用户名: 密码: 验证码:
温差发电器的传热特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能与环保是21世纪全人类共同面临的严峻问题。近年来,随着国民经济的快速发展,能源安全形势日益严峻。对此,《中华人民共和国节能法》指出:节能是国家发展经济的一项长远战略方针,也是解决当今能源问题的首要途径。国家“十二·五”规划更是明确提出:绿色发展,建设资源节约型、环境友好型社会。要求大力推进节能降耗,推广先进节能技术和产品。
     温差发电技术利用材料的塞贝克效应,可将热能直接转换成电能,具有结构紧凑、无磨损、无泄漏、清洁、无噪声、寿命长、可靠性高等一系列优点。它是一种新型的、绿色环保的发电技术,可以合理利用太阳能、地热能、工业余热废热等低品位热能。许多科技发达国家已将发展温差发电技术列为中长期能源开发计划。我国太阳能和工业余热资源丰富,陆地表面每年接收到的太阳辐射能相当于1700亿吨标准煤;而余热资源约占燃料消耗总量的17%~67%,其中可回收率达60%。若能结合温差发电技术在低品位能源利用上的独特优势,把这部分能源转化为电能,必将产生巨大的经济效益和社会效益。
     温差发电技术在国内的研究起步比较晚,主要集中在新型热电材料的制备及其性能研究。针对温差发电器内热量传递的机理、机制问题的研究则相对较少。本文基于热量传递基本理论,通过热阻网络法对温差发电器内热量的传递过程机理进行理论分析和实验研究,建立温差发电器热阻解析模型以及温差电组件串并联连接的热阻解析模型,并通过数值模拟对余热温差发电器进行了模拟研究。主要研究工作和结论如下:
     (1)基于热阻网络法对温差发电器内热量的传递过程进行理论分析,同时搭建温差发电器性能测试平台对其内各部分热阻的分布和变化规律进行了实验研究。发电器冷端散热的强化对其内部传热控制区域有显著影响:与空气自然对流相比,空气强制对流和水冷散热方式强化了散热器翅片与环境之间的传热,降低了发电器冷端的温度和热阻,发电器内的主要热阻由自然对流时的散热器翅片与环境间的对流换热热阻转变为温差电组件与热源和冷端散热器之间的接触热阻;当热源提供的热流量恒定时,强化发电器冷端传热的同时也降低了热源和发电器热端的温度,发电器热冷两端的温差并无显著提高;当热源热流量较低时,强化冷端的传热并不能显著提高发电器的输出功率;当热源热流量较大时,强化冷端的传热将大大提高发电器的输出功率;热源热流量为50W时,强制风冷和水冷方式下的输出功率比自然对流方式下的分别提高了27.9%和39.5%。
     (2)采用Fluent软件对余热温差发电器进行了数值模拟研究。增加冷、热流体的流速,强化温差电组件冷端和热端换热器内热量的传递,均可获得更大的温差,发电器因而获得更好的性能。但当发电器内传热控制区域发生变化之后,再进一步增加冷热流体的流速,对提高发电器性能的效果变差了。此时,应把解决问题的重点放在降低传热控制区域的热阻上。
     (3)基于非平衡态热力学理论和热阻网络法导出了包括温差电组件与热源和冷源之间的热阻θH和θC、P-N电偶臂自身热阻θTE、电偶臂数量m、电偶臂所用材料的塞贝克系数αPN和电阻r、回路电流I以及热源温度T1和冷源温度T0等参量的输出功率和发电效率热阻解析模型,实验验证了模型的准确性。根据该模型可以较精确地预测发电器的性能,从而为高性能发电器的组装提供理论依据。
     (4)温差电组件的串并联连接可调节热电模块的内部电阻和热阻,从而调控发电器的输出电压、电流和功率,以便为具有不同电阻值的负载提供电能。对温差电组件采用串并联连接方式的温差发电系统进行了研究,导出了系统输出功率的热阻解析模型,探讨了温差电组件总数量、并联组件数量、热电模块及其热端和冷端的热阻等对系统性能的影响。结果表明,系统电阻与负载电阻、热电模块热阻与其热端和冷端的热阻之间存在匹配关系,能使系统获得最大的输出功率;随着并联组件数量的增加,最大输出功率和回路电流得到了提高,但系统的输出电压却降低了。研究结果为温差发电系统的合理装配及性能优化提供了理论参考。
     (5)电偶臂结构尺寸的优化设计研究。导出了发电器输出功率与电偶臂面长比的关系式,获得了负载电阻及外部热阻两者分别与面长比的匹配关系。随着面长比的增加,匹配的负载电阻和外部热阻都是先急剧下降,当面长比增大到1~1.5×103m之后,其下降幅度趋于平缓。最大输出功率随面长比的增加而增大。
     本文关于温差发电器内热量传递过程特性及机理的研究丰富了温差发电技术的理论体系。该研究不仅为温差发电器或温差发电系统性能的优化指明了方向,更为新型高性能温差发电器或系统的开发和研制提供必要的理论和实验依据。
Energy-saving and environmental protection are a serious problem the all mankind facing in the21st century. In recent years, with the rapid development of national economy, China's energy, especially oil and gas dependence on foreign continue to rise, energy security situation is increasingly grim. To this, The People's Republic of China Energy Conservation Law point out the energy conservation is a long-term strategy policy in the state development economic, is also the primary way to solve the today's energy problem. The twelve five state plan is clearly put forword:green development, building a resource-conserving and environment-friendly society, promoting the energy conservation, spreading the advanced energy-saving technologies and products.
     Thermoelectric power generation technology can directly conver the heat energy to electricity power using the materials Seebeck effect. It has the advantages of compact structure, no wear, no leaks, no noise, clean, long life, high reliability. It is a new, green power generation technologies and can reasonably use of solar energy, geothermal energy, industrial waste heat and other low-grade waste heat energy. Many science and technology developed countries have classified the thermoelectric power generation technology as a long-term energy development plan. China is rich in solar energy and industrial waste heat. Every years, land surface receives the solar radiation energy is equivalent to170billion tons of standard caol. The waste heat accounts for17%of total fuel consumption to67%, of which,60%recyclable. If these low-grade energy can be converted to electricity by the thermoelectric power generation technology, which will have huge economic and social benefits.
     Domestics researches on thermoelectric power generation technology started relatively later, and mainly in the studies of new thermoelectric material preparation and its properties. As for the heat transfer mechanism of thermoelectric generation, there are less researches. Based on the basic theory of heat transfer and through the thermal resistance network method, the theoretical analysis and experimental research of the heat transfer processes mechanism within thermoelectric generation was carried out. The thermal resistance analytical models of thermoelectric generatior and thermoelectric modules connected in series and parallel are built. Numerical simulation of the waste heat thermoelectric generator was carried also. In all, the main works and conclusions are as follows,
     (1) Based on the thermal resistance network method, the heat transfer process within thermoelectric generatior was analysed in theory. A thermoelectric performance test platform was built to study the distribution and variation of thermal resistance. The heat transfer enhancement of generator cold side has significantly affect on the heat transfer control region: as compared with the air natural convection, the air-forced convection and the water cooling modes enhance the heat transfer between the heat sink fins and the ambient and reduce the temperature and thermal resistance on the cold side, and that the main thermal resistance changes from the convectional one between the heat sink fins and the ambient to the contact one between the generator as well as the heat source and the sink on the cold side. When the heat flux of the heat source keeps constant, strengthening the heat transfer on the cold side of the generator may decrease the temperatures of the heat source and the hot side, while the temperature difference between the hot and the cold sides of the generator has no significant improvement. When the heat flux of the heat source is low, strengthening the heat transfer on the cold side of the generator can not dramatically increase the output power of the generator. When the heat flux of heat source is high, strengthening the heat transfer on the cold side may greatly increase the output power of the generator. Moreover, at a heat flux of50W, the output power in air-forced convection cooling and water cooling respectively increase by27.9%and39.5%, as compared with that in air natural convection cooling.
     (2) The numerical simulation research of waste heat thermoelectric generatior was studied by Fluent software. A larger temperature difference can be obtained by increasing the cold and hot fluid rate and strengthening the heat transfer within the cold and hot side heat exchanger, thus the generator get better performance. But when the heat transfer control region changes, by further increasing the cold and hot fluid rate to improve the generator performance, the effec become poor. At this point, it should be focused on reduce the heat transfer resistance of heat transfer control region to solve the problem.
     (3) Based on the non-equilibrium thermodynamics theory and thermal resistance network method, the output power and efficiency thermal resistance analytical models are derived. The models comprise the thermal resistance θH between the thermoelectric module and the heat source, the thermal resistance θC between the thermoelectric module and the cold source, the P-N thermoelement legs thermal resistance θTE, the number of thermoelement legs m, the Seebeck coefficient αP-N and resistance r of the materials used in thermoelement legs, the loop current I, the hot source temperature T1and the cold source temperature T0, and so on. The accuracy of the models were verified by the experiment. The models can accurately predict the performance of the generator, so as to provide a theoretical basis for the assembly of the high-performance generator.
     (4) The series-parallel connection of thermoelectric components can adjust the thermoelectric module internal resistances and thermal resistances, thereby regulating the generator output voltage, current and power, so that the generator can provide electrical energy for the different loads. The thermoelectric generation system with series-parallel connection of thermoelectric components was investigated, and the thermal resistance analytical model for system output power was derived. In addition, the effect of total number of thermoelectric components, number of components with parallel connection, thermoelectric module as well as thermal resistance at both hot and cold ends of the module on the system performance was discussed. The results show that there is a matching relationship between the system resistance and load resistance. Moreover, the thermal resistance of thermoelectric module and the thermal resistance at both hot and cold ends of the module also exhibit a matching relationship. Therefore the maximum output power can be obtained for the system. With increasing the number of components with parallel connection, the maximum output power and loop current get enhanced, while the output voltage of the system decreases. The present results can provide the theoretical reference for the reasonable assembly and performance optimization of thermoelectric generation system.
     (5) The study on the optimization of thermoelectric leg structure size. The relationship between the generator output power and thermoelectric leg aspect ratio is derived. The matching relationship between the load resistance and aspect ratio, and which between the external thermal resistance and aspect ratio are obtained respectively. With the aspect ratio increase, both the matching load resistance and the matching external thermal resistance are firstly falling sharply. While the aspect ratio increase to1-1.5x10-3m, the decline leveled off. The maximum output power increases with the increasing aspect ratio.
     The studies on the heat transfer mechanism of thermoelectric generator have enriched the thermoelectric power generation technology theory. This study not only shows the performance optimization direction on thermoelectric generator or system, but also provides the necessary theoretical and experimental evidence for developing the new and high performance thermoelectric generator or system.
引文
[1]安蓓,朱诸,孔祥鑫.2012年我国油气对外依存度持续上升[N].新华社,2013,第1版.
    [2]高峰,孙成权,刘全根.太阳能开发利用的现状和发展趋势[J].科技前沿和学术评论,2001,23(4):35-39.
    [3]黄飞.太阳能利用前景广阔[J].能源技术,2002,2:9-11.
    [4]中国投资咨询网.2006年中国太阳能光伏发电产业分析及投资咨询报告[R].深圳:中国投资咨询网,2006.
    [5]刘世锦.中国2020年能源面临的挑战和发展目标[C].中国发展高层论坛:国家能源战略政策情景分析研讨会,北京,2003.
    [6]Rowe D.M. Thermoelectrics, an environmentally friendly source of electrical power [J]. Renewable Energy,1999,(16):1251-1256.
    [7]Lyeo H.K., Khajetoorians A.A., Shi Li, et al. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution [J]. Science,2004,303:816-818.
    [8]栾伟玲,涂善东.温差电技术的研究进展[J].科学通报,2004,49(11):1011-1019.
    [9]Kyono T., Suzuki R.O., Ono K. Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser [J]. IEEE Transactions on Energy Conversion,2003,18(01):330-334.
    [10]Masahide M., Michio M., Masaru O. Thermoelectric generator utilizing automobile engine exhaust gas [J]. Thermal Science and Engineering,2001,09(02):17-18.
    [11]赵建云,朱冬生,周泽广,等.温差发电技术的研究进展及现状[J].电源技术,2010,134(3):310-313.
    [12]贾阳,任德鹏.温差发电器中热电材料物性的影响分析[J].电源技术,2008,32(4):252-256.
    [13]任德鹏,贾阳.温差发电器工作特性的数值研究[J].航天器工程,2008,17(4):56-61.
    [14]周国印,毕小平,吕良栋,等.温差发电用于坦克红外抑制的试验研究[J].激光与红外,2011,41(4):412-415.
    [15]Sun Y., Wang C.L., Wang H.C., et al. Yttrium-Doped Effect on Thermoelectric Properties of Lao.iSro.gTiOs [J]. Ceramics, J. Mater. Sci.,2011,46:5278-5281.
    [16]Peng H., Wang C.L., Li J.C., et al. Lattice dynamic properties of BaSi2and BaGe2from first principle calculations [J]. Phvs. Lett. A,2010,374:3797-3800.
    [17]Deng L., Ma H.A., Su T.C., et al. Enhanced thermoelectric properties in Co4Sb12-xTex alloys prepared by HPHT [J]. Materials Letters,2009,63:2139-2141.
    [18]Du Z.L., Zhu T.J. and Zhao X.B. Enhanced Thermoeleetric properties of Mg2Si0.58Sn0.42compounds by Bi doping [J]. Materials Letters,2012,66(1):76-78.
    [19]何元金,陈宏,陈默轩.温差发电——一种新型绿色的能源技术[J].工科物理,2000,10(2):36-41.
    [20]郑艺华,马永志.温差发电技术及其在节能领域的应用[J].节能技术,2006,24(2):142-146.
    [21]汤广发,李涛,卢继龙.温差发电技术的应用和展望[J].制冷空调与电力机械,2006,27(112):8-11.
    [22]王婵,周泽广,区煜广,等.温差发电器的研究进展[J].电测与仪表,2010,47(532):40-44.
    [23]朱冬生,吴红霞,漆小玲,等.太阳能温差发电技术的研究进展[J].电源技术,2012,136(3):431-434.
    [24]Paul. H. Egli. Thermoelectricity [M]. London,1956.
    [25]HEIKES-URE. Thermoelectricity:Science and Engineering [M]. London Press,1995.
    [26]徐德胜.半导体制冷与应用技术[M].上海交通大学出版社,1999:11-35.
    [27]高敏,张景韶,Rowe D M.温差电转换及其应用[M].北京:兵器工业出版社,1996.
    [28]武桂玲,郁济敏.温差发电器热电材料的研究进展[J].电源技术,2009,33(8):740-710.
    [29]张建中编著.温差电技术[M].中国电子科技集团公司第十八研究所,2008.
    [30]黄志勇,吴知非,周世新,等.温差发电器及其在航天与核电领域的应用[J].原子能源技术,2006,(38):42-47.
    [31]Ghumaty S., Bass J.C., Elsner N B. Quantum well thermoelectric devices and applications [C]. Proceedings of the22nd international conference on thermoelectrics, La Grande Motte. France,2003,563-566.
    [32]Rinehart G.H. Design characteristics and fabrication of radioisotope heat sources for space missions [J]. Progress in Nuclear Energy,2001,39:305-319.
    [33]Uemura K.I. History of thermoelectricity development in Japan[J]. Journal of Thermoelectricity,2002,3:7-16.
    [34]Masahide M., Michio M., Masaru O.. Thermoelectric generator utilizing automobile engine exhaust gas [J]. Thermal Science and Engineering,2001,9:17-18.
    [35]Lertsatitthanakorn C., Khasee N., Atthajariyakul S., etal. Performance analysis of a double-pass thermoelectric solar air collector [J]. Solar Energy Materials&Solar Cells,2008,92:1105-1109.
    [36]Xie Ming, Gruen D.M. Potential Impact of ZT=4Thermoelectric Materials on Solar Thermal Energy Conversion Technologies [J]. J. Phys. Chem. B,2010,114:14339-14342.
    [37]AMATYA R., RAM R.J. Solar thermoelectric generator for micropower applications [J]. Electronic Materials,2010,39(9):1735-1740.
    [38]Telkes M. Solar thermoelectric generators [J]. Journal of Applied Physics,1954,25(6):765-777.
    [39]Montes M.J., Abanades A., Martine-Val J.M. Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil, water/steam or molten salt as heat transfer fluids[J]. Journal of Solar Engineering,2010,132(2):021001.1-021001.7.
    [40]Benz N., Graft W., Hacker Z., et al. Advances in receiver technology for parabolic troughs [C]. Proceedings of14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, USA,2008:4-7.
    [41]Eck M., Bahl C., Barthing K.H., et al. Direct steam generation in parabolic troughs at500C-a German-Spanish project targeted on component development and system design[C]. Proceedings of14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, USA,2008.
    [42]Zarza E., Lopez C., Camara A., et al. Almeria GDV: the first solar power plant with direct stem generation [C]. Proceedings of14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, USA,2008.
    [43]KHONKAR H.E.I., SAYIGH A.A.M. Optimization of the tubular absorber using a compound parabolic concentrator [J]. Renewable Energy,1995,6(1):17-21.
    [44]刘磊,张锁良,马亚坤,等.平板太阳能集热热电器件建模及结构优化[J].物理学报,2013,62(3):038802-1-038802-6.
    [45]Moghaddas M.H., Cobble M.H. Experimental and theoretical analysis of a thermoelectric generator [C]. The1st European Conference on Thermoelectrics. Rowe DM, London:Peter Peregrinus Ltd,1988:370-377.
    [46]Naito H., Kohsaka Y., Cooke D., et al. Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system [J]. Solar Energy,1996,58(4-6):191-195.
    [47]Vorobiev Y., Gonzalez-Hernandez J., Vorobiev P., et al. Thermal-photovoltaic Solar Hybrid System for Efficient Solar Energy Conversion [J]. Solar Energy,2006,(80):170-176.
    [48]陈允成.半导体温差发电器应用的研究[D].厦门:厦门大学,2003.
    [49]张宁.太阳能热电-光电复合发电系统的发电功率与效率模型[D].武汉:武汉理工大学,2007.
    [50]杨天麒.太阳能热电发电系统的热效率和火用效率研究[D].武汉:武汉理工大学,2007.
    [51]杨天麒.太阳能热电-光电复合发电系统的热力学分析与结构优化[D].武汉:武汉理工大学,2011.
    [52]赵媛媛.集热式太阳能温差发电装置的研究[D].成都:电子科技大学,2010.
    [53]LI PENG, CAI LANLAN. Design of a Concentration Solar Thermoelectric Generator [J]. ELECTRONIC MATERIALS,2010,(39):1522-1530.
    [54]成松,刘晓晖,成佰新,等.高倍聚光光伏的系统构成概述[J].太阳能,2010,(7):29-32.
    [55]Maneewan S., Khedari J., Zeghmati B., et al. Investigation on generated power of thermoelectric roof solar collector [J]. Renewable Energy,2004,29(01):743-752.
    [56]Hasebe M., Kamikawa Y., Meiarashi S. Thermoelectric Generators Using Solar Thermal Energy in Heated Road Pavement [C]. The25th International Conference on Thermoelectrics, Vienna Austria,2006,697-700.
    [57]Agbossou Amen, Zhang Qi, Sebald Gael, et al. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I:Theoretical analysis [J]. Sensors and Actuators A:Physical,2010,163(1):277-283.
    [58]Agbossou Amen, Zhang Qi, Sebald Gael, et al. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II:Experimental analysis [J]. Sensors and Actuators A:Physical,2010,163(1):284-290.
    [59]宋祺鹏,尹忠东,单任仲,等.太阳能驱动温差发电技术[J].电气时代,2008,09:90-91.
    [60]Huang T.C. Waste heat recovery of Organic Rankine Cycle using dry fluids [J]. Energy Conversion and Management,2001,42(5):539-553.
    [61]刘建国,王建华,马军民,等.化工厂生产系统余热资源调研[J].中国氯碱,2012,(9):36-41.
    [62]于菲.浅谈余热回收技术在工业领域的应用[J].资源节约与环保,2012,(2):72-75.
    [63]周伏秋.工业余热资源开发利用大有可为[J].宏观经济管理,2012,9:43-44.
    [64]Borsukiewicz-Gozdur, Aleksandra. Dual-fluid-hybrid power plant co-powered by low-temperature geothermal water [J]. Geothermics,2010,39(2):170-176.
    [65]YAMAMOTO TAKAHISA, FURUHAFA TOMOHIKO, ARAINORIO, et al. Design and testing of the Organic Rankine Cycle [J]. Energy,2001,26(3):239-251.
    [66]Kim NJ., Kim C.N., Chun W. Using the condenser effluent from a nuclear power plant for ocean thermal energy conversion [J]. International Communications in Heat and Mass Transfer,2009,36(10):1008-1013.
    [67]Dipippo R. Ideal thermal efficiency for geothermal binary plants [J]. Geothermics,2007,36(3):276-285.
    [68]Wu C., Schulden W.H. Maximum obtainable specific power of high temperature waste heat engine [J]. Heat Recovery Systems&CHP,1995,15:13-17.
    [69]Wu Chih. Analysis of waste-heat thermoelectric power generators [J]. Applied Thermal Engineering,1996,16(1):63-69.
    [70]LaGrandeur J., Crane D., Hung S., et al. Automotive waste heat conversion to electric power using skutterudite, TAGS, PbTe and BiTe [C]. The25th International conference on thermoelectrics, IEEE,2006:343-48.
    [71]Crane D.T., Jackson G.S. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery [J]. Energy Conversion and Management,2004,45:1565-1582.
    [72]Smith K., Thornton M. Feasibility of thermoelectrics for waste heat recovery in hybrid vehicles [C]. Proceedings of the23rd International Electric Vehicle Symposium, Paper.2007(266).
    [73]Butcher C.J., Reddy B.V. Second law analysis of a waste heat recovery based power generation system [J]. International Journal of Heat and Mass Transfer,2007,50:2355-2363.
    [74]Vanderpool Damien, Yoon Jeong Hwan, Pilon Laurent. Simulations of aprototypical device using pyroelectric materials for harvesting waste heat [J]. International Journal of Heat and Mass Transfer,2008,51(21):5052-5062.
    [75]Yu Chuang, Chau K.T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking [J]. Energy Conversion and Management,2009,50:1506-1512.
    [76]Hsiao Y.Y., Chang W.C., Chen S.L. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine [J]. Energy,2010,35:1447-1454.
    [77]SAQR K.M., MANSOUR M.K. and MUSA M.N. Thermal design of automobile exhaust based thermoelectric generators:objectives and challenges [J]. International Journal of Automotive Technology,2008,9(2):155-160.
    [78]Nuwayhid R.Y., Hamade R. Design and testing of a locally made loop-type thermosyphonic heat sink for stove-top thermoelectric generators [J]. Renewable Energy,2005,30:1101-1116.
    [79]Min G., Nuwayhid R.Y, Rowe D.M. Low Cost Stove-Top Thermoelectric Generator [J]. Renewable Energy,2003,28:205-222.
    [80]Nuwayhid R.Y, Shihadeh A., Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling [J]. Energy Conversion and Management,2005,46:1631-1643.
    [81]Champier D., Bedecarrats J.P., Rivaletto M., et al. Thermoelectric power generation from biomass cook stoves [J]. Energy,2010,35:935-942.
    [82]Yang J., Stabler F.R. Automotive Applications of Thermoelectric Materials [J]. Journal of electronic materials,2009,38(7):1245-1251.
    [83]郭殉.汽车尾气温差发电效率的影响因素[J].汽车工程师,2011,(6):45-48.
    [84]Ikoma K., Munekiyo M., Furuya K. Thermoelectric module and generator for gasoline engine vehicle [C]. Proc.17th Int. Conf. Thermoelectrics IEEE, Nagoya, Japan,1998,25(01):464-467.
    [85]Thacher E.F., Helenbrook B.T., Karri M.A., et al.Testing of an automobile exhaust thermoelectric generator in a light truck [J]. Journal of Automobile Engineer,2007,221(01):95-107.
    [86]Crane D.T., Bell L.E. Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source [J]. Journal of Energy Resources Technology. MA-RCH2009,131.(01):01-08.
    [87]郭殉.汽车排气废热温差发电系统与发动机消声器一体化设计研究[D].武汉:武汉理工大学,2011.
    [88]凌凯.基于汽车尾气废热温差发电的42V动力系统建模与仿真[D].武汉:武汉理 工大学,2011.
    [89]孙强.基于CFD的车用尾气余热温差发电装置流场分析及优化[D].武汉:武汉理工大学,2012.
    [90]陈昌升.汽车发动机废气余热发电系统仿真与研究[D].武汉:武汉理工大学,2012.
    [91]李校杨.汽车尾气余热温差发电装置模态分析[D].武汉:武汉理工大学,2012.
    [92]于广,黄维军,张征,等.车用内置式温差发电装置换热性能的数值模拟[J].节能技术,2008,26(5):436-442.
    [93]刘红武,张征.新型发动机排气温差发电装S结构探索[J].节能技术,2006,24(140):507-508.
    [94]董桂田.汽车发动机排气废热的温差发电[J].北京节能,1997,(4):7-9.
    [95]Kish M., Nemoto H., Hanao T., et al. Microthermoelectric modules and their application to wristwatches as an energy sources [C]. Proceedings of18th International Conference on Thermoelectrics, Baltimore, USA,1999,301-307.
    [96]Venkatasubramanian Rama, Siivola Edward, Colpitts Thomas, et al. Thin-film thermoelectric devices with high room-temperature figures of merit [J]. Nature,2001,413:597-602.
    [97]SNYDER G.J., LIM J.R., HUANG C.K., et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process [J]. Nature Materials,2003,2:528-531.
    [98]Koji Miyazakil, Masayuki Takashiri, Jun Ichiro Kuro. Development of a Microgenerator Based on Bi2Te3Thin Films [C]. Proceedings of27th International Conference on Thermoelectric, South Korea,2008:294-298.
    [99]Kurosaki J., Yamamoto A., Tanaka S., et al. Fabrication and evaluation of a thermoelectric micro device on a free standing substrate [J]. Journal of electronic materials,2009,38(7):1326-1330.
    [100]Su J., Vullers R.J.M., Goedbloed M., et al. Thermoelectric energy harvester fabricated by Stepper [J]. Microelectronic Engineering,2010,87:1242-1244.
    [101]HARALD B., JOACHIM N., ALEXANDER G., et al. New thermoelectric components using microsystem technologies [J]. Journal of Microeletromechanical Systems,2004,13(3):414-420.
    [102]Wang Ziyang, Leonov Vladimir, Fiorini Paolo, et al. Realization of a wearable miniaturized thermoelectric generator for Human body applications [J]. Sensors and Actuators A,2009,156:95-102.
    [103]孔秀华.WD615型发动机排气余热发电装置集的设计[D].大连:大连海事大学,2010.
    [104]张征,曾美琴,司广树.温差发电技术及其在汽车发动机排气余热利用中的应用[J].能源技术,2004,25(3):120-123.
    [105]Niu Xing, Yu Jianlin, Wang Shuzhong. Experimental study on low-temperature waste heat thermoelectric generator [J]. Journal of Power Sources,2009,188:621-626.
    [106]王长善.几种新能源发电技术[J].农村电气化,2008,(5):53-54.
    [107]Callen H.B. Thermodynamics and an Introduction Thermostatics(2nd ed)[M]. New York:Wiley,1985.
    [108]Bejan A. Advanced Engineering Thermodynamics [M]. New York:Wiley,1988.
    [109]Bell L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science,2008,321(12):1457-1461.
    [110]林比宏.太阳能半导体温差发电器的输出功率[J].泉州师范学院学报,2002,20(6):20-25.
    [111]陈金灿,严子俊.热电器件中的汤姆逊热[J].西北建筑工程学院学报,1996,03:105-107.
    [112]陈金灿,严子俊.半导体温差发电器性能的优化分析[J].半导体学报,1994,15(2):123-129.
    [113]吴金清,陈金灿,严子俊.半导体温差发电器的输出功率[J].厦门大学学报,1996,35(2):210-213.
    [114]林比宏,陈晓航,陈金灿.太阳能驱动半导体温差发电器性能参数的优化设计[J].太阳能学报,2006,27(10):1021-1026.
    [115]潘玉灼,林比宏.结构参数与不可逆性对热电发电器性能的影响[J].泉州师范学院学报(自然科),2006,24(6):13-18.
    [116]贾磊,陈则韶,胡,等.半导体温差发电器件的热力学分析[J].中国科技大学学报,2004,34(6):684-687.
    [117]屈建,李茂德,乐伟,等.半导体温差发电器的工作性能优化[J].低温工程,2005,(02):20-23.
    [118]Morelli D.T., Caillat T., Flourial J.P., et al. Low-temperature transport properties of p-type CoSb3[J]. Phys. Rev. B,1995,51(15):9622-9628.
    [119]Mateeva N., Niculescu H., Schlenoff J., et al. Correlation of Seekbeck coefficient electric conductivity in polyaniline and polypyrrole [J]. J. APPL. Phys.,1995,83(6): 3111-3171.
    [120]余柏林,唐新峰,祁琼,等.CoSb3纳米热电材料的制备及热传输特性[J].物理学报,2004,(53):3130-3135.
    [121]Glatz W., Muntwyler S., Hierold C. Optimization and fabrication of thick flexible polymer based microthermoelectric generator [J]. Sensors and Actuators:A,2006,132:337-345.
    [122]Stevens J.W. Optimal design of small△T thermoelectric generation systems [J]. Energy Conversion and Management,2001,42:709-720.
    [123]Chen L.G., Gong J.Z., Sun F.R., et al. Effect of heat transfer on the performance of thermoelectric generators [J]. International Journal Thermal Science,2002,41:95-99.
    [124]Freunek M., Muller M., Ungan T., et al. New physical model for thermoelectric generator [J]. Journal of Electronic Materials,2009,38(7):1214-1220.
    [125]Singh Narendra, Kaushik S.C., Misra R.D. Exergetic analysis of a solar thermal power [J]. Renewable Energy,2000,(19):135-143.
    [126]Rfan Kurtbas, Aydin Durmus. Efficiency and exergy analysis of a new solar air heater [J]. Renewable Energy,2004,(29):1489-1501.
    [127]Joshi A.S., Tiwari A. Energy and exergy efficiencies of a hybrid photovoltaic-thermal(PV/T) air collector [J]. Renewable Energy,2006,11(013):1-19.
    [128]李伟江,李玉东,腊冬,等.低温下半导体温差发电器火用分析[J].能源技术,2006,27(5):198-201.
    [129]Astrain D., Vian J.G., Martinez A., et al. Study of the influence of heat exchangers' thermal resistances on a thermoelectric generation system [J]. Energy,2010,35:602-610.
    [130]张华俊,陈浩,王俊,等.冷、热端温度对半导体热电堆发电性能影响的初步研究[J].太阳能学报,2001,22(2):148-152.
    [131]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006,14-15.
    [132]柳金海.热工仪表与热力工程便携手册[M].北京:机械工业出版社,2007:76.
    [133]Rowe D.M., Gao Min. Evaluation of thermoelectric modules for power generation [J]. Journal of Power Sources,1998,73:193-198.
    [134]赵建云.热水器烟气余热温差发电及系统优化[D].广州:华南理工大学,2010.
    [135]Chang Y.W., Chang Chih-Chung, Ke Ming-Tsun, et al. Thermoelectric air-cooling module for electronic devices [J]. Applied Thermal Engineering,2009,29:2731-2737.
    [136]Gou X.L., Xiao H., Yang S.W. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system [J]. Applied Energy,2010,87:3131-3136.
    [137]Yu Jianlin, Zhao Hua. A numerical model for thermoelectric generator with the parallel-plate heat exchanger [J]. Journal of Power Sources,2007,172:428-434.
    [138]Suzuki R.O., Sasaki Yuto, Fujisaka Takeyuki, et al. Effects of fluid directions on heat exchange in thermoelectric generators [J]. Journal of ELECTRONIC MATERIALS,2012,41(6):1766-1770.
    [139]Astrain D., Vian J.G., Martinez A., et al. Study of the influence of heat exchangers' thermal resistances on a thermoelectric generation system [J]. Energy,2010,35(2):602-610.
    [140]江帆,黄鹏.FLUENT高级应用与实例分析[J].北京:清华大学出版社,2008.
    [141]Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering,1976,16(2):359-368.
    [142]Petukhov B.S., Popov V.N. Theoretical calculation of heat exchange and frictional resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties[J]. High Temperature,1963,1:69-83.
    [143]孙纪宁.ANSYS CFX对流传热数值模拟基础应用教程[M].北京:国防工业出版社,2010:189.
    [144]杨胜.螺旋形变管强化传热与流阻特性研究[D].上海:华东理工大学,2012.
    [145]Guo J.F., Xu M.T., Cheng L. Numerical investigations of circular tube fitted with helical screw-tape inserts from the viewpoint of field synergy principle[J]. Chemical Engineering and Processing:Process intensification,2010,49:410-417.
    [146]张宁,李鹏,肖金生,等.热电发电器件的输出功率和效率的解析模型[J].武汉理工大学学报,2008,30(1):9-12.
    [147]蔡永华,李鹏,翟鹏程,等.接触热阻和接触电阻对热电器件效率的影响[J].武汉理工大学学报,2009,31(23):27-30.
    [148]Chen M., Lu S.S., Liao B. On the figure of merit of thermoelectric generators [J]. Journal of energy resources technology,2005,127(1):37-41.
    [149]Chen L., Sun F., Wu C. Thermoelectric-generator with linear phenomenological heat-transfer law [J]. Applied energy,2005,81(4):358-364.
    [150]Alata M., Al-Nimr M.A., Naji M. Transient Behavior of a Thermoelectric Device Under the Hyperbolic Heat Conduction Model [J]. International Journal of Thermophysics,2003,24(6):1753-1768.
    [151]贾磊,胡凡,陈则韶.温差发电的热力过程研究及材料的塞贝克系数测定[J].中国工程科学,2005,7(12):31-34.
    [152]吴丽清,陈金灿,严子浚.半导体温差发电器的输出功率[J].厦门大学学报(自然科学版),1996,35(2):210-213.
    [153]Du Qungui, Jiang Xinqiang, Zhang Xiaodan, etal. Influence of structure parameters on performance of the thermoelectric module[J]. Journal of Wuhan University of Technology-Mater.2011,26(3);464-468.
    [154]蒋新强.汽车尾气半导体温差发电系统研究[D].广州:华南理工大学,2011.
    [155]张晓丹.圆筒式汽车尾气温差发电系统研究[D].广州:华南理工大学,2011.
    [156]宋瑞银,李伟,杨灿军,等.微小型热电发电器建模及优化设计研究[J].太阳能学报,2006,27(6):554-558.
    [157]宋瑞银,李伟,杨灿军,等.微型热电发电器的性能测试分析[J].中国机械工程,2006,17(20):2159-2162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700