Harvest maturity specificationfor mango fruit (Mangifera indica L.‘Chok Anan’) in regard to long supply chains. PostharvestBiology and Technology,61:41~55
    Kim T E, Kim S K, Han T J, Lee J S, Chang S C.2002. ABA and polyamines act independently in primaryleaves of cold-stressed tomato (Lycopersicon esculentum). Physiol.Plant,115:370~376
    Kondo S, Ponrod W, Kanlayanarat S, Hirai N.2002. Abscisic acid metabolism during development andmaturation of mangosteens. J. Am. Soc. Hort. Sci,127:737~741.
    Kondo S, Ponrod W, Kanlayanarat S, Hirai N.2003. Relationship between ABA and chilling injury inmangosteen fruit treated with spermine. Plant Growth Regul,39:124~199
    Kondo S, Fiebig A, Okawa K, Ohara H, Kowitcharoen L, Nimitkeatkai H, Kittikorn M, Kim M.2011.Jasmonic acid, polyamine, and antioxidant levels in apple seedling as affected by Ultraviolet-Cirradiation. Plant Growth Regul,64:83~89
    Koo A J K, Gao X, Jones A D, Howa G A.2009. A rapid wound signal activates the systemic synthesis ofbioactive jasmonates in arabidopsis. Plant J,59:974~986.
    Kosiyaehinda S, Young R E.1976. Chilling sensitivity of avoeado fruit at different stages of the respiratoryclimacteric. J.Am.Soe.Hort.Sci,101:665~667
    Koutsoflini A, Gerasopoulos D, Vasilakakis M.2013. The effects of fruit maturation, delayed storage andethylene treatment on the incidence of low temperature breakdown of ‘Hayward’ kiwifruit. J Sci FoodAgric,93:410~414
    Kramer G F, Wang C Y.1989. Reduction of chilling injury in zucchini squash by temperature management.Hortseienee,24:995~996
    Kramer G F, Wang CY, Conway W S.1991. Inhibition of softening by polya-mines application in ‘Goldendelicious’ and ‘Mclntosh’ apples. J Amer Soc Hon Sci,116(5):813~817
    Lafuente M T, Zacarias L, Martínez-Téllez M A, Sanchez-Ballesta M T, Granell A.2003. Phenylalanineammonialyase and ethylene in relation to chilling injury as affected by fruit age in citrus. PostharvestBiology and Technology,29:308~317
    Lurie S, Sabehat A.1997a. Prestorage temperature manipulations to reduce chilling injury in tomatoes.Postharvest Biol.Technol,11:57~62
    Lurie S, Laamim M, Lapsker Z, Fallik E.1997b. Heat treatments to decrease chilling injury in tomato fruiteffects on lipids, pericarp lesions and fungal growth. Physiologia Plantarum,100(2):297~302
    Lallu N, Webb D J.1997. Physiological and economic analysis of precooling kiwifruit. Acta Hort,444:691~697
    Lee S H, Ahn S J, Im Y J, Cho K, Chung G C, Cho B H.2005. Differential impact of low temperature onfatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. BiochemBiophys Res Commun,330:1194~1198
    Lim B S, Kim J K, Gross K C, Hwang Y S, Kim J H.2005. Gradual postharvest cooling reducesblackening disorder in 'Niitaka' pear (Pyrus pyrifolia) fruits. Journal of the Korean Society forHorticultural Science,46:311~316
    Liu D J, Sui G L, He Y Z, Liu J, Qin W.2013. Effect of ice-temperature and spermidine on chillingsensitivity of pepper. Food and Nutrition Sciences,4:156~162
    Luengwilai K, Beckles D M, Saltveit M E.2012. Chilling-injury of harvested tomato (Solanumlycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pretreatments. Postharvest Biologyand Technology,63:123~128
    Lukatkin A S, Brazaityt A R, Bobinas E, Duchovskis P.2012. Chilling injury in chilling-sensitive plants:a review. Agriculture,99(2):111~124
    Luo Z S, Chen C, Xie J.2011. Effect of salicylic acid treatment on alleviating postharvest chilling injury of‘Qingnai’ plum fruit. Postharvest Biol. Technol,62:115~120
    Luo Z S, Wu X, Xie Y, Chen C.2012. Alleviation of chilling injury and browning of postharvest bambooshoot by salicylic acid treatment. Food Chem,131:456~461
    Lyons J M, Chapman E A.1979. Low temperature stress in crop plants: the role of the membrane.NewYork, Academic Press:17~32
    Ma C H, Ma F W, Li MJ.2007. Comparisons of ascorbic acid contents and activities of metabolism relativeenzymes in apple leaves of various ages. Acta Horticulturae Sinica,34:995~998.
    Mao L, Wang G, Que F.2007a. Application of1-methylcyclopropene prior to cutting reduces woundresponses and maintains quality in cut kiwifruit. Journal of Food Engineering,78(1):361~365
    Mao L, Pang H, Wang, G.2007b. Phospholipase D and lipoxygenase activity of cucumber fruit in responseto chilling stress. Postharvest Biol. Technol,44:42~47
    Martinez-Romero D, Serrano M, Carbonell A, Burgos L, Riquelme F, Valero D.2002. Effects ofpostharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot.J.Food Sci,67:1706~1712
    Martnez-Tellez M A, Ramos-Clamont M G, Gardea A A, Vargas-Arispuro I.2002. Effect of infiltratedpolyamines on polygalaturonase activity and chilling injury responses in zucchini squash (CucurbitapepoL). Biochem.Biophys.Res.Commun,295:98~101
    Maul P, McCollum G, Guy C L, Porat R.2011. Temperature conditioning alters transcript abundance ofgenes related to chilling stress in‘Marsh’grapefruit flavedo. Postharvest Biology and Technology,60:177~185
    Mcdonald B, Harman J E.1982. Controlled atmosphere storage of kiwifruit. I. Effect on fruit firmness andstorage life. Scientia Horticulturae,17(2):113~123
    Mcdonald R E, McCollum T G, Nordby H E.1993. Temperature conditioning and surface treatments ofgrapefruit affect expression of chilling injury and gas diffusion. J Amer Soc Hort Sci,118:490~496
    MeCollum T G, MeCollum R E.1991. Temperature conditioning inhibits chilling injury in summersquashfruit. Proc. Fia State hort Soc,104:99~101
    Minas I S, Tanou G, Belghazi M, Job D, Manganaris G A, Molassiotis A, Vasilakakis M.2012.Physiological and proteomic approaches to address the active role of ozone in kiwifruit postharvestripening. Journal of Experimental Botany,63(7):2449~2464
    Mirdehghan M, Rahemi S, Castillo D, Martnez-Romero, Mara Serrano, Valero D.2007a. Pre-storageapplication of polyamines by pressure or immersion improves shelf-life of pomegranate stored atchilling temperature by increasing endogenous polyamine levels. Postharvest Biology and Technology,44:26~33
    Mirdehghan S H, Rahemi M, Martínez-Romero D, Guillén F, Valverde J M, Zapata P J.2007b.Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines.Postharvest Biology and Technology,44:19~25
    Mohammed M, Brecht J K.2002. Reduction of chilling injury in ‘Tommy Atkins’mangoes during ripening.Scientia Horticulture,95:297~308
    Mworia E G, Yoshikawa T, Salikon N, Oda C, Asiche W O, Yokotani N, Abe D, Ushijima K, Nakano R,Kubo Y.2012. Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold’kiwifruit. Journal of Experimental Botany,63(2):963–971
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachchloroplasts. Plant Cell Physiol,22:867~880
    Palou L, Crisosto C H, Gamer D.2003. Effect of continuous exposure to exogenous ethylene during coldstorage on postharvest decay development and quality attributes of stone fruits and table grapes.Postharvest Biology and Technology,27:243~254
    Patterson B D, Macrae E A, Ferguson I B.1984. Estimation of hydrogen peroxide in plant extracts usingtitanium(IV). Anal Biochem,139:487~492
    Peirez-Vicente A, Martinez-Romero D, Carbonell A, Serrano M, Riquelme F, Guillein F, Valero D.2002.Role of polyamines in extending shelf life and the reduction of mechanical damage during plum(Prunus salicina Lindl.)storage. Postharvest Biology and Technology,25:25~32
    Pongprasert N, Sekozawa Y, Sugaya S, Gemma H.2011. A novel postharvest UV-C treatment to reducechilling injury (membrane damage,browning and chlorophyll degradation) in banana peel. ScientiaHorticulturae,130(1):73~77
    Promyou S, Kesta S, Van D W.2008. Hot water treatments delay cold-induced banana peel blackening.Postharv Biol Technol,48:132~138
    Promyou S, Supapvanich S, Boodkord B, Thangapiradeekajorn M.2012. Alleviation of chilling injury injujube fruit (Ziziphus jujuba Mill) by dipping in35℃water.Kasetsart Journal: Natural Science,46:107~119
    Pusittigul I, Siriphanich J.2008. Relationship between calcium content and internal browning of pineapples.Agric. Sci. J,39(Special):176~179
    Pusittigul I, Kondo S, Siriphanich J.2012. Internal browning of pineapple (Ananas comosus L.) fruit andendogenous concentrations of abscisic acid and gibberellins during low temperature storage. SciHortic-Amsterdam,146:45~51
    Qian C L, He Z P, Zhao Y Y, Mi H B, Chen X H, Mao L C.2012. Maturity-dependent chilling toleranceregulated by the antioxidative capacity in postharvest cucumber (Cucumis sativus L.) fruits. J SciFood Agric,3:626~633
    Rao T V R, Gol N B, Shah K K.2011. Effect of postharvest treatments and storage temperatures on thequality and shelf life of sweet pepper (Capsicum annum L). Sci. Hortic,132:18~26
    Ritenour M A, Crisosto C H, Garner D T, Cheng G W, Zoffoli J P.1999. Temperature, length of coldstorage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit. PostharvestBiology and Technology,15:107~115
    Rui H J, Cao S F, Shang H T, Jin P, Wang K T, Zheng Y H.2010. Effects of heat treatment on internalbrowning and membrane fatty acid in loquat fruit in response to chilling stress. J Sci Food Agric,90:1557~1561
    Saba M K, Arzani K, Barzegar M.2012. Postharvest polyamine application alleviates chilling injury andaffects apricot storage ability. Journal of Agricultural and Food Chemistry,60:8947~8953
    Sala J M.1998. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits.Postharvest Biol Technol,13:255~261
    Scaramagli S, Biondi S, Capitani F.1999. Polyamine conjugate levels and ethylene biosynthesis: inverserelationship with vegetative bud formation in tobacco thin layers. Plant Physiology,105:367~376
    Schwartz C E, Wang X, Stevenson R E, Pegg A E.2011. Spermine synthase deficiency resulting inX-linked intellectual disability (Snyder-Robinson syndrome). Methods Mol Biol,720:437~445
    Sevillano L, Sanchez-Ballesta M T, Romojaro F, Flores F B.2009. Physiological, hormonal and molecularmechanisms regulating chilling injury in horticultural species. Postharvest technologies applied toreduce its impact. J Sci Food Agric,89:555~573
    Siriphanich J, Chanjirakul K, Nukulthornprakit O.2005. Chilling injury symptom, lipid peroxidation,electrolyte leakage and antioxidant capacity in queen and smooth cayenne pineapple. Symposium onthe Australasian Postharvest Horticulture Conference. Royal Lakeside Novote, Rotorua, New Zealand.
    Sfakiotakis E, Chlioumis G, Gerasopoulos D.2005. Preharvest chilling reduces low temperature breakdownincidence of kiwifruit. Postharvest Biology and Technology,38:169~174
    Shakirova F M, Allagulova C R, Bezrukova M V, Avalbaev A M, Gimalov F R.2009. The role ofendogenous ABA in cold-induced expression of the TADHN dehydrin gene in wheat seedlings. Russ.J. Plant Physiol,56:720~723
    Shen W, Nada K, Tachibana S.2000. Involvement of polyamines in the chilling tolerance of cucumbercultivars. Plant Physiol,124:431~439
    Singh S P, Singh Z.2012. Role of membrane Lipid peroxidation, enzymatic and non-enzymaticantioxidative systems in the development of chilling injury in Japanese plums. Journal of theAmerican Society for Horticultural Science,137(6):473~481.)
    Singh S P, Singh Z.2013a. Controlled and modified atmospheres influence chilling injury, fruit quality andantioxidative system of Japanese plums (Prunussalicina Lindel L). International Journal of FoodScience and Technology,48:363~374
    Singh S P, Singh Z.2013b. Postharvest cold storage-induced oxidative stress in Japanese plums (Prunussalicina Lindl. cv. Amber Jewel) in relation to harvest maturity. Australian Journal of Crop Science,7(3):391~400
    Song L L, Gao H Y, Chen H J, Mao J L, Zhou YJ, Chen W X, Jiang Y M.2009. Effects of short termanoxic treatment on antioxidant ability and membrane integrity of postharvest kiwifruit during storage.Food Chemistry,114:1216~1221
    Sun H P, Li L, Wang X, Wu S, Wang X F.2011. Ascorbate–glutathione cycle of mitochondria inosmoprimed soybean cotyledons in response to imbibitional chilling injury. Journal of PlantPhysiology,168:226~232
    Sun J H, Chen J Y, Kuang J F, Chen W X, Lu W J.2010. Expression of sHSP genes as affected by heatshock and cold acclimation in relation to chilling tolerance in plum fruit. Postharvest Biology andTechnology,55:91~96
    Sevillano L, Sanchez-Ballesta M T, Romojaro F, Flores F B.2009. Physiological, hormonal and molecularmechanisms regulating chilling injury in horticultural species. Postharvest technologies applied toreduce its impact. J Sci Food Agric,89:555~573.
    Thomas S G, Hedden P.2006. Gibberellins metabolism and signal transduction. In: Hedden, P., Thomas,S.G.(Eds.), Plant Hormone Signaling. Blackwell Publishing Ltd, Oxford:147~184.
    Tony H, Chen H, Gusta L A.1983. Abscisic acid induced freezing resistance in cultured plant cells. PlantPhysiol,73:71~75
    Torrigiani P, Bregoli A M, Ziosi V, Scaramagli S, Ciriaci T, Rasori A, Biondi S, Costa G.2004. Pre-harvestpolyamine and aminoethoxyvinylglycine (AVG) applications modulate fruit ripening in stark red goldnectarines (Prunus persica L. Batsch). Postharvest Biol. Technol,33:293~308
    Valero D, Lopez-Frías M, Llopis J, Lopez-Jurado M.1990. Influence of dietary fat on the lipid compositionof perirenal adipose tissue in rats. Annals of Nutrition and Metabolism,34:327~332.
    Wang B G, Wang J H, Liang H, Yi J Y, Zhang J J, Lin L, Wu Y, Feng X Y, Cao J K, Jiang W B.2008.Reduced chilling injury in mango fruit by2,4-dichlorophenoxyacetic acid and the antioxidant response.Postharvest Biol Technol,48:172~181
    Wang C Y.1991. Effect of abscisic acid on chilling injury of zucchini squash. J Plant Growth Regul,10:101~105
    Wang C Y.1993. Approaches to reduce chilling injury of fruits and vegetables. Horticulture Review,15:63~95
    Wang G X, Han Y S, Yu L.1995. Study on the activities of stage specific enzyme during softening ofkiwifruit. Acta Bot Sin,37(3):198~203
    Wang G X, Wang Y S, Liang L S.2005. Studies on chilling injury and quality deterioration of ‘Okubao’peach under different storage temperature strategies. Forest Research,18:114~119
    Wang Q, Ding T, Gao L P, Pang J, Yang N.2012. Effect of brassinolide on chilling injury of green bellpepper in storage. Scientia Horticulturae,144:195~200
    Wonsheree T, Kesta S, Doorn W G.2009. The relationship between chilling injury and membrane damagein lemon basil (Ocimum×citriodourum) leaves. Postharv Biol Technol,51:91~96
    Woolf A B, Cox K A, White A, Ferguson I B.2003. Low temperature conditioning treatments reduceexternal chilling injury of ‘Hass’ avocados. Postharvest Biol Technol,28:113~122
    Woolf A B, Requejo-Tapia C, Cox K A, Jackman R C, Gunson A, Arpaia M L.2005.1-MCP reducesphysiological storage disorders of ‘Hass’ avocados. Postharvest Biol Technol,35:43~60
    Wu J, Wu J J, Liang J, Chen J Q, Cai L Q.2012. Effects of exogenous NO on ASA-GSH circulationmetabolism in young loquat fruit mitochondria under low temperature stress. Pak. J. Bot,44(3):847~851
    Xu C A, Jin Z Y, Yang S Q.2005. Polyamines induced by heat treatment before cold-storage reducemealiness and decay in peach fruit. Journal of Horticultural Science&Biotechnology,5:557~560
    Yang A P, Cao S F, Yang Z F, Cai Y T, Zheng Y H.2011a. γ-Aminobutyric acid treatment reduceschilling injury and activates the defence response of peach fruit. Food Chemistry,129(4):1619~1622
    Yang H Q, Wu FH, Cheng J Y.2011b. Reduced chilling injury in cucumber by nitric oxide and theantioxidant response. Food Chem,127:1237~1242
    Yang Z F, Cao S F, Zheng Y H, Jiang Y M.2012. Combined salicyclic acid and ultrasound treatments forreducing the chilling injury on peach fruit. J. Agric. Food Chem,60:1209~1212
    Yin X R, Chen K S, Allan A C, Wu R M, Zhang B, Lallu N, Ferguson I B.2008. Ethylene-inducedmodulation of genes associated with the ethylene signaling pathway in ripening kiwifruit. Journal ofExperimental Botany,59(8):2097~2108
    Zhang C F, Tian S P.2010. Peach fruit acquired tolerance to low temperature stress by accumulation oflinolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chemistry,120:864~872
    Zhang F, Wan X Q, Zhang H Q, Liu G L, Jiang M Y, Pan Y Z, Chen Q B.2012a. The effect of cold stresson endogenous hormones and CBF1homolog in four contrasting bamboo species. J. Forest Res,17:72~78
    Zhang R Q, Yang J, Jin X L, Tang C F, Liu H L.2011a. Dynamic activity of endogenous plant hormones inzelkova schneideriana during the growth of seedlings. Nonwood Forest Research,29(4):1~5
    Zhang W P, Jiang B, Li W G, Song H, Yu Y S, Chen J F.2009. Polyamines enhance chilling tolerance ofcucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae,122:200~208
    Zhang X H, Lin S, Li F J, Meng D M, Sheng J P.2011b. Methyl salicylate-induced arginine catabolism isassociated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance incherry tomato fruit. J. Agric. Food Chem,59:9351~9357
    Zhang X H, Sheng J P, Li F J, Meng D M, Shen L.2012b. Methyl jasmonate alters arginine catabolism andimproves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biol. Technol,64:160~167
    Zhang X H, Shen L, Li F J, Meng D M, Sheng J P.2013. Hot air treatment-induced arginine catabolism isassociated with elevated polyamines and proline levels and alleviates chilling injury in postharvesttomato fruit. J Sci Food Agric,93:3245~3251
    Zhang Y, Luo Y, Hou Y X, Jiang H, Chen Q, Tang H R.2008. Chilling acclimation induced changes in thedistribution of H2O2and antoxidant system of strawberry leaves. Agriculture journal,3(4):286~291
    Zhang Z K, Zhang Y, Huber D J, Rao J P, Sun Y J, Li S S.2010. Changes in prooxidant and antioxidantenzymes and reduction of chilling injury symptoms during low-temperature storage of ‘Fuyu’persimmon treated with1-methylcyclopropene. HortScience,45:1713~1718.
    Zhao Y Y, Chen J J, Jin P, Yuan R X, Li H H, Zheng Y H.2012. Effect of low temperature conditioning onchilling injury and energy status in cold-stored peach fruit. Food Science,33:276~281
    Zhao Z L, Jiang W B, Cao J K, Zhao Y M, Gu Y H.2006. Effect of cold-shock treatment on chilling injuryin mango (Mangifera indicaL. cv.‘Wacheng’) fruit. J Sci Food Agric,86:2458~2462
    Zhao Z L, Cao J K, Jiang W B, Gu Y H, Zhao Y M.2009. Maturity-related chilling tolerance in mangofruit and the antioxidant capacity involved. J Sci Food Agric,89:304~309
    Zheng Y H, Raymond W M F, Wang S Y, Wang C Y.2008. Transcript levels of antioxidative genes andoxygen radical scavenging enzyme activities in chilled zucchini squash in response tosuperatmospheric oxygen. Postharvest Biol Technol,47:151~158
    Zhou Z, Jiang W, Cao J, Zhou Y, Gu Y.2006. Effect of cold-shock treatment on chilling injury in mango(Mangifera indica L. cv isquo wachengrsquo) fruit. J. Sci Food Agric,86:2458~2462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700