用户名: 密码: 验证码:
绿洲典型间作模式的土壤呼吸特征及其成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间作种植是河西绿洲灌区一种常见的提高农田产出的农作模式,其多样化配置是农业可持续发展的基础。然而,间作系统在干旱绿洲灌区是否能降低农田碳排放还有待研究。通常情况下,高产出的农作模式也伴随着高CO_2排出,间作系统对土壤呼吸及碳排放的调控作用亦鲜见报道。
     为探索间作系统下产量,土壤呼吸和环境因子的动态及其与因子间的相互关系,在甘肃农业大学武威试验站(37o96′N,102o64′E)进行了三年的定位试验(2009,2010和2011年)。试验共设置九个处理,其中四个间作处理,分别是玉米–小麦间作,玉米–豌豆间作,玉米–油菜间作和小麦–大豆间作,及五个单作处理,分别是单作油菜,单作小麦,单作豌豆,单作大豆和单作玉米。本试验的主要结果如下:
     1.作物生长(干物质累积)是影响农田土壤呼吸的主要因子,当作物干物质开始累积时,土壤呼吸随之增加,到开花期(早播作物)或吐丝期(晚播作物),干物质累积速率最大时,土壤呼吸速率亦达最大,随后开始降低。将土壤呼吸和干物质累积的二次方程(y=a×x_2+b×x+c)与土壤呼吸和土壤温度的指数方程(y=a×ek×t)结合建立的复合模型可以较好地模拟农田土壤呼吸变异,干物质累积与土壤温度可以解释土壤呼吸38%到58%的变异。玉米间作系统,如玉米–小麦(0.52g CO~(-2)2mhr~(-1)),玉米–豌豆(0.51g CO_22m–hr~(-1))和玉米–油菜(0.44g CO~(-2)2mhr~(-1))较单作玉米(0.74g CO_2m~(-2)hr~(-1))显著降低了土壤呼吸季变化的最大值。单作玉米的碳排放量最高(4,233kg C ha~(-1)),单作油菜的最低(1,260kg C ha~(-1))。玉米间作系统(1,701kg C ha~(-1)到3,108kg C ha~(-1))较单作玉米或单作小麦显著降低了碳排放量。玉米是单位水碳排放最高的作物,豌豆和小麦次之,油菜和大豆最低。玉米间作系统较单作玉米减少了42%(2009),52%(2010)和45%(2011)的单位水碳排放量。
     2.单作种植中,玉米的产量最高,为11,724kg ha~(-1),小麦次之,为6,467kg ha~(-1),豌豆最小,为2,830kg ha~(-1)。单作玉米的产量由2009年的12,677kg ha~(-1)降至2011年的10,624kg ha~(-1),减少了19%。玉米–小麦间作系统中,玉米产量由2009年的7,404kg ha~(-1)升至2011年8,123kg ha~(-1),提高了10%。玉米间作系统表现出较高的水分利用效率(15.9~(-1)9.8kg ha~(-1)mm~(-1))和土地当量比(1.16~(-1).48),表明间作系统存在高效水分利用及增产的优势。
     3.豌豆与玉米共生时,土壤水分移动势最小,表明豌豆带从玉米带汲取的水分最小。小麦是最强的水分竞争者。小麦与玉米或大豆共生时,可从玉米带或大豆带中竞争11~(-2)0mm的土壤水分。豌豆由于根系分布较浅,与玉米带不存在水分竞争关系,为玉米后期恢复生长提供较多的土壤水分。小麦带在收获后通过休闲期雨水或灌溉补给,涵养最大量的土壤水分,为玉米带补给19~(-2)1mm的土壤水分。
     4.间作系统早播作物干物质最大累积速率(57g m~(-2)d~(-1))高于单作作物的(51g m~(-2)d~(-1)),最大速率出现在播种后72到77天;间作系统晚播作物的最大干物质累积速率低于单作作物,在31.6到44.9g m~(-2)d~(-1)之间,较单作玉米降低了30%到43%。单作玉米干物质最大累积速率出现在播种后80到96天,间作玉米的最大累积速率出现的时间较单作玉米推迟了6到10天。玉米–豌豆间作系统中,玉米干物质最大累积速率为43g m~(-2)d~(-1),分别较单作玉米,玉米–油菜间作和玉米–小麦间作系统中的玉米,提高了15%,21%和40%,表明玉米–豌豆间作系统对间作玉米的干物质累积是有利的。
Intercropping systems have been shown to boost crop productivity and provide potentialfor biodiversity in development of sustainable agriculture. Main concern is that higher yieldingsystems usually are associated with higher soil respiration while soil respiratory responses tocropping systems are limited to know on arid land. Field experiments were conducted atWuwei Experimental Station of Gansu Agricultural University, China (37o96′N,102o64′E)in2009,2010, and2011. Four intercropping systems, including maize (Zea mays)–wheat(Triticum aestivum), maize–rape (Brassia campestris), maize–pea (Pisum sativum) andsoybean (Glycine max)–wheat intercropping, along with the respective five sole crops, weredesigned in a randomized, complete block design with three replicates to investigate the effectof intercropping systems on yield–and environment–related factors, and the contributions ofcontrolling factors to those related factors. Main results are summarized as follows:
     (1) Crop growth (dry matter accumulation) is a major factor controlling soil respirationfarmland. With the increase of dry matter accumulation, soil respiration rate increased,reached a peak at the early flowering stage for earlier sown crops and at the silking stage formaize, and then declined. A quadratic function for dry matter accumulation combined with anexponential function for soil temperature was fit the measured results, showing thecombination of dry matter and soil temperature accounted for38%to58%of variances insoil respiration. Maize based intercropping such as maize–wheat (0.52g CO~(-2)2mhr~(-1)),maize–rape (0.44g CO_2m~(-2)hr~(-1)) and maize–pea (0.51g CO_2m~(-2)hr~(-1)) intercropping systemssignificantly reduced seasonal maximal soil respiration as compared to sole maize (0.74g CO_2m~(-2)hr~(-1)). Sole maize emitted the highest carbon (4,233kg C ha~(-1)) in each year, whereas solerape released the least amount (1,260kg C ha~(-1)). Intercropping (1,701to3108kg C ha~(-1))significantly reduced carbon emission compared to sole maize or sole wheat. Maize was thegreatest emitter of carbon per unit of water, followed by pea and wheat, whereas rape andsoybean were the least. Maize based intercropping emitted42%,52%, and45%less carbonper unit of water in2009,2010, and2011, respectively, compared to sole maize.
     (2) Maize produced the greatest grain yield at11,724kg ha~(-1), followed by wheataveraging at6,467kg ha~(-1), and pea the lowest at2,830kg ha~(-1). Sole maize had the grain yielddecreased from12,677kg ha~(-1)in2009to10,624kg ha~(-1)in2011, or by19%, whereas themaize in the maize–wheat intercropping had its grain yields increased from7,404kg ha~(-1)in 2009to8,123kg ha~(-1)in2011, or by10%. Although, intercropping consumes more watercompared to sole cropping, maize based intercropping systems had greatest water useefficiency with a land equivalent ratio of1.16to1.48, showing significant advantages in wateruse and yield over the rest of the cropping systems.
     (3) Pea showed least soil water competition with the intercropped maize in the maize–peaintercropping during the co–growth period. Wheat was the greatest competitor for soil water,and competed for11to20mm soil water from neighboring maize or soybean strips inmaize–wheat or soybean–wheat intercropping systems. Pea was a least competitive crop withshallow rooting system. Wheat recharged greatest amount of soil water from wheat harvestthrough maize harvest, having a potential to compensate19to21mm soil water to the maizestrips, which is favorable to the recovery of maize growth in maize–wheat intercropping.Maize based intercropping, especially maize–pea intercropping, is a promising croppingoption in arid areas, as soil water extraction of two species in intercropping can be temporallystratified.
     (4) Intercropping had a co–growth period of50–80d, allowing the two intercroppedspecies to complete their life cycles. Maximum dry matter rate for the earlier sown crops in themaize based intercropping systems was significantly greater than that for sole earlier sowncrops (57vs.51g m~(-2)d~(-1)) which occurred at around72to77days after sowing (DAS),whereas the maximum dry matter rate for the later sown crops in the maize basedintercropping systems was between31.6to44.9g m~(-2)d~(-1), or30to43%lower than that ofsole later sown crops. The time to reach maximum dry matter was80–96DAS for sole maize,and the corresponding time for the intercropped maize was delayed by6to10days. Amongmaize based intercropping, maximum accumulation rate of maize in maize–pea intercroppingsystem was43g m~(-2)d~(-1), or15%,21%and40%higher than those of sole maize, maize inmaize–rape and maize in maize–wheat intercropping systems, respectively.
引文
1. Agegnehu, G., Ghizaw, A., Sinebo, W.,2008. Yield potential and land–use efficiency of wheat and faba bean mixedintercropping. Agron. Sustain. Dev.28,257–263.
    2. Amundason, R.,2001.Carbon budget in soils. Annu. Rev. Earth Planet. Sci.29,355–361.
    3. Anderson, L.S., Sinclair, F.L.,1993. Ecological interactions in agro–forestry systems. Agrofor. Abstr.6,57–91.
    4. Anderson, R.L.,2005. Are some crops synergistic to following crops? Agron. J.97,7–10.
    5. Angelika, N., Knut, S., Rolf, R.,2007. Effects of crop density and tillage system on grain yield and N uptake from soiland atmosphere of sole and intercropped pea and oat. Field Crops Res.100,285–293.
    6. Asgedom, H., Kebreab, E.,2011. Beneficial management practices and mitigation of greenhouse gas emissions in theagriculture of the Canadian Prairie: a review. Agron. Sustain. Dev.31,433–451.
    7. Atkin, O.K., Edwards, E.J., Loveys, B.R.,2000. Response of root respiration to changes in temperature and its relevanceto global warming. New Phytol.147,141–154.
    8. Atkin, O.K., Tjoelker, M.G.,2003. Thermal acclimation and the dynamic response of plant respiration to temperature.Trends Plant Sci.8,343–351.
    9. Awal, M.A., Koshi, H. Ikeda, T.,2006. Radiation interception and use by maize/peanut intercrop canopy. Agric. For.Meteorol.139,74–83.
    10. Badrt, D.V., Vivanco, J.M.,2009. Regulation and function of root exudates. Plant Cell Environ.32,666681.
    11. Beedy, T.L., Snapp, S.S., Akinnifesi, F.K., Sileshi, G.W.,2010. Impact of Gliricidia sepium intercropping on soilorganic matter fractions in maize based cropping system. Agric. Ecosyst. Environ.138,139–146.
    12. Benbi, D.K., Brar, K., Toor, A.S., Singh, P., Singh, H.,2012. Soil carbon pools under poplar based agroforestry,rice–wheat, and maize–wheat cropping systems in semi–arid India. Nutr. Cycl. Agroecosyst.92,107–118.
    13. Bessou, C., Ferchaud, F., Gabrielle, B., Mary, B.,2011. Biofuels, greenhouse gases and climate change, A review.Agron. Sustain. Dev.31,1–79.
    14. Bijracharya, R.M., Lal, R., Kimble, J.M.,2000. Diurnal and seasonal CO2–C flux from soil as related to erosion phasesin central Ohio. Soil Sci. Soc. Am. J.64,286–293.
    15. Billings, S.A., Richter, D.D., Yarie, J.,1998. Soil carbon dioxide fluxes and profile concentrations in two boreal forests.Can. J. Forest Res.28,1773–1783.
    16. Blaser, B.C., Singer, J.W., Gibson, L.R.,2007. Winter cereal, seeding rate, and intercrop seeding rate effect on redclover yield and quality. Agron. J.99,723–729.
    17. Blum, A.,2009. Effective use of water (EUW) and not water–use efficiency (WUE) is the target of crop yieldimprovement under drought stress. Field Crops Res.112,119–113.
    18. Bolin B.,1977. Change of land biota and their importance for the carbon cycle. Science196,613–615.
    19. Borken, W., Muhs, A., Beese, F.,2002. Application of compost in spruce forests: Effects on soil respiration, basalrespiration and microbial biomass. Forest Ecol. Manag.159,49–58.
    20. Brooker, R.W.,2006. Plant–plant interactions and environmental change. New Phytol.171,271–284.
    21. Buchmann, N.,2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol.Biochem.32,1625–1635.
    22. Buyanovsky, G.A., Wagner, G.H.,1998. Carbon cycling in cultivated land and its global significance. Glob. ChangeBiol.4,131–141.
    23. Caballero, R., Goicoechea, E.L., Hernaiz, P.J.,1995. Forage yields and quality of common vetch and oat sown atvarying seeding ratios and seeding rates of common vetch. Field Crops Res.41,135–140.
    24. Cai, Y., Ding, W.X., Cai, Z.C.,2006. Soil respiration in a maize–soil ecosystem and contribution of rhizosphererespiration. Acta Phytoecologica Sinica,26,4273–4280.
    25. Campbell, C.A., McConkey, B.G., Zentner, R.P., Selles, F., Curtin, D.,1996. Longbterm effects of tillage and croprotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can. J. Soil Sci.76,395–401.
    26. Cao, G.M., Tang, Y.H., Mo, W.H., Wang, Y.S., Li, Y.N., Zhao, X.Q.,2004. Grazing intensity alters soil respiration inan alpine meadow on the Tibetan plateau. Soil Bio. Biochem.36,237–243.
    27. Cassman, K.G.,1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precisionagriculture. PNAS.96,5952–5959.
    28. Chai, Q., Qin, A.Z., Gan, Y.T., Yu, A.Z.,2013. Higher yield and lower C emission by intercropping maize with rape,pea and wheat in arid irrigation areas. Agron. Sustain. Dev.(in press).
    29. Chen, C.R., Condron, L.M., Xu, Z.H., Davis, M.R., Sherlock, R.R.,2006. Root, rhizosphere and root–free respiration insoils under grassland and forest plants. Eur. J. Soil Sci.57,5866
    30. Chen, F.,2002. Agricultural Ecology, Press of China Agricultural University, Beijing, pp.241–263.
    31. Chen, Q.S., Li, L.H., Han, X.G., Yan, Z.D., Wang, Y.F., Zhang, Y., Yuan, Z.Y., Tang, F.,2003. Responses of soilrespiration to temperature in eleven communities in Xilingol Grassland, Inner Mongolia. Acta Phytoecologica Sinica27,441–447.
    32. Chen, S., Li, J., Lu, P., Wang, Y., Yu, Q.,2009. Soil respiration characteristics in winter wheat field in North ChinaPlain. Chinese J. Appl. Ecol.15,1552–1560.
    33. Chen, S.T., Huang, Y., Zheng, X.H.,2005. Nitrous oxide emission from cropland and its driving factors under differentcrop rotations. Scientia Agricultura Sinica38,20532060.
    34. Cirilo, A.G., Andrade, F.H.,1996. Sowing date and kernel weight in maize. Crop Sci.36,325–331.
    35. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J.2000. Acceleration of global warming due tocarbon–cycle feedbacks in a coupled climate model. Nature408,184–187.
    36. Craine, J.M., Wedin, D.A., Chaoin, S.F.,1999. Predominance of eco–physiological controls on soil CO2flux in theMinnesota grassland. Plant Soil207,7786.
    37. Crookston, R.K., Kurle, J.E., Copeland, P.J., Ford, J.H., Lueschen, W.E.,1991. Rotational cropping sequence affectsyield of corn and soybean. Agron. J.83,108–113.
    38. Davidson, E.A., Belk, E., Boone, R.D.,1998. Soil water content and temperature as independent or confound factorscontrolling soil respiration in a temperature mixed hardwood forest. Global Change Biol.4,217–227.
    39. Davidson, E.A., Janssens, I.A., Luo, Y.,2006. On the variability of respiration in terrestrial ecosystems: moving beyondQ10. Global Change Biol.12,154–164.
    40. Davidson, E.A., Verchot, L.V., Cattanio, J.H.,.2000. Effects of soil water content on soil respiration in forests and cattlepastures of eastern Amazonia. Biogeochemistry48,5369.
    41. Dilly, O., Blume, H.P., Munch,J.C.,2002. Soil microbial activity during9years of region typical agricultural practicesin Northern Germany and interactions between soil unit, tillage, fertilization and crop,12th ISCO Conference, Beijing,pp.203–209.
    42. Ding, W.X., Cai, Y., Cai, Z.C., Yagib, K., Zheng, X.H.,2006. Soil respiration under maize crops: effects of water,temperature, and nitrogen fertilization. Soil Sci. Soc. Am. J.71,944–951.
    43. Dong, Y.H., Zhu, O.Y., Liu, S.L.,2009. The effect of long term fertilization on crop production, soil nutrients and soilCO2and N2O fluxes. Bioinformatics Biomed. Eng.6,11–13.
    44. Du, H.C., Zheng, H.M., Zhou, J., Cao, H., Shen, B., Lou, W.J., Zhong, Z.T.,2006. Effect of nitrogen transfer on growthof wheat in milkvetch–wheat mixed cropping after inoculation of rhizobium. Acta Pedologica Sinica,43,1043–1046.
    45. Edwards, N.T., Norby, R.J.,1999. Below ground respiratory responses of sugar maple and red maple saplings toatmospheric CO2enrichment and elevated air temperature. Plant Soil206,85–97.
    46. Ekblad, A., Hogberg, P.,2001. Natural abundance of13C in CO2respired from forest soils reveals speed of link betweentree photosynthesis and root respiration. Oecologia127,305308.
    47. Epron, D., Le Dantec, V., Dufrene, E., Granier, A.,2001. Seasonal dynamics of soil carbon dioxide efflux and simulatedrhizosphere respiration in a beech forest. Tree Physiol.21,145–152.
    48. Eswaran, H.E., Berg, E.V.D., Reich, P.1993. Organic carbon in soils of the world. Soil Sci. Soc. Am. J.57,192194.
    49. Fan, Z.L., Chai, Q., Huang, G.B., Yu, A.Z,, Huang, P., Yang, C.H., Tao, Z.Q., Liu, H.L.,2013. Yield and waterconsumption characteristics of wheat/maize intercropping with reduced tillage in an oasis region. Eur. J. Agron.45,52–58.
    50. Fang, C., Moncrieff, J.B.,1999. A model for soil CO2production and transport I: Model development. Agr. For.Meteorol.95,236–255.
    51. Fang, C., Moncrieff, J.B.,2001. The dependence of soil CO2efflux on temperature. Soil Biol. Biochem.33,155–165.
    52. Fang, S.Z., Li, H.L., Sun, Q.X., Chen, L.B.,2010. Biomass production and carbon stocks in poplar–crop intercroppingsystems: a case study in northwestern Jiangsu, China. Agroforest. Syst.79,213–222.
    53. Fang, S.Z., Xie, B.D., Liu, D., Liu, J.J.,2011. Effects of mulching materials on nitrogen mineralization, nitrogenavailability and poplar growth on degraded agricultural soil. New Forests,41,147–162.
    54. Fang, Z.G., Zhao, X.F., Sun, J.H., Zhang, F.S., Li, L.,2009. Effects of rhizobium inoculation on nitrogen nutrition infababean/maize intercropping system. Acta Agriculturae Boreali Sinica24,124–128.
    55. FAO/UNESCO,1988. Soil map of the world: Revised Legend. Food and Agriculture Organization of the UnitedNations, Rome.
    56. Fedoroff, N.V., Battisti, D.S., Beachy, R.N., Cooper, P.J.M., Fischhoff, D.A., Hodges, C.N., Knauf, V.C., Lobell, D.,Mazur, B.J., Molden, D., Reynolds, M.P., Ronald, P.C., Rosegrant, M.W., Sanchez, P.A., Vonshak, A. Zhu, J.K.,2010.Radically rethinking agriculture for the21st century. Science327,833–834.
    57. Francis, C.A.,1986. Distribution and importance of multiple cropping. In: Francis CA (Ed) Multiple Cropping Systems.MacMillan Publishing Company, New York, USA.
    58. Frank, A.B., Liebig, M.A., Tanaka D.L.,2006. Management effects on soil CO2efflux in northern semiarid grasslandand cropland. Soil Till. Res.89,78–85.
    59. French, R.J., Schultz, J.E.,1984. Water use efficiency of wheat in a Mediterranean–type environment. I. The relationbetween yield, water use and climate. Aust. J. Agric. Res.35,743–764.
    60. Fustec, J.,, Lesuffleur, F., Mahieu, S., Cliquet, J.B.,2010. Nitrogen rhizo–deposition of legumes, A review. Agron.Sustain. Dev.30,57–66.
    61. Gajda, A., Martyniuk, S.,2005. Microbial biomass C and N and activity of enzymes in soil under winter wheat grown indifferent crop management systems. Pol. J. Environ. Stud.14,159–163.
    62. Gan, Y.T., Liang, C., Campbell, C.A., Zentner, R.P., Lemke, R.L., Wang, H., Yang, C.,2012a. Carbon footprint ofspring wheat in response to fallow frequency and soil carbon changes over25years on the semiarid Canadian prairie.Euro. J. Agron.43,175–184.
    63. Gan, Y.T., Liang, C., Hamel, C., Cutforth, H., Wang, H.,2011a. Strategies for reducing the carbon footprint of fieldcrops for semiarid areas, A Review. Agron. Sustain. Dev.31,643–656.
    64. Gan, Y.T., Liang, C., Huang, G.B., Malhi, S.S., Brandt, S.A., Katepa–Mupondwa, F.,2012b. Carbon footprint of canolaand mustard is a function of the rate of N fertilizer. Int. J. Life Cycle Assess17,58–68.
    65. Gan, Y.T., Liang, C., Wang, X.Y., McConkey, B.G.,2011b. Lowering carbon footprint of durum wheat by diversifyingcropping systems. Field Crops Res.122,199–206.
    66. Gan, Y.T., Siddique, K.H.M., Turner, N.C., Li, X.G., Niu, J.Y., Yang, C., Liu, L.P.2013. Ridge–furrow mulchingsystems: an innovative technique for boosting crop productivity in semiarid rain fed environments. Adv. Agron.118:429–476.
    67. Gao, H.Y., Guo, S.L., Liu, W.Z., Che, S.G.,2009a. Soil respiration and carbon fractions in winter wheat croppingsystem under fertilization practices on arid highland of the Loess Plateau. Acta Phytoecologica Sinica29,2551–2559.
    68. Gao, Y., Duan, A.W.,2005. An experiment on soil evaporation of winter wheat under intercropping patterns. J. Irrig.Drain.24,13–17.
    69. Gao, Y., Duan, A.W.,2006. Studies on the characteristics of photo synthetically active radiation under intercropping ofwheat and maize. Chinese J. Eco. Agri.14,115–118.
    70. Gao, Y., Duan, A.W., Liu, Z.D., Wang, H.Z., Chen, J.P., Liu, A.N.,2009b. Crop root growth and water uptake inmaize/soybean strip intercropping. Chinese J. Appl. Ecol.20,307–313.
    71. Gao, Y., Duan, A.W., Liu, Z.G., Sun, J.S., Chen, J.P., Wang, H.Z.,2009c. Effect of intercropping patterns on dry matteraccumulation and yield components of maize and soybean. Chinese Agr. Sci. Bull.25,214–221.
    72. Gao, Y., Duan, A.W., Sun, J.S., Li, F.S., Liu, Z.G., Liu, H., Liu, Z.D.,2009d. Crop coefficient and water use efficiencyof winter wheat/spring maize strip intercropping. Field Crops Res.111,65–73.
    73. German, A.B, McDonald, G.B., Steven, E.H.,1996. Soil temperature and planting date effects on corn yield, leaf area,and plant development. Am. Soc. Agron.88,385–390.
    74. Ghajarzadeh M., Garcia, P.F., Cruse, R.M.,1997. Tillage effect on soil water content and corn yield in a stripintercropping system. Agron. J.89,893–899.
    75. Gleeson, T., Wada, Y., Bierkens, M.F.P., Beek, L.P.H.,2012. Water balance of global aquifers revealed by groundwaterfootprint. Nature488,197–200.
    76. Grace, J., Rayment, M.,2000. Respiration in the balance. Nature404,819–820.
    77. Grassini, P., You, J.S., Hubbard, K.G., Cassman, K.G.,2010. Soil water recharge in a semi–arid temperate climate ofthe Central U.S. Great Plains. Agric. Water Manage.97,1063–1069.
    78. Gregory, P.J., Simmonds, L.P., Pilbeam, C.J.,2000. Soil type, climatic regime, and the response of water use efficiencyto crop management. Agron. J.92,814–820.
    79. Gupta, S.R., Singh, J.S.,1981. Soil respiration in tropical grassland. Soil Biol. Biochem.13,261–268.
    80. Hall, A.J., Connor, D.J. Whitfield, D.M.,1990. Root respiration during grain filling in sunflower: the effects of waterstress. Plant Soil121,57–66.
    81. Han, G.X., Zhou, G.S., Xu, Z.Z.,2008. Temporal variation of soil respiration and its affecting factors in a maize fieldduring maize growth season. Chinese J. Ecol.27,1698–1705.
    82. Han, G.X., Zhou, G.S., Xu, Z.Z.,2009. Seasonal dynamics of soil respiration and carbon budget of maize (Zea mays L.)farmland ecosystem. Chinese J. Ecol. Agr.17,874–879.
    83. Han, G.X., Zhou, G.S., Xu, Z.Z., Yang, Y., Liu, J.L., Shi, K.Q.,2007. Spatial heterogeneity of soil respiration andcontribution of root respiration in a maize (Zea mays L.) agricultural field. Acta Ecologica Sinica27,5254–5261.
    84. Hanegraf, M.C., Biewinga, E.E., Vander, B.G.,1998. Assessing the ecological and economic sustainability of energycrops. Biomass Bioenerg.15,345–355.
    85. Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A.,2000. Separating root and soil microbial contributions to soilrespiration: a review of methods and observations. Biogeochemistry48,115146.
    86. Harris, D., Natarajan, M., Willey, R.W.,1987. Physiological basis for yield advantage in a sorghum/groundnut intercropexposed to drought. I. Dry matter production, production, yield and light interception. Field Crops Res.17,259–272.
    87. Harris, H.C.,1994. Water use efficiency of rotations in a Mediterranean environment. Aspects Appl. Biol.38,165–172.
    88. Hastings, A., Clifton B.J., Wattenbach, M., Stampfl, P., Mitchell, P.C., Smith, P.,2008. Potential of miscanthus grassesto provide energy and hence reduce greenhouse gas emissions. Agron. Sustain. Dev.28,465–472.
    89. Hipps, L.E., Asrar, G., Kanemasu, E.T.,1983. Assessing the interception of photo synthetically active radiation inwinter wheat. Agric. Meteorol.28,253–259.
    90. Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Hogberg, M.N., Nyberg, G., Lofvenius, M.O.,Read, D.J.,2001. Large scale forest girdling shows that current photosynthesis drives soil respiration. Nature411,789792.
    91. Hogberg, P., Singh, B., Lofvenius, M.O., Nordgren, A.,2009. Partitioning of soil respiration into its autotrophic andheterotrophic components by means of tree girdling in old boreal spruce forest. For. Ecol. Manage.257,17641767.
    92. Howard, J.A., Howard, D.M.,1979. Respiration of decomposition litter in relation to temperature and moisture. Oikos33,457–465.
    93. Howell, T.A.,2001. Enhancing water use efficiency in irrigated agriculture. Agron. J.93,182–289.
    94. Huang, J.Y., Li, X.P., Sun, D.L.,2003. Eco–physiological effects of multiple cropping of winter wheat–springcorn–summer corn in Huanghuaihai Plain. Chinese J. Appl. Ecol.14,51–56.
    95. Huggins, D.R., Buyanovski, G.A., Wagner, G.H., Brown, J.R., Darmondy, R.G., Peck, T.R., Vanotti, M.B., Bundy, L.G.,
    1998. Soil organic C in the tall grass prairie derived region of the Corn Belt: effects of long–term crop management. SoilTill. Res.47,219–234.
    96. Illeris, L., Michelsen, A., Jonasson, S.,2003. Soil plus root respiration and microbial biomass following water, nitrogen,and phosphorus application at a high arctic semi desert. Biogeochemistry65,1529.
    97. IPCC,1995. Technical summary. In: Houghton, J.T., et al., Eds.1996. Climate Change. Cambridge: CambridgeUniversity Press, pp.9–49.
    98. IPCC,2001. In: Houghton, J.H.Y, Ding, D.J., Griggs, Nouguer,M., Vanderlinden,X., Maskell, K., Johnson,2001.Climate Change2001: the scientific basis. Contribution of working group I to the third assessment report ofintergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
    99. IPCC,2010. Draft report of the32ndsession of the IPCC. In Busan, Republic of Korea.48–52.
    100. James, W., Raich, G.M.,2004. Estimating root plus rhizosphere contributions to soil respiration in annual croplands.Soil Sci. Soc. Am. J.69,634–639.
    101. Jong, E.D., Schappert, H.J.V., MacDonald, K.B.,1974. Carbon dioxide evolution from virgin and cultivated soil asaffected by management practices and climate. Can. J. Soil Sci.54,299–307.
    102. Kang, S.Z., Zhang, L., Liang, Y.L., Hu, X.T., Cai, H.J., Gu, B.J.,2002. Effects of limited irrigation on yield and wateruse efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manage.55,203–216.
    103. Kanton, R.A.L., Dennett, M.D.,2004. Water uptake and use by morphologically contrasting maize/pea cultivars in soleand intercrops in temperate conditions. Expl. Agric.40,201–204.
    104. Karlen, D.L., Varvel, G.E., Bullock, D.G., Curse, R.M.,1994. Crop rotations for the21st century. Adv. Agron.53,1–45.
    105. Kassam, A.H.,1981. Climate, soil and land resources in the West Asia–North Africa region. Plant Soil58,1–29.
    106. Katterer, T., Reichstein, M., Andren, O.1998. Temperature dependence of organic matter decomposition: a criticalreview using literature data analyzed with different models. Biol. Fert. Soils,27,258–262.
    107. Keeling, C.D., Whorf, T.P.,2002. Atmospheric CO2records from sites in the SIO air sampling network. In: Trends: Acompendium of data on global change. Oak Ridge National Laboratory, US Department of Energy, Carbon DioxideInformation Analysis Center, Oak Ridge, TN, USA.
    108. Kelting, D., Burger, J.A., Edward, G.S.,1998. Estimating root respiration, microbial respiration in the rhizosphere, androot–free soil respiration in forest soils. Soil Biol. Biochem.30,961–968.
    109. Khaledian, M.R., Mailhol, J.C., Ruelle, P., Dejean, C.,2013. Effect of cropping strategies on the irrigation waterproductivity of durum wheat. Plant Soil Environ.59,29–36.
    110. Kim, S., Dale, B.E.,2005. Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanoland biodiesel. Biomass Bioenerg.29,426–439.
    111. Kocyigit, R.,2006. Contribution of soil organic carbon and C3sugar to the total CO2efflux using13C abundance. PlantSoil Environ.52,193–198.
    112. Kocyigit, R., Rice, C.W.,2006. Partitioning CO2respiration among soil, rhizosphere microorganisms, and roots ofwheat under greenhouse conditions. Commun. Soil Sci. Plan.37,1173–1184.
    113. Kucera, C, Kirkham, D.,1971. Soil respiration studies in tall grass prairie in Missouri. Ecology52,912–915.
    114. Kuzyakov, Y.,2002. A review: factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci.165,382–396.
    115. Kuzyakov, Y., Biryukova, O.V., Kuznetzova, T.V.,2002. Carbon partitioning in plant and soil, carbon dioxide fluxesand enzyme activities as affected by cutting ryegrass. Biol. Fert. Soils35,348358.
    116. Kuzyakov, Y., Cheng, W.,2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition.Soil Biol. Biochem.33,19151925.
    117. Kuzyakov, Y., Cheng, W.,2004. Photosynthesis controls of CO2efflux from maize rhizosphere. Plant Soil263,8599.
    118. Kuzyakov, Y., Raskatov, A., Kaupenjohann, M.,2003. Turnover and distribution of root exudates of maize (Zea maysL.). Plant Soil254,317327.
    119. Larionova, A.A., Rozanova, L.N., Samoilov, T.I.,1989. Dynamics of gas exchange in the profile of a gray forest soil.Soviet Soil Sci.3,104–110.
    120. Lee, M., Nakane, K., Nakatsubo, T., Koizumi, H.,2003. Seasonal changes in the contribution of root respiration to totalsoil respiration in a cool temperature deciduous forest. Plant Soil255,311318.
    121. Lee, M.S., Nakane, K., Nakatsubo, T., Mo, W.H., Koizumi, H.,2002. Effects of rainfall events on soil CO2flux in acool temperate deciduous broad–leaved forest. Ecol. Res.17,401–409.
    122. Lei, C.,2005. Statement, Promoting environmentally–friendly agricultural production in China, Resource Managementfor Sustainable Intensive Agriculture Systems, International Conference in Beijing, China, April5–7,2004, EcologicalBook Series–1, Ecological Research for Sustaining the Environment in China, issued by UNESCO, Beijing, pp.18–21.
    123. Lemke, R.L., Zhong, Z., Campbell, C.A., Zentner, R.P.,2007. Can pulse crops play a role in mitigating greenhousegases from North American agriculture? Agron. J.99,1719–1725.
    124. Lenton, T.M., Huntingford, C.,2003. Global terrestrial carbon storage and uncertainties in its temperature sensitivityexamined with a simple model. Global Change Biol.09,1333–1352.
    125. Lesoing, G.W., Francis, C.A.,1999. Strip intercropping effects on yield and yield components of corn, grain sorghum,and soybean. Agron. J.91,807–813.
    126. Li, H., Qiu, J.J., Wang, L.G.,2008a. Characterization of farm land soil respiration and modeling analysis ofcontribution of root respiration. Transactions of the CSAE24,14–20.
    127. Li, F.D., Meng, P., Fu, D.L., Wang, B.P.,2008b. Light distribution, photosynthetic rate and yield in a Paulownia–wheatintercropping system in China. Agroforest Syst.74,163–172.
    128. Li, H.C., Yan, C.R., Zhao, P.Y., Tuo, D.B., Zhang, J.,2012. Effect of cropping system on soil temperature of potato innorthern Yinshan mountain. Chinese J. Agr. Meteor.33,534–539.
    129. Li, J.X., Wan, Z.H.,2002. Microclimatic effect and soil moisture change of poplar–wheat intercropping systems inHuaibei Plain. Chinese J. Appl. Ecol.13,390–394.
    130. Li, L., Li, S.M., Sun, J.H., Zhou, L.L., Bao, X.G., Zhang, H.G., Zhang, F.S.,2007. Diversity enhances agriculturalproductivity via rhizosphere phosphorus facilitation on phosphorus deficit soils. PNAS104,11192–11196.
    131. Li, L., Sun, J.H., Zhang, F.S., Guo, T.W., Bao, X.G., Smith, F.A., Smith, S.E.,2006. Root distribution and interactionsbetween intercropped species. Oecologia147,280–290.
    132. Li, L., Sun, J.H., Zhang, F.S., Li, X.L., Yang, S.C., Rengel, Z.,2001a. Maize–wheat or wheat–soybean stripintercropping. I. Yield advantage and inter–specific interactions on nutrients. Field Crops Res.71,123–137.
    133. Li, L., Sun, J.H., Zhang, F.S., Li, X.L., Rengel, Z., Yang, S.C.,2001b. Maize–wheat or wheat–soybean stripintercropping. II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res.71,173–181.
    134. Li, L., Zhang, F.S., Li, X.L., Peter, C., Sun, J.H., Yang, S.C., Tang, C.X.,2003a. Inter–specific facilitation of nutrientuptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosys.65,61–71.
    135. Li, Q.Z., Sun, J.H., Wei, X.J., Christie, P., Zhang, F.S., Li, L.,2011. Over yielding and inter–specific interactionsmediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant Soil339,147–161.
    136. Li, Y., Shao, M.A, Wang, W.Y., Wang, Q.J.,2003b. Temporal and spatial variation and forecast of soil temperature inmaize fields. J. Hydraul. Eng. ASCE.1,103–108.
    137. Li, Z.A., Zhou, B., Ding, Y.Z.2004. Key factors of forest litter decomposition and research progress. Chinese J. Ecol.23,77–80.
    138. Lindroth, A., Grelle, A., Moren, A.,1998. Long term measurements of boreal forest carbon balance reveal largetemperature sensitivity. Global Change Biol.4,443–450.
    139. Lisa, D., Maren, O., Laura, E.,2012. Soil carbon dioxide and nitrous oxide emissions during the growing season fromtemperate maize–soybean intercrops. J. Plant Nutr. Soil Sci.175,394–400.
    140. Lithourgidis, A.S., Dhima, K.V., Vasilakoglou, I.B., Dordas, C.A., Yiakoulaki, M.D.,2007. Sustainable production ofbarley and wheat by intercropping common vetch. Agron. Sustain. Dev.27,95–99.
    141. Liu, G.C., Yang, Q.F., Li, L., Sun, J.H.,2008. Intercropping advantage and contribution of above and below groundinteractions in wheat/maize intercropping. J. Plant Ecol.32,477–484.
    142. Liu, X., Wan, S., Su, B.,2002a. Response of soil CO2efflux to water manipulation in a tall grass prairie ecosystem.Plant Soil240,230–223.
    143. Liu, X.H., Mo, Z.G.,1993. Farming System in China. China Agricultural Press, Beijing, pp.82–93.
    144. Liu, X.Y., Pan, G.X., Li, L.Q.,2009. CO2emission under long term different fertilization during rape growth season ofa paddy soil from Tai lake region, China. J. Agr. Environ. Sci.28,2506–2511.
    145. Liu, Y.F., OuYang, H., Cao, G.M.,2002b. Soil carbon emissions in ecosystems of Eastern Qinghai–Tibet Plateau. J.Natur. Res.16,23–24.
    146. Liu, C.M., Zhang, X.Y., Zhang, Y.Q.,2002c. Determination of daily evaporation and evapotranspiration of winter wheatand maize by large scale weighing lysimeter and micro lysimeter. Agr. Forest Meteorol.111,109–120.
    147. Lloyd, J., Taylor, J.A.,1994. On the temperature dependence of soil respiration. Funct. Ecol.8,315–323.
    148. Lorenz, A.J., Gustafson, T.J., Coors, J.G., Leon, N.,2010. Breeding maize for a bio–economy: A literature surveyexamining harvest index and stover yield and their relationship to grain yield. Crop Sci.50,1–12.
    149. Luo, Y.Q., Jacson, R.B., Field, C.B., Mooney, H.A.,1996. Elevated CO2increases below ground respiration inCalifornia grasslands. Oecologia108,130–137.
    150. Luo, Y.Q., Wan, S.Q., Hui, D.F., Wallace, L.L.,2001. Acclimatization of soil respiration to warming in a tall grassprairie. Nature413,622–627.
    151. Luo, Y.Q., Zhou, X.H.,2006. Soil respiration and the environment. Academic Press, Burlington. pp,216–247.
    152. Lupwayi, N.Z., Kennedy, A.C.,2007. Grain legumes in Northern Great Plains: impacts on selected biological soilprocesses. Agron. J.99,1700–1709.
    153. Makumba, W., Akinnifesi, F.K., Janssen, B., Oenema, O.,2007. Long term impact of a gliricidia–maize intercroppingsystem on carbon sequestration in southern Malawi. Agric. Ecosyst. Environ.118,237–243.
    154. Malhi, S.S., Nyborg, M., Goddard, T., Puurveen, D.,2011. Long term tillage, straw management and N fertilizationeffects on quantity and quality of organic C and N in a Black Chernozem soil. Nutr. Cycl. Agroecosys.90,227–241.
    155. Mao, S.C., Song, M.Z., Zhang, C.J., Han, Y.C., Xing, J.S., Zhuang, J.N.,1998. Studies on the effects of soil temperaturein cotton fields in the wheat and cotton co–growing period under a double cropping system in the Huanghuaihai plains.Scientia Agricultura Sinica31,1–5.
    156. Marbach, W., Mirus, E., Knof, G., Remus, R., Ruppel, S., Russow, R.,1999. Release of carbon and nitrogen compoundsby plant roots and their possible ecological importance. J. Plant Nutr. Soil Sci.162,373383.
    157. Martin, J.G., Bolstad, P.V.,2005. Annual soil respiration in broadleaf forests of northern Wisconsin: influence ofmoisture and site biological, chemical, and physical characteristics. Biogeochemistry73,149–182.
    158. Matson, P. A., Lohse, K.A., Hall, S.J.2002. The globalization of nitrogen deposition: Consequences for terrestrialecosystems. Ambio31,113–119.
    159. Matthias, P., Naresh, V.T., Andrew, M.G., Jurgen, H., Refaat, A.A.,2006. Carbon sequestration potentials in temperatetree based intercropping systems, southern Ontario, Canada. Agroforest. Syst.66,243–257.
    160. McCree, K.J.,1972. Test of current definitions of photo synthetically active radiation against leaf photo synthesia date.Agric. Meteorol.10,110–116.
    161. McDonald, N.W., Randlett, D.L., Zak, D.R.,1999. Soil warming and carbon loss from a lake states Spodosol. Soil Sci.Soc. Am. J.63,211–218.
    162. McIntyre, B.D., Riha, S.J., Ong, C.K.,1997. Competition for water in a hedge–intercrop system. Field Crops Res.52,151–160.
    163. Medina, E., Zelwer, M.,1972. Soil respiration in tropical plant communities. In Papers from a symposium on tropicalecology with an emphasis on organic productivity (P. M. Golley, and F. B. Golley, eds.), University of Georgia, Athens,GA. pp.245–269.
    164. Meng, F.Q., Guan, G.H., Zhang, Q.Z., Shi, Y.J., Qu, B., Kuang, X.,2006. Seasonal variation in soil respiration underdifferent long term cultivation practices on high yield farmland in the North China Plain. Acta Scientiae Circum.26,992–999.
    165. Meng, P., Zhang, J.S.,2004. Effects of pear–wheat intercropping on water and land utilization efficiency. J. Forest Res.17,167–171.
    166. Merrill, S.D., Tanaka, D.L., Krupinsky, J.M., Liebig, M.A., Hanson, J.D.,2007. Soil water depletion and recharge underten crop species and applications to the principles of dynamics cropping systems. Agron. J.99,931–938.
    167. Michalzik, B., Matzner, E.,1999. Fluxes and dynamics of dissolved organic nitrogen and carbon in a spruce forestecosystem. Eur. J. Soil Sci.50,579–590.
    168. Mielnick, P.C., Dugas, W.A.,2000. Soil CO2flux in a tallgrass prairie. Soil Biol. Biochem.32,221–228.
    169. Miltner, A., Haumaier, L., Zech, W.,1998.Transformations of phosphorus during incubation of beech leaf litter in thepresence of oxides. Eur. J. Soil Sci.49,471–475.
    170. Moore, T.R.,1986. Carbon dioxide evolution from subarctic peat lands in eastern Canada. Arctic Alpine Res.18,189–193.
    171. Morris, R.A., Garrity, D.P.,1993. Resource capture and utilization in intercropping: water. Field Crops Res.34,303–317.
    172. Mosier, A.R.,1998. Soil processes and global change. Biol. Fert. Soils27,221–229.
    173. Nelson, G.C., Rosegrant, M.W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., Tokgoz, S., Zhu, T., Sulser, T.B.,Ringler, C., Msangi, S., You, L.,2010. Food security, farming, and climate change to2050: Scenarios, results, andpolicy options. International Food Policy Research Institute, Washington, D.C.
    174. Oelhermann, M., Echarte, L., Vachon, K., Dubois, C.,2009. The role of complex agro–ecosystems in sequesteringcarbon and mitigating global warming. Earth Environ. Sci.6,20–31.
    175. Ojima, D.S., Dirks, B.O.M., Gleovn, E.P.O., Wensby, C.E.,1993. Assessment of carbon budget for grasslands dry landsof the world. Water, Air Soil Poll.70,95–109.
    176. Olasantan, F.O.,1988. The effects on soil temperature and moisture content and crop growth and yield of intercroppingmaize with melon (colocynthis vulgaris). Exp. Agr.24,67–74.
    177. Pan, X.B., Deng, S.H., Wang, Y.Q., Cui, X.W., Dong, Z.S.,1996. Effects of intercropping of wheat and cotton on solarradiation and temperature of row middle centre. Acta Gossypii Sinica8,44–49.
    178. Parkin, T.B., Kaspar, T.C., Senwo, Z., Prueger, J.H., Hatfield, J.L.,2005. Relationship of soil respiration to crop andlandscape in the Walnut Creek Watershed. J. Hydrometeor.6,812–824.
    179. Parton, W.J., Schimel, D.S., Cole, C.V.,1987. Analysis of factors controlling soil organic matter levels in great plaingrasslands. Soil Sci. Soc. Am. J.51,1173–1179.
    180. Paul, V.B., James, M.V.,2005. Forest and pasture carbon pools and soil respiration in the southern AppalachianMountains. Forest Sci.51,372–383.
    181. Post, W.M., Emanuel, W.R., Zinke, P.J.,1982. Soil carbon pools and world life zones. Nature298,156–159.
    182. Post, W.M., Izaurralde, R.C., Jastrow, J.D., McCarl, B.A., Amonette, J.E., Bailey, V.L., Jardine, P.M., West, T.O., Zhou,J.Z.,2004. Enhancement of carbon sequestration in US soils. Bio. Sci.54,895–908.
    183. Qin, A.Z., Huang, G.B., Chai, Q., Yu, A.Z., Huang, P.,2013. Grain yield and soil respiratory response to intercroppingsystems on arid land. Field Crops Res.144,1–10.
    184. Qin, A.Z., Huang, G.B., Chai, Q., Yu, A.Z., Liu, S.B.,2011. Impact of soil temperature and moisture on soil respirationunder different cropping patterns in arid oasis area. Our Nature9,1–8.
    185. Raich, J.W., Nadelhoffer, K.J.,1989. Belowground carbon allocation in forest ecosystems: Global trends. Ecology70,1346–1354.
    186. Raich, J.W., Potter, C.S.,1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochem. Cy.9,23–36.
    187. Raich, J.W., Potter, C.S., Bhagawati, D.,2002. Interannual variability in global soil respiration,1980–1994. GlobalChange Biol.8,800–812.
    188. Raich, J.W., Schlesinger, W.H.,1992a. Global carbon dioxide emissions from soils. Global Biogeochem. Cy.9,23–36.
    189. Raich, J.W., Schlesinger, W.H.,1992b. The global carbon dioxide flux in soil respiration and its relationship tovegetation and climate. Tellus B,44,81–99.
    190. Raich, J.W., Tufekcioglu, A.,2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry48,71–90.
    191. Rayment, M.B.,2000. Investigating the role of soils in terrestrial carbon balance: Harmonizing methods for measuringsoil CO2efflux. LESC exploratory workshop, Edinburgh,6–8April,2000, European Science Foundation.
    192. Reichstein, M., Rey, A., Freibauer, A.,2003. Modeling temporal and large scale spatial variability of soil respirationfrom soil water availability, temperature and vegetation productivity indices. Global Biogeochem. Cy.17,1085–1104.
    193. Reynolds, J.F., Stafford Smith, D.M., Eds.2002. Global Desertification: Do humans cause deserts? Dahlem UniversityPress, Berlin. pp.423–438.
    194. Rochette, P., Janzen, H.H.,2005. Towards a revised coefficient for estimating N2O from legumes. Nutr. Cycl.Agroecosyst.73,171–179.
    195. Rodeghiero, M., Cescatti, A.,2005. Main determinants of forest soil respiration along an elevation temperature gradientin the Italian Alps. Global Change Biol.11,1024–1041.
    196. Rounsevell, M.D.A, Evans, O.A, Amundson, R.,1999. Climate change and agricultural soils: Impacts and adaptation.Climate Change43,683–709.
    197. Rustad, L.E., Huntington, T.G., Boone, R.D.,2000. Controls on soil respiration: Implication for climate change.Biogeochemistry48,1–6.
    198. Sangha, K.K., Jalota, R.K., Midmore, D.J.,2007. Impact of temperature and defoliation (simulated grazing) on soilrespiration of pasture grass (Cenchrus ciliaris L.) in a controlled experiment. J. Agric. Food Environ. Sci.1,1–9.
    199. Sayer, E.J., Tanner, E.V.J.,2010. A new approach to trenching experiments for measuring root rhizosphere respirationin a lowland tropical forest. Soil Biol. Biochem.42,347352.
    200. Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, V.L., McMahon, P.B.,2012.Ground water depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS109,9320–9325.
    201. Scanlon, B.R., Levitt, D.G., Reedy, R.C., Keese, K.E., Sully, M.J.,2005. Ecological controls on water cycle response toclimate variability in deserts. PNAS102,6033–6038.
    202. Schaefer, D.A,. Feng, W., Zou, X.,2009. Plant carbon inputs and environmental factors strongly affect soil respirationin a subtropical forest of southwestern China. Soil Biol. Biochem.41,1000010007.
    203. Schlesinger, W.H., Andrews, J.A.,2000. Soil respiration and the global carbon cycle. Biogeochemistry48,7–20.
    204. Schmidtke, K.,2005. How to calculate nitrogen rhizo–deposition: A case study in estimating N rhizo–deposition in thepea (Posum sativum L.) and grass pea (Lathyrus sativus L.) using a continuous15N labeling split pot technique. Soil Biol.Biochem.37,18931897.
    205. Shan, L.,1994. The relationship between crop water use efficiency and agricultural water use in semi–arid regions. PlantPhysiol. Commun.30(1),61–64.
    206. Shi, P.L., Zhang, X.Z., Zhong, Z.M., Ouyang, H.2006. Diurnal and seasonal variability of soil CO2efflux in a crop landecosystem on the Tibetan Plateau. Agr. Forest Meteorol.137,220–233.
    207. Singer, J.W., Sauce, T.J., Blaser, B.C., Meek, D.W.,2007. Radiation use efficiency in dual winter small grain–forageproduction systems. Agron. J.99,1175–1179.
    208. Singh, R.P., Ong, C.K., Saharan, N.,1989. Above and below ground interactions in alley cropping in semi arid India.Agroforest. Syst.9,259–274.
    209. Smith, P., Powlson, D., Smith, J., Fallon, P., Coleman, K.,2000. Meeting the UK’s climate change commitments:Options for carbon mitigation on agricultural land. Soil Use Manage.16,1–11.
    210. Snaydon, R.W., Harris, P.M.,1981. Interaction below ground: The use of nutrients and water proceeding ofinternational workshop on intercropping. Hyderabad, India. ICRISAT,189–198.
    211. Song, T.Q., Xiao, R.L., Peng, W.X., Yang, Z.J., Li, S.H., Xiao, K.C., Teng, H.H.,2006. Upgrading soil water and otherecological effects of intercropping white clover in tea plantation in subtropical hilly region. Agr. Res. Arid Areas24,39–43.
    212. Song, Y.N., Zhang, F.S., Marschner, P., Fan, F.L., Gao, H.M., Bao, X.G., Sun, J.H., Li, L.,2007. Effect of intercroppingon crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zeamays L.), and faba bean (Vicia faba L.). Biol. Fert. Soil43,565–574.
    213. Songa, J.M., Jiang, N., Schulthess, F., Omwega, C.,2007. The role of intercropping different cereal species incontrolling lepidopteran stemborers on maize in Kenya. J. Appl. Entomo. l131,40–49.
    214. Subke, J.A., Inglima, I., Cotrufo, M.F.,2006. Trends and methodological impacts in soil CO2efflux partitioning: Ameta–analytical review. Global Change Biol.12,921943.
    215. Sullivan, P.,1998. Intercropping principles and production practices: Appropriate technology transfer for rural areas.Fayetteville, AR, pp.56–71.
    216. Sumann, M., Amelung, W., Haumaier, L., Zech, W.,1998. Climatic effects on soil organic phosphorus in the NorthAmerican Great Plains identified by31phosphorus nuclear magnetic resonance. Soil Sci. Soc. Am. J.,62,1580–1586.
    217. Tang, J., Baldocchi, D.D., Xu, L.,2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. GlobalChange Biol.11,12981304.
    218. Tao, P., Li, K.R., Shao, X.M.,2003. Temporal and spatial pattern of net primary production of terrestrial ecosystems inChina. Acta Geographica Sinica58,372–380.
    219. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S.,2002. Agricultural sustainability and intensiveproduction practices. Nature418,671–677.
    220. Tong, P.Y.,1994. Achievements and perspectives of tillage and cropping systems in China. Crop. Sys. Cultiv. Tech.77,1–5.
    221. Tsubo, M., Walker, S., Mukhala, E.,2001. Comparisons of radiation use efficiency of mono–/inter–cropping systemswith different row orientations. Field Crops Res.71,17–29.
    222. Tufekcioglu, A., Raich, J.W., Isenhart, T.M., Schultz, R.C.,2001. Soil respiration within riparian buffers and adjacentcrop fields. Plant Soil229,117–124.
    223. UNESCO,1977. World map of arid regions. UNESCO, Paris.
    224. Vandermeer, J.H.,1990. Intercropping Agro–ecology. McGraw–Hill (Eds.), New York, pp.481–516.
    225. Vandermeer, J.H.,1992. The ecology of intercropping. Cambridge: Cambridge University Press, pp.1–14.
    226. Wallace, S.U., Bacanamwo, M., Palmer, J.H.,1996. Yield and yield components of relay intercropped wheat andsoybean. Field Crops Res.46,161–168.
    227. Wang, B., Liu, W., Xue, Q., Dang, T., Gao, C., Chen, J., Zhang, B.,2013. Soil water cycle and crop water use efficiencyafter long term nitrogen fertilization on Loess Plateau. Plant Soil Environ.59,1–7.
    228. Wang, R.Z., Gao, Q., Chen, Q.S.2003a. Effects of climate on biomass and biomass allocation in Leymus chiensis(Poaceae) along the Northeast China Transect (NECT). J. Arid Environ.54,653–665.
    229. Wang, W., Guo, J.X., Feng, J., Oikawa, T.,2006. Contribution of root respiration to total soil respiration in a Leymuschinensis (Trin.) Travel Grassland of Northeast China. J Integr. Plant Biol.48,409414.
    230. Wang, W.J., Wang, H.M., Zhu, Y.G.,2005. Characteristics of root, stem, and soil respiration Q10temperaturecoefficients in forest ecosystems. Acta Phytoecologica Sinica29,680–691.
    231. Wang, X.X., He, Y.Q., Zhang, T., Lin, Z.B., Wang, M.Z.,2003b. Choerospondias axillaris and peanut (ArchisHypogaea) alley cropping systems on udic ferrosol in subtropical China. III. Soil moisture. Soils35,232–235.
    232. Wang, X.Y., Gan, Y.T., Hamel, C., Lemke, R., McDonald, C.,2012. Water use profiles across the rooting zones ofvarious pulse crops. Field Crops Res.134,130–137.
    233. Wang, Y.M., Cai, H.J., Wang, J.,2010. The influence of intercropping of wheat and pepper on photo syntheticallyactive radiation and soil temperature. Chinese Rur. Water Hydro.1,14–18.
    234. Wang, Y.P., Zhang, H., Liu, S.Y., Yang, R.H., Lei, Y.S., Ma, Y.M.,2004. Study on soil moisture and benefits of theapricot–alfalfa–covering system on the slope land of the Loess Regions. Sci. Soil Water Conserv.2,74–78.
    235. Wang, Z.P., Duan, Y., Yang, J.R., Chen, Q.S., Han, X.G.,2003c. Spatial distribution of potential CH4oxidation andproduction in Zoigê marsh of Qinghai–Tibet Plateau. Acta Phytoecologica Sinica27,786–792.
    236. Wanvestraut, R.H., Jose, S., Nair, P.K.R., Brecke, B.J.,2004. Competition for water in a pecan (Carya illinoensis K.Koch)–cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Agroforest. Syst.60,167–179.
    237. Wildung, R.E., Garland, T.R., Buschbom, R.L.,1975. The interdependent effects of soil temperature and water contenton soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem.7,373–378.
    238. Willey, R.W.,1979. Intercropping: its importance and research needs. Part I. Competition and yield advantages. FieldCrops Res.32,1–10.
    239. Willey, R.W.,1990. Resource use in intercropping systems. Agri. Water Manage.17,215–231.
    240. Wu, J.K., Ding, Y.J., Wang, G.X., Shen, Y.P., Yamazaki, Y., Kubota, J.,2006. Energy balance of irrigated intercropfield in the middle reaches of Heihe river basin. Chinese Geogr. Sci.16,243–248.
    241. Xu, B.C., Li, F.M., Shan, L.,2008. Switchgrass and milkvetch intercropping under2:1row replacement in semi aridregion, northwest China: Aboveground biomass and water use efficiency. Eur. J. Agron.28,485–492.
    242. Xu, B.C., Shan, L.,2004. Comparative study on the productivity and soil moisture of brome grass (bromus inermis)under sole cropped and strip intercropped with astragalus adsurgens. Chinese Agr. Sci. Bulletin20,159–171.
    243. Xu, L., Baldocchl, D.D., Tang, J.,2004. How soil moisture, rain pulses, and growth alter the response of ecosystemrespiration to temperature. Global Biogeochem. Cy.18,1–10.
    244. Xu, M., Qi, Y.,2001. Spatial and seasonal variations of Q10determined by soil respiration measurements at a SierraNevadan forest. Global Biogeochem. Cy.15,687–696.
    245. Xue, Q., Zhu, Z., Musick, J.T., Stewart, B.A., Dusek, D.A.,2003. Root growth and water uptake in winter wheat underdeficit irrigation. Plant Soil257,151–161.
    246. Yan, D.Z., Wang, D.J., Yang, L.Z.,2007. Long term effect of chemical fertilizer, straw, and manure on labile organicmatter fractions in a paddy soil. Biol. Fert. Soil44,93–101.
    247. Yan, J.J., Yang, L.F., Pang, J.,2010. Effects of soybean and cotton growth on soil respiration. Acta Agronomica Sinica36,1559–1567.
    248. Yang, C.H., Chai, Q., Huang, G.B.,2010. Root distribution and yield responses of wheat/maize intercropping toalternate irrigation in the arid areas of northwest China. Plant Soil Environ.56,253–262.
    249. Ye, Y.L., Li, L., Sun, J.H.,2007. Effect of wheat/maize intercrop and nitrogen fertilizer on water use. Agr. Res. AridAreas25,176–182.
    250. Zhai, L.M., Liu, H.B., Zhang, J.Z., Huang, J., Wang, B.R.,2011. Long term application of organic manure and mineralfertilizer on N2O and CO2emissions in a red soil from cultivated maize–wheat rotation in China. J. Integr. Agr.10,1748–1757.
    251. Zhang, B., Shi, H.C.,2004. Study on optimum allocation of oasis resource in Hexi regions. China Science Press, Beijing,pp.22–26.
    252. Zhang, F.S., Li, L.,2003. Using competitive and facilitative interactions in intercropping systems enhances cropproductivity and nutrient use efficiency. Plant Soil248,305–312.
    253. Zhang, H.,Wang, X., You, M.Z., Liu, C.M.,1999.Water–yield relations and water–use efficiency of winter wheat in theNorth China Plain. Irrigation Sci.19,37–45.
    254. Zhang, J.H.,2000. Spatial distribution and mechanisms of soil organic carbon in middle of Heihe River, in arid area ofnorthwest China. PH.D Dissertation, Lanzhou University.
    255. Zhang, J.L.,2007. Barriers to water markets in the Heihe River basin in northwest China. Agr. Water Manage.87,32–40.
    256. Zhang, L., Spiertz, J.H.J., Zhang, S., Li, B., Werf, W.,2008. Nitrogen economy in relay intercropping systems of wheatand cotton. Plant Soil303,55–68.
    257. Zhang, L., Vander, W.W., Zhang, S.,2007a. Growth, yield and quality of wheat and cotton in relay strip intercroppingsystems. Field Crops Res.103,178–188.
    258. Zhang, X.H., Yuan, H.M., Jiang, W.J.,2007b. CO2and N2O emission from the rape field and their controlling factors. J.Ecol. Rural Environ.23,5–8.
    259. Zhang, X.Z., Shi, P.L., Liu, Y.F.,2004. Soil of alpine cold ecosystem in Qinghai–Tibet Plateau. Science in China SeriesD: Earth Sci.34,193–199.
    260. Zhang, Y., Zhang, H.L., Chen, J.K., Chen, F.,2009. Tillage effects on soil respiration and contributions of itscomponents in winter wheat field. Scientia Agric. Sinica42,3354–3360.
    261. Zhou, X.D., Zhu, Q.J., Wang, J.D., Sun, R., Chen, X., Wu, M.X.,2002. Interception of PAR, relationship betweenFPAR and LAI in summer maize canopy. J. Natur. Resour.17,110–116.
    262. Zimmermann, M., Meir, P., Bird, M.I., Malhi, Y., Ccahuana, A.J.Q.,2009. Climate dependence of heterotrophic soilrespiration from a soil translocation experiment along a3000m tropical forest altitudinal gradient. Euro. J. Soil Sci.60,895–906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700