用户名: 密码: 验证码:
无铁芯高温超导感应悬浮电机的电磁机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:磁悬浮技术由于其运作无机械接触的优势,具有噪音小、易维护、可靠性高的优点,在交通运输、特种电机、机器人、金属加工等很多场合得到了应用。
     本文提出了一种新型的磁悬浮方案—无铁芯高温超导感应悬浮电机,采用电动式磁悬浮原理,通过在初级绕组中通入交变电流,在悬浮气隙中产生运动的磁场,与其在次级导体板中感应出涡流相互作用产生悬浮力和水平力。这一磁悬浮方案结构稳定、控制简单,能够实现稳定的静止磁悬浮和运行导向,有较为广阔的应用范围。但是,该类电机特有的初级次级均无铁心结构,无法照搬传统电机的研究方法与经验,其研究具有开拓性和前沿性。为能够准确分析这一全新的磁悬浮电机,本文提出了一整套分析方法,对该电机的电磁场、力特性、电感参数进行了分析。
     利用电磁场理论分析了电动式磁悬浮电机内部的电磁关系和工作原理。对永磁电动式磁悬浮和旋转磁场电动式磁悬浮电机进行了定量分析,得到了磁场解析模型。研究了结构参数对电动式磁悬浮性能的影响。并比较了几种电动式磁悬浮的优缺点,研究结果表明旋转磁场电动式磁悬浮较永磁电动式磁悬浮有一定的优势。
     针对高温超导线圈的物理特性,考虑到初级绕组无铁芯,磁场无“路”可走,只能通过空气闭合,漏磁较大,在对永磁HALBACH阵列研究的基础上,提出了无铁芯的电磁HALBACH阵列,分析表明无铁芯的电磁HALBACH阵列也具有永磁HALBACH阵列同样的特性。在此基础上,提出了一种新型的可以产生运动磁场的高温超导电磁HALBACH阵列。
     应用傅里叶分解的磁场分析方法,对运动磁场电磁HALBACH阵列磁场的基波和谐波分量进行了分析,该方法可分析包括绕组电流层在内的所有区域,便于磁场谐波分析,利用该方法得到了磁场解析模型。研究了电磁HALBACH阵列的绕组排列方式对气隙磁场的影响,研究结果表明本文提出的运动磁场电磁HALBACH阵列具有很好的磁场特性。
     根据电机的结构特点,在对电磁场模型进行简化的基础上,采用解析法得到了高温超导电磁HALBACH感应悬浮电机的电磁模型。对不同初级结构的无铁芯电机产生的悬浮力进行了比较,并将有限元法与解析法得到的悬浮力结果进行了对比。最后就高温超导无铁芯感应悬浮电机的电路模型参数进行了分析计算。
     针对高温超导电磁HALBACH感应悬浮电机的磁路在横向和纵向的开断,导致气隙磁场在横向和纵向均受到影响的问题,基于磁场解析模型,建立了新的考虑横向和纵向边端效应的模型,该模型同时考虑了横向,纵向边端效应,气隙和次级肌肤效应对电机的影响,得到了考虑边端效应的悬浮力电感参数等特性。
     设计制作了铜绕组样机,并对样机参数和力特性进行了测试。样机悬浮力和参数的实验结果验证了本文提出的解析计算模型是准确的。
     总之,通过对无铁芯高温超导感应悬浮电机的磁路、电路及性能特性进行分析研究,建立了一套分析高温超导无铁芯感应悬浮应电机的理论和方法,并通过铜绕组试制样机的制造和试验,进一步验证了这些理论和方法的准确性,这对无铁芯高温超导感应悬浮电机的设计和应用有很好的参考价值。
Magnetic levitation could operate contactlessly, has the advantages of low noise, low maintenance and high reliability, it could be used in transportation, special motors, robot and metal working.
     A new configuration of maglev system-High Temperature Superconducting Coreless Induction Maglev Motor (HTS CIMM) is proposed in this dissertation,the system uses electro-dynamic levitation principle, moving magnetic field (MMF) in its air-gap is generated by3-phase AC current in the primary windings,the interaction between MMF and secondary eddy current inducted by MMF produces lift force and horizontal force. This system's structural is stable,its control is simple,it can realize intrisic stable static levitation and guidance, has a widely application prospect.It is not suitable to copy indiscriminately the research method and experience of the traditional motor for HTS CIMM.The research on the HTS CIMM a pioneering study and advanced subject,is in theory exploration stage at present.A series of analyzing tools was proposed to analyze the motor's electromagnetic field,force characteristics, inductance parameters and the equivalent circuit.
     The fundamental principle of the HTS CIMM is demonstrated.By using the electromagnetic theory the electromagnetic relationship is formulated.The magnetic field is formulated by analyzing permanent magnet electro-magnetic levitation and rotating magnetic field electro-magnetic levitation.The influence of the structural parameters on the performance of the HTS CIMM is presented.Compare the advantages and disadvantages of kinds of maglev motors,the result shows that the rotating magnetic field has more advantages.
     The characteristics of the HTS winding coils are analyzed.According to the features of the HTS winding coils and considering the primary winding without core, electromagnetic HALBACH array is proposed by analyzing the permanent magnet HALBACH array.The results show that Coreless electromagnetic HALBACH and PM Halbach magnet array have the same characteristics.Based on the above analysis, a new type of moving coreless HTS electromagnetic HALBACH array is proposed.
     A kind of magnet field analytical method based on Fourier decomposition is proposed.This method can be used in all areas including winding current layers and is convenient for harmonic analysis of magnet field.A study is made on the variations of air gap magnetic field with different forms of windings.The results show that coreless electromagnetic HALBACH is more effective in improving air gap magnetic field distribution.
     According to the features of the machine structure, the computation model is simplified, and the electromagnetic field of the HTS CIMM is computed by analytical calculation.The comparison of the analytical calculation result and FEM result has confirmed the correctness of this method. The Equivalent Circuit of the HTS CIMM is obtained.
     The fundamental difference between a rotary motor and HTS CIMM is the open air-gap which affects the transverse and longitudinal magnetic fields.Based on the magnet field analytical method, a new type of theory, which includes simultaneously the longitudinal and transverse effects, together with the effect of the effect of a large air-gap and the secondary skin effect, is proposed. The lift force, horizontal force, and the power factor, are obtained.
     According to the manufacture and the test of the prototype motor with copper windings, the force characteristics and Parameters of prototypes were tested. The experimental results of lift force and Parameters have proved the correctness of the computation and analysis above.
     In short, through the study of the magnetic circuit, the electrical circuit and the performance of the HTS CIMM, the design theory and the analysis method of the HTS CIMM are set. According to the manufacture and the test of the prototype motor with copper windings, the accuracy of these theories and methods are validated. And it has a good reference value for the design and the application of the HTS CIMM.
引文
[1]吴祥明.磁浮列车[M].上海:上海科学技术出版社.2003:47-52
    [2]Brian D.Sands. The Transrapid Transportation System:A Technical and Commercial Assessment [D]. Transportation Center, University of California, Berkly, California, USA.March 1992
    [3]Matoharu Ono, Shunsaku Koga, Hisao Ohtsuki. Japan's Superconducting Maglev Train[J]. IEEE Instrumental and Measurement Magazine. March 2002, pp9-15
    [4]Kazuo Sawada. Outlook of the Superconducting Maglev [J]. Proceedings of the IEEE. Vol.97, No.11, November 2009, pp 1881-1885
    [5]S.Suzuki, M.Kawashima, YHosoda, T.Tanida. HSST-03 System [J]. IEEE Transactions on Magnetics. Vol.MAG-20, No.5, September 1984, pp 1675-1677
    [6]Yoshio Hikasa, Yutaka Takeuchi. Detail and Experimental Results of Ferromagnetic Levitation System of Japan Air Lines HSST-01/02 Vehicles [J]. IEEE Transactions on Vehicular Technology. Vol.VT-29, No.l,1980, pp35-41
    [7]William A.Jocobs. Magnetic Launch Assist-NASA's Vision for the Future [J]. IEEE Transactions on Magnetics, Vol.37, No.1, January 2001, pp55-57
    [8]Doh Young Park, Byung Chun Shin, Hyungsuk Han. Korea's Urban Maglev Program [J]. Proceedings of IEEE, Vol.97, No.11, November 2009, pp1886-1891
    [9]严陆光,高速磁浮列车技术及在我国客运交通中的战略地位,电工新技术1999.4:17-22
    [10]中华网.磁悬浮列车论坛.2004。
    [11]中国科学院电工研究所磁悬浮专题组,日本超导磁浮铁道的开发经过,2000。
    [12]Luguang Yan, Development and Application of the Magnet Technology in China, MT 15 Conference Oct.1997, Beijing.
    [13]Jiasu Wang, Suyu Wang, Changyan Deng, etc. Laboratory-Scale High Temperature Superconducting Maglev Launch system[J]. IEEE Transactions on Applied Superconductivity, Vol.17, No.2, June 2007, pp2091-2094
    [14]Jiasu Wang, Suyu Wang, Jun Zheng. Recent Development of High Temperature Superconducting Maglev System in China [J]. IEEE Transactions on Applied Superconductivity, Vol.19, No.3, June 2009,2142-2147
    [15]Luguang Yan. Development and Application of the Maglev Transportation System [J]. IEEE Transactions on Applied Superconductivity, Vol.18, No.2, June 2008, pp92-99
    [16]张劲松,康伟.Bi系高温超导线材的发展历史及应用现状[J].新材料产业.2004.7:65-71
    [17]刘黎明,杨培志,黄宗坦.高温超导线(带)的研究进展[J].超导技术.2005.34(1):48-67
    [18]王珏,李凤华,攀占国等.第二代YBCO超导带材的主要制备方法与研究现状[J].材料与冶金学报.2005.4(5):215-219
    [19]关旸.超导感应电机的研究[D].浙江.浙江大学.2008:1-14
    [20]Edick J D, Schiferl R F. High temperature superconductivity applied to electric motors [J].IEEE Transactions on Applied Superconductivity.1992.2(4):189-1931
    [21]Aized D, Gamble B. B, Sidi-Yekhlef A, Voccio J.P.Status of 1,000 hp HTS motor development[J]. IEEE Transactions on Applied Superconductivity.1999.9(2):1197-1200
    [22]庸跃进,李敬东,潘垣,王惠龄,程时杰.超导旋转电机-发电机和电动机的研究现状[J].电力系统自动化.2001.25(4):72-76
    [23]肖立业,林良真.超导电力技术即将带来电力工业的革命[J].2001.4(25):72-76
    [24]Weinstein R, Sawh R, Crapo A. An experimental generator using hightemperature superconducting quasi-permanent magnets [J].IEEE Transactions on Applied Superconductivity. 1995.5(2):441-444
    [25]Al-Mosawi M K, Beduz C, Goddard K, et al. al. Design of a 100 kVA high temperature superconducting demonstration synchronous generator [J]. Physica C:Superconductivity and its Applications,2002,372-376:1539-1542
    [26]Fee M, Staines M P, Buckley R G, et al. Calculation of AC loss in an HTS wind turbine generator [J].IEEE Transactions on Applied Superconductivity.2003.13(2):2193-2196
    [27]Kim S H, Hahn S Y. Analysis and design of an induction generator with asuperconducting bulk magnet rotor.IEEE Transactions on Applied Superconductivity.2000.10(1):931-934
    [28]Jungwook Sim, Kwangyoun Lee, et al. Development of a HTS squirrel cage induction motor with HTS rotor bars [J]. IEEE Transactions on Applied Superconductivity.2004.14 (2):916-919
    [29]Jungwook Sim, Myungjin Park, et al. Test of an induction motor with HTS wire at end ring and bars [J]. IEEE Transactions on Applied Superconductivity.2003.13(2):2231-2234
    [30]J. Kellers, P. Behrens, et al.Development of HTS Linear Motors for Industry [J]. IEEE Transactions on Applied Superconductivity.2007.17(2):2121-2124
    [31]Taketsune Nakamura, Yoshio Ogama, Hironori Miyake. Performance of Inverter Fed HTS Induction-Synchronous Motor Operated in Liquid Nitrogen [J]. IEEE Transactions on Applied Superconductivity.2007.17(2):1615-1618
    [32]J.D.Edick, R.F. Schiferl, H.E. Jordan. High temperature superconductivity applied to electric motors. IEEE Transactions on Applied Superconductivity.1992.2(4):189-194
    [33]Taketsune Nakamura, Hironori Miyake, et al. Fabrication and Characteristics of HTS Induction Motor by the Use of Bi-2223/Ag Squirrel-Cage Rotor [J]. IEEE Transactions on Applied Superconductivity.2006.16(2):1469-1472
    [34]郑陆海,金建勋.高温超导电机的发展与研究现状[J].电机与控制应用.2007.31(3):1-6
    [35]T Nakamura, Y Ogama, et al. Novel rotating characteristics of a squirrel-cage-type HTS induction/synchronous motor [J]. Superconductor Science and Technology.2007.20:911-918
    [36]G Morita, T Nakamura, I Muta. Theoretical analysis of an YBCO squirrel-cage type induction motor based on an equivalent circuit [J]. Superconductor Science and Technology.2006.19: 473-478
    [37]Taesoo, Song, Akira Ninomiya, Takeshi Ishigohka. Experimental Study on Induction Motor with Superconducting Secondary Conductors [J]. IEEE Transactions on Applied Superconductivity. 2007.17(2):1611-1614
    [38]Youguang Guo, Wei Xu, Jianguo Zhu, et al. Design and Analysis of a Linear Induction Motor for a Prototype HTS Maglev Transportation System [J]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. Chengdu, China.2009. Chengdu. IEEE.2009:81-84
    [39]Jin Jianxun, Guo Youguang, Chen Jiaxin, Zheng Luhai, Zhu Jianguo. HTS Levitation and Transportation with Linear Motor Control [J]. Proceedings of the Chinese Control Conference. Zhangjiajie, Hunan, China.2007. Zhangjiajie. IEEE.2007:10-14
    [40]Luhai Zheng, Jianxun Jin. Investigation of HTS Bulk Magnet Linear Synchronous Motors [J]. Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. Chengdu, China.2009. Chengdu. IEEE.2009:17-21
    [41]Youguang Guo, Jiaxin Chen, Jianguo Zhu, et al. Development of a PM Linear Motor for Driving HTS Maglev Vehicle [J]. Proceeding of International Conference on Electrical Machines and Systems. Seoul, Korea.2007. Seoul. IEEE.2007:824-827
    [42]B Oswald, K-J Best, T Maier, M Soell, H C Freyhardt. Conceptual design of a SC HTS linear motor [J]. Superconductor Science and Technology.2004.17:445-449
    [43]Woo-Seok Kim, Sang-Yong Jung, Ho-Yong Choi, et al. Development of a Superconducting Linear Synchronous Motor [J]. IEEE Transactions on Applied Superconductivity.2002.12(1): 842-845
    [44]Kinjiro Yoshida, Hirokazu Matsumoto. Propulsion and Guidance Simulation of a High-Temperature Superconducting Bulk Ropeless Linear Elevator [J]. IEEE Transactions on Magnetics.2004.40(2):615-618
    [45]K. Yoshida, H. Matsumoto. Propulsion and guidance simulation of HTS bulk linearsynchronous motor taking into account E-J characteristic [J]. Physica C:Superconductivity and its Applications. 2003,392-396:690-695
    [46]K. Yoshida, H. Matsumoto. Design and simulation of HTS bulk linear synchronous motor [J]. Physica C:Superconductivity and its Applications,2002,378-381:833-837
    [47]A. Ishiyama, K. Hayashi. Design and Construction of a Superconducting Cylindrical Linear Induction Motor with AC Superconducting Primary Windings [J].IEEE Transactions on Applied Superconductivity.1999.9(2):1217-1220
    [48]Leidhold R., Mutschler P. Evaluation of Sensorless Methods for Synchronous-Linear-Motors by using a Magnetic Equivalent Circuit based Model [J]. Proceeding of International Conference on Electric Machines & Drives Conference. Antalya, Turkey.2007. Antalya. IEEE.2007:386-391
    [49]赵佳.高温超导直线感应电机设计研究[D].北京交通大学,中国,北京,2011年8月,24-36
    [50]朱熙.旋转磁场电动式磁悬浮系统的建模与控制[D].北京交通大学,中国,北京,2011年8月,111-114
    [51]Nobuo Fujii, Makoto Chida. Three Dimensional Force of Magnet Wheel with Revolving Permanent Magnets [J]. IEEE Transactions on Magnetics. Vol.33, No.5, September 1997, pp4221-4223
    [52]N.Fujii, S.Nonaka, G.Hayashi. Design of Magnet Wheel Integrated Own Drive [J]. IEEE Transactions on Magnetics. Vol.35, No.5, September 1999, pp4013-4015
    [53]Jonathan Bird. Thesis an Investigation into the Use of Electrodynamic Wheels for High-Speed for High-Speed Ground Transportation [D]. University of Wisconsin-Madison, Madison, Wisconsin, USA
    [54]Jonathan Bird, Thomas A.Lipo. A 3-D Magnetic Charge Finite-Element Model of an Electrodynamic Wheel [J]. IEEE Transactions on Magnetics, Vol.44, No.2, Feburary 2008,
    [55]Jonathan Bird, Thomas A.Lipo. Calculating the Force Created by an Electrodynamic Wheel Using a 2-D Steady-State Finite-Element Method [J]. IEEE Transactions on Magnetics, Vol.44, No.3, March 2008, pp365-372
    [56]周志祥.磁悬浮平面电机的有限元分析研究[D].华中科技大学,中国,北京,2011年5月,2-5
    [57]秦伟,范瑜,朱熙,吕刚,李硕,张晓东.永磁电动式磁悬浮装置的研究[J],电机与控制学报,2011,15(7):77-81
    [58]秦伟,范瑜,李硕等,轴向Halbach悬浮电机的磁场和力特性分析[J].电机与控制学报.
    [59]秦伟,范瑜等,非磁性次级感应悬浮电机磁场和力特性研究[J].电机与控制学报2011,15(8):1-6.
    [60]秦伟,范瑜,李硕等.电磁电动式磁悬浮装置的磁场分析和力特性研究[J],电机与控制学报.2012.16(1),67-71
    [61]秦伟,范瑜,方进.高温超导轴向磁通感应悬浮电机的磁场和特性分析[J]..电工技术学报
    [62]Qin Wei, Fan Yu, Fang Jin, Li Guoguo, Lv Gang. Characteristic and Magnetic Field Analysis of a HTS Axial-Flux Coreless Induction Maglev Motor [J]. Journal of Applied Physics,111,07E707 (2012).
    [63]李洪风.Halbach阵列永磁球形电动机三维磁场分析[D].天津大学,中国,天津,2008.7,1-14
    [64]Trumper, D.L, Design and analysis framework for linear permanent magnet machines [J]. IEEE Transactions on Industry AppL 1996.11(2):371-379
    [65]靳燕平.直线电机瞬态特性的场路耦合分析法[J].科技情报开发与经济.1998.8(6):45-47
    [66]Leidhold R., Mutschler P. Evaluation of Sensorless Methods for Synchronous-Linear-Motors by using a Magnetic Equivalent Circuit based Model [J]. Proceeding of International Conference on Electric Machines & Drives Conference. Antalya, Turkey.2007. Antalya. IEEE.2007:386-391
    [67]傅丰礼,唐孝镐.异步电动机设计手册[M].北京.机械工业出版社.2006:713-742
    [68]龙遐令.直线感应电动机的理论和电磁设计方法[M].北京.科学出版社.2006:167-184
    [69]倪光正,杨仕友等.工程电磁场数值计算[M].北京.机械工业出版社.2004:124-219
    [70]周赣.基于Halbach永磁阵列的高精度平面电机的研究[D].东南大学,中国,南京,2009.3,1-46
    [71]王骞.圆筒型横向磁场永磁直线电机电磁场与电磁力的研究[D].哈尔滨工业大学,中国,哈尔滨,2010.10,10-25
    [72]冯慈璋.电磁场[M].北京.高等教育出版社.1994.15-60
    [73]马信山.电磁场基础[M].北京.清华人学出版社.1994.
    [74]汤蕴璆.电机内的电磁场[M].北京.科学出版社.1981.193-241
    [75]章明涛.电机电磁场[M].北京机械工业出版社.1981.244-251
    [76]雷银照,时谐电磁场的解析方法[M].科学出版社,2000.
    [77]方进,郭明珠,李永亮,彭国民,李小汾,宋秀华,张永,扭绞和宽厚比对Bi-2223超导带交流损耗的影响,稀有金属材料与工程,2008,37(增刊4):296-300.
    [78]Richard L. Stop, The Analysis of Eddy Currents. Clarendon Press, Oxford,1974
    [79]Thomas W. Nehl, Bruno Lequesne. Nonlinear Two-Dimensional Finite Element Modeling of Permanent Magnet Eddy Current Couplings and Brakes [J]. IEEE Transactions on Magnetics, Vol.30, No.5, September 1994, pp3000-3003
    [80]D. Rodger, H. C. Lai and P. K. Vong. Finite Element Models of Eddy Current Brakes. CEM 2002, The Fourth International Conference on Computation in Electromagnetics.
    [81]Bruno Lequesne, Buyun Liu, Thomas W. Nehl.Eddy Current Machines with Permanent Magnets and Solid Rotors [J]. IEEE Transactions on Industry applications. Vol.33,No.5, September /October 1997, pp451-457
    [82]Hong Song and Nathan Ida, Modeling of velocity terms in 3D eddy current problems [J].IEEE Trans. on Mang. vol.28, March 1992, pp 1178-1181
    [83]S. Niikura, A. Kameari, "Analysis of eddy current and force in conductors with motion", IEEE Trans. on Mang. vol.28, March 1992.
    [84]Hideaki Tadano, Michiru Fujita, Tatsuo Take,"Levitational melting of several kilograms of metal with a cold cyucible", IEEE Trans. Mang. vol.30, No.6, Nov.1994.
    [85]OOI, B. -T., and WRITE, D. C. Traction and Normal Forces in the Linear Induction Motor. IEEE Trans.Power Appar. Syst.,1970.pp638-645
    [86]Masafumi Fujita, Tadashi Tokumasu and Toshiaki Yamada.3-Dimensional Electromagnetic Analysis and Design of an Eddy-Current Rail Brake System. IEEE Transactions on Magnetics, Vol.34,No.5, September 1998, pp3548-3551
    [87]王厚生.永磁电动式导体板磁悬浮列车轨道结构及相关研究[D].中国科学院电工所,中国,北京,2004.5.1-56
    [88]Sang-Baeck Yoon, Jin Hur, Dong-Seok Hyun.A Method of Optimal Design of Single-Sided Linear Induction Motor for Transit. IEEE Transactions on Magnetics.1997.33(5):4215-4217
    [89]M. Mirsalim, A. Doroudi, and J. S. Moghani.Obtaining the Operating Characteristics of Linear Induction Motors:A New Approach. IEEE Transactions on Magnetics.2002.38(2):1365-1370
    [90]Joon Hyuk Park, Jong Hyun Choi, Dong Ho Kim, and Yoon Su Baek.Parametric Design of the Levitation Mechanism for Maglev Planar Transportation Vehicle. IEEE Transactions on Magnetics. 2004.40(4):3069-3071
    [91]Yong-Joo Kim, Pan-Seok Shin, Do-Hyun Kang, Yun-Hyun Cho. Design and analysis of electromagnetic system in a magnetically levitated vehicle, KOMAG-01. IEEE Transactions on Magnetics.1992.28(5):3321-3323
    [92]王飞飞.考虑边端效应的直线感应电机磁场定向控制研究[D].西南交通大学.Z中国,四川,2009.6.5-30
    [93]K. Yoshida.New transfer-matrix theory of linear induction machines, taking into account longitudinal and transverse ferromagnetic end effects. IEEPROC, Vol.128, No. 5.1981.9.PP.225-236
    [94]Kinjiro Yoshida, Itsuo Kawamura. A method of two-dimensional analysis for short primary linear induction motors. IEEPROC, Vol.100, No.3.1980.9.PP.51-59
    [95]S.A.Nasar. Electromagnetic Fields and Force in a Linear Induction Motor Taking into Account Edge Effect [J]. Pro IEE,1969,116, pp605-609
    [96]H.Bolton. Transverse Edge Effect in Sheet-Rotor Induction Motors[J]. Pro IEE,1969,116(5), pp973-979
    [97]Campo, Alexandre, Pait, Felipe. Propulsion and Levitation Control in a Linear Electrodynamic Motor[C]. Proceedings of the 2002 IEEE International Conference on Control Applicants, September 2002, Glasgow, UK, pp94-99
    [98]Kinjiro Yoshida, Sakutaro Nonaka. Levitation Forces in Single-Sided Linear Induction Motors for High-Speed Ground Transport[J]. IEEE Transactions on Magnetics, Vol.11, No.6,1975, pp1717-1719
    [99]刘长红,姚若萍.基于场路结合的实心转子异步电机转子参数计算[J].上海交通大学学 报,2003,37(9):1372-1374
    [100]J.Eastham, P.D.Evans. Novel disc-motor designs[J]. PROC. IEE, Vol.125, No.5, May 1978, pp416
    [101]唐孝镐,宁玉泉,傅丰礼.实心转子异步电机及其应用[M],北京:机械工业出版社,1991,pp1-296
    [102]王群京,李争,夏鲲,等.新型永磁球形步进电动机结构参数及转矩特性的计算与分析[J].中国电机工程学报,2006,26(10):158-165
    [103]T.Saito, et al. Electromagnetic Force and Eddy Current Loss in Dynamic Behavior of a Superconducting Magnetically Levitation Vehicle[J]. IEEE Transactions on Applied Superconductivity, Vol.3, No.l,1993, pp417-420
    [104]M.Arata, M.Kawai, T.Yamashita, et al. Eddy Current Loss Reduction of Superconducting Magnets for MAGLEV with A Multilayer Superconducting Sheet [J]. IEEE Transactions on Applied Conductivity, Vol.7, No.2,1997, pp912-915
    [105]K.A.Krishna Murthy, R.M.Mathur. A Phase-Controlled Force-Commuted DC Motor Drive with Line Power Factor Improvement[J]. Proceedings of the IEEE, Vol.70, No.12,1982, pp1453-1455
    [106]Yu Ming-hu, Ye Yun-yue, Lu Qin-fen, Xia Yong-ming. A Study on Power Factor of Linear Oscillatory Motor with Two Separated Stators[C].2009 Interenational Conference on Electrical Machines and Systems, Tokyo, Japan, November 2009, pp1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700