用户名: 密码: 验证码:
有源电力滤波器谐波电流检测与跟踪控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,大量非线性负荷的应用使得电力系统谐波污染现象日益严重。同时,随着新能源并网发电、分布式发电技术的运用和智能电网的建设,给传统电力系统提出了新的挑战,产生了谐波和其它新的电能质量问题,促使电能质量治理产品需求快速增长。
     抑制电力系统谐波是电能质量治理的一项重要措施,采用主动补偿方式的有源电力滤波器(Active Power Filter, APF)能对频率和幅值都变化的谐波进行实时跟踪补偿,补偿特性不受电网阻抗的影响,且装置无需能量储存器件,因而受到广泛重视,研究成果不断涌现。为提高APF产品性能和对工程实际情况的适应性,相关研究仍在不断深入进行。本文针对以上研究背景,以应用广泛的三相三线并联型有源电力滤波器(Shunt Active Power Filter, SAPF)为对象,围绕提高SAPF的谐波电流检测性能、增强补偿电流跟踪技术的鲁棒性和提高谐波抑制效果等方面展开了一些有益的研究。
     为提高基于瞬时无功功率理论的谐波电流检测法在检测精度和收敛速度方面的性能,提出了一种新颖的最小均方(Least mean square, LMS)与最小四阶矩(Least mean fourth, LMF)相结合的LMS/LMF自适应滤波器算法。根据误差信号的变化自适应地调整LMS和LMF算法在权值更新中的占比,当滤波器原始输入信号突变时,系统主要采用LMF检测算法,而当滤波器原始输入信号稳定时,系统主要采用LMS检测算法,以同时发挥LMF算法收敛速度快和LMS算法稳态精度高的优点。推导了该算法的收敛条件、时间常数和失调公式。仿真和试验结果表明,该算法使低通滤波器动态过程收敛更快,稳态误差更小,提高了瞬时无功功率理论谐波检测法的性能。
     为了提高电压空间矢量双滞环电流控制方法在SAPF的补偿电流跟踪性能,提出了一种新颖的4段滞环比较器。直接在复平面上实施控制,4段滞环比较器输入误差电流矢量,输出4种状态值,可以确定误差电流矢量的空间分布;通过求取指令电流微分的近似值,快速确定参考电压矢量所在区域。根据两个4段滞环比较器的输出状态值与参考电压矢量的空间分布选择最佳的输出开关矢量,使补偿电流误差控制在滞环宽度以内。该控制方法提高了直流电压利用率,降低了开关次数,系统动态响应快。
     将神经网络引入SAPF的补偿电流跟踪控制中,提出了一种SAPF的神经网络逆系统线性化解耦控制方法,以提高SAPF的补偿电流跟踪性能。首先推出SAPF的数学模型,证明其可逆性,接着设计SAPF的神经网络逆系统,和原系统一起构建伪线性系统,并采用比例积分控制器控制伪线性系统。将BP、RBF神经网络应用于SAPF的逆系统线性化解耦控制方法,实现了SAPF补偿电流跟踪控制的线性化和解耦,其控制效果优于反馈线性化控制方法。同时,在系统参数变化较大时,BP神经网络构成的逆系统控制方法具有很强的鲁棒性。
     提出了一种SAPF滑模变结构统一控制方法,将SAPF中补偿电流控制和直流侧电压控制统一实现,同时利用滑模变结构控制来提高鲁棒性。首先,根据SAPF在dq坐标系下的数学模型,确定状态变量id、iq和Udc,然后以这三个状态变量误差的线性组合定义了补偿电流和直流侧电压的统一控制滑模面,设计了控制律,并采用饱和函数代替符号函数,以削弱抖振。接着推导出滑模稳定条件和等效控制的存在性。通过滑模面的合理设计可以实现SAPF补偿电流和直流侧电压的统一控制,选择滑模函数中的K值要兼顾滑模控制的稳定性和动态品质,当负载和元件参数在一定范围内发生变化时,SAPF能正常工作,具有较好的鲁棒性。
With the rapid development of world economy, harmonic pollution problems in the power system has been increasing severe by the use of a large scale of nonlinear loads. Meanwhile, utilization of new technologies such as smart grid, distribution generation and renewable energy integration causes various types of power quality issues. These increasing complexities of power quality problems pose new challenges to solutions of harmonic suppression and other power quality issues, and require development of new power quality management products that can-provide considerable and equivalent functions.
     Harmonic suppression of power system is one of important measures for power quality management. Active power filter (APF) which adopts active compensation way can compensate harmonics components in real-time when frequency and amplitude vary with time. It doesn't need energy storage devices and its compensation performance would not be affected by power grid impedance. Therefore the APF technology has received much attention recently and numerous related research results have been reported. Further research on the performance improvement of APF and its adaptability to the engineering actual situation is required. A three-phase and three-wire shunt active power filter (SAPF) prototype is studied and analyzed in the dissertation to improve the capabilities of harmonic current detection, robustness of compensatory current tracking and performance of harmonic suppression.
     In order to improve the detection accuracy and convergence speed of harmonic current detection method based on instantaneous reactive power theory, a novel algorithm of LMS/LMF adaptive filter is proposed, which combines a LMS algorithm with a LMF algorithm. The new algorithm can adjust self-adaptively the proportions of LMS and LMF in weight update. When the input sign of the adaptive filter change suddenly, the algorithm is mainly adopted by LMF algorithm. As the input sign of the adaptive filter is in steady state, the algorithm is mainly adopted by LMS algorithm. So, the LMS/LMF algorithm integrates the merits of both fast convergence speed of LMF algorithm and high stability precision of LMS algorithm. The convergence condition, time constant and misadjustment formula of the proposed algorithm are derived. The simulation and experiment results show that the proposed method can make the dynamic response of the low pass filter faster and its stability accuracy better, thus improve dynamic and steady performances of the harmonic current detection method based on instantaneous reactive power theory.
     To improve compensatory current tracking performance of SAPF based on double hysteresis current control strategy of voltage space vector, a novel4-level α-β hysteresis comparator is proposed. The control strategy is directly implemented on α-β coordinates. The4-level α-β hysteresis comparators are input by current error vectors and output4state values to determine the location region of current error vectors. The location region of the reference voltage vector can be determined rapidly by the approximate value of the differential reference currents. The optimum output switching vector at each instant is selected according to state values output of two4-level α-β hysteresis comparators and reference voltage vector. The compensatory current error is limited within the hysteresis width. The proposed control method can efficiently increase the utilization of DC voltage, decrease IGBTs switching number and achieve fast response in SAPF.
     To improve compensatory current tracking performance of SAPF, a linearized and decoupling control method is proposed based on neural network inverse (NNI). Firstly, the mathematical model of SAPF is derived and its reversibility is proved. Then the NNI of SAPF is designed, which combines with original system of SAPF to construct a pseudolinear system, the pseudolinear system can be simply controlled by a proportional plus integral controller. The Back Propagation (BP) neural network and Radial Basis Function (RBF) neural network are adopted in the proposed control method, which makes compensatory current tracking control linearized and decoupled, and it outperforms feedback linearization method. Meanwhile, it is proved that the inverse system control method which is adopted by BP neural network exhibits strong robustness when the system parameters change dramatically.
     In order to combine the control of the compensatory currents and the DC voltage of SAPF, and make SAPF more robust, a unified control strategy based on sliding mode variable structure control is proposed. At first, according to the mathematical model of SAPF in dq reference frame, the state variables id, iq, Udc is determined, and the linear combinations of the three state variables errors are used to define the sliding surface function of the unified control strategy. The control law is designed, and saturation function substitutes for sign function to eliminate chattering. Then the stabilization conditions of sliding mode and existence of equivalent control are derived. It is proved that the unified control strategy of SAPF can be achieved through suitable sliding surface function, and the K values selection of sliding surface function has to find a compromise between the stabilization and dynamic performance of sliding mode variable structure control. SAPF can work properly and be more robust when the load and device parameters change within a certain range.
引文
[1]程浩忠,张志刚,朱子述.电能质量概论[M].北京:中国电力出版社,2008.
    [2]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004.
    [3]林海雪.现代电能质量的基本问题[J].电网技术,2001,25(10):5-12.
    [4]H. Farhangi. The path of the Smart Grid [J]. IEEE Power and Energy Magazine,2010,8(1): 18-28.
    [5]S. E. Collier. Ten Steps to a Smarter Grid [J]. IEEE Industry Applications Magazine,2010,16(2): 62-68.
    [6]U.S. Department of Energy. The U. S. Department of Energy's GridWise Program [EB/OL]. [2009-02-03]. http://www.gridwise org.
    [7]European Commission. European technology platform smart grids:vision and strategy for Europe's electricity networks of future [EB/OL]. [2008-10-10]. http://ec.europa.eu/research/ energy/pdf/smartgrids_en.pdf.
    [8]常康,薛峰,杨卫东.中国智能电网基本特征及其技术进展评述[J].电力系统自动化,2009,33(17):10-15.
    [9]张道农,彭华,刘洋,等.我国“十二五”智能电网的发展重点研究[J].华北电力技术,2013(1):6-10.
    [10]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [11]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(第2版)[M].北京:机械工业出版社,2005.
    [12]De La Rosa, Francisco C著.电力系统谐波[M].赵琰,孙秋野译.北京:机械工业出版社,2009.
    [13]George J.Wakileh著.电力系统谐波:基本原理、分析方法和滤波器设计[M].徐政译.北京:机械工业出版社,2003.
    [14]IEC 61000-2-2 EMC Part 2:Environment-Section2:Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems[S].1990.
    [15]IEC 61000-2-4 EMC Part 2:Environment-Section4:Compatibility levels in industrial plants for low-frequency conducted disturbances[S].1994.
    [16]IEC/TR 61000-3-6 EMC Part 3:Limits-Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems [S].2008.
    [17]林海雪.几种国外谐波电压标准的分析[J].供用电,2008,25(3):4-7.
    [18]IEEE Std.519-2005 IEEE recommended practices and requirements for harmonic control in electrical power systems [S].2006.
    [19]The Engineering Recommendation G5/4-Planning levels for harmonic voltage distortion and the connection of non-linear equipment to transmission systems and distribution networks in the United Kingdom[S]. The Electricity Association,2001.
    [20]中华人民共和国国家标准,GBfT 14549—1993,电能质量公用电网谐波[S].北京:国家技术监督局,1993.
    [21]中华人民共和国国家标准,GB/T 24337—2009,电能质量公用电网间谐波[S].北京:国家技术监督局,2009.
    [22]罗世国.无源电力滤波器的补偿特性及其存在的问题分析[J].铁道学报,1996,18(2):36-39.
    [23]H.Akagi, E.H.Watanabe, M.Aredes著.瞬时功率理论及其在电力调节中的应用[M].徐政译.北京:机械工业出版社,2009.
    [24]Gyugyi L, Strycula E C. Active ac power filters[C]. Proceedings of IEEE/IAS Annual Meeting, 1976:529-535.
    [25]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-phase circuits[C]. Proceedings of IPEC, Tokyo:IEEE,1983:1375-1386.
    [26]Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components [J]. IEEE Transactions on Industry Applications,1984,20(3):625-630.
    [27]姚亮,胡再超,杭泱.常见傅里叶变换的滤波性能分析[J].电力自动化设备,2008,28(1):73-76.
    [28]李自成,刘国海.基于傅里叶级数的单相有源电力滤波器谐波电流检测方法[M].北京:科学出版社,2012.
    [29]郑恩让,杨润贤,高森.关于电力系统FFT谐波检测存在问题的研究[J].继电器,2006,34(18):52-56.
    [30]马维桢.快速傅里叶变换FFT的发展现状[J].华南理工大学学报(自然科学版),1995,23(5):37-46.
    [31]于达仁,鲍文,徐敏强.用FFT测量周期信号相角差及其误差分析[J].哈尔滨工业大学学报,1995,27(3):84-87.
    [32]黄方能,吴玉燕.FFT谐波检测存在的问题[J].广西电力,2005,(4):39-41.
    [33]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66.
    [34]薛蕙,杨仁刚.基于FFT的高精度谐波检测算法[J].中国电机工程学报,2002,22(12):106-110.
    [35]马文营,张巍,杨洪耕.基于递推FFT算法与不间断采样的电力谐波分析[J].高压电器,2003,39(2):13-15.
    [36]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(Ⅱ)双插值FFT理论[J].电工技术学报,1994,(2):53-56.
    [37]祁才君,陈隆道,王小海.应用插值FFT算法精确估计电网谐波参数[J].浙江大学学报(工学版),2003,37(1):112-116.
    [38]Yang Jun, Wang Zhaoan, Qiu Guanyuan. A comparison of two harmonic current detecting methods used in active power filter[C]. IPEMC'94, Beijing, China. June 27-30,1994.
    [39]杨君,王兆安.三相电路谐波电流两种检测方法的对比研究[J].电工技术学报,1995,(2):43-48.
    [40]M.Depenbrock. The FBD-method, a generally applicable tool for analysing power relations [J]. IEEE Transactions on Power Systems,1993,8(2):381-387.
    [41]T.Furuhashi, S.Okuma, Y.Uchikawa. A study on the theory of instantaneous reactive power [J]. IEEE Transactions on Industrial Electronics,1990,37(1):86-90.
    [42]Reyes S. Herrera, Patricio Salmeron. Instantaneous reactive power theory:a reference in the nonlinear loads compensation [J]. IEEE Transactions on Industrial Electronics,2009,56(6): 2015-2022.
    [43]Bernard Widrow, Samuel D. Stearns著.自适应信号处理[M],王永德,龙宠惠译.北京:机械工业出版社,2008.
    [44]李乔,吴捷.自适应谐波电流检测方法用于有源电力滤波器的仿真研究[J].电工技术学报,2004,19(12):86-90.
    [45]R.R. Pereira, C.H. da Silva, L.E. Borges da Silva, et al. Application of adaptive filters in active power filters [C]. Power Electronics Conference,2009. COBEP'09. Brazilian:IEEE,2009:770-774.
    [46]王俊杰,姚刚,郑益慧,等.有源电力滤波器多重因子自适应谐波检测法[J].电力电子技术,2011,45(1):45-47.
    [47]李敏,张聪,袁欣.基于改进自适应谐波检测滤波器设计与仿真[J].电力科学与工程,2011,27(2):36-40.
    [48]刘国海,吕汉闻,陈兆岭,等.基于修正遗忘因子RLS算法的谐波电流检测新方法[J].电工技术学报,2010,25(1):172-177.
    [49]王群,谢品芳,吴宁,等.模拟电路实现的神经元自适应谐波电流检测方法[J].中国电机工程学报,1999,19(6):42-46.
    [50]Wang Qun, Wu Ning, Wang Zhao-an. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit [J]. IEEE Transactions on Instrumentation and Measurement,2001,50(1):77-84.
    [51]李波,张林利,王广柱,等.用于APF的神经网络自适应谐波电流检测方法[J].电力自动化设备,2004,24(5):38-40.
    [52]李智华,刘振,吕振彬.基于人工神经网络谐波电流检测算法的电力有源滤波器[J].上海大学学报(自然科学版),2010,16(3):323-326.
    [53]Cakir, M. A novel reference current estimation schema for Active Power Filters without synchronization signal [J]. International Review of Electrical Engineering-Iree,2012,7(4): 4684-4696.
    [54]Heydt G T, Galli A W. Transient power quality problems analyzed using wavelets [J]. IEEE Transactions on Power Delivery,1997,12(2):908-915.
    [55]J Sebastian Tepper, Juan W Dixon, Gustavo Venegas, et al. A simple frequency-independent method for calculating the reactive and harmonic current in a nonlinear load [J]. IEEE Transactions on Industrial Electronics,1996,43(6):647-654.
    [56]Yanfang Wang, Zhiqiang Li, Guangling Guo. Research on methods of harmonic detection based on second generation wavelet algorithm[C]. Electric Information and Control Engineering (ICEICE2011), Wuhan, China:IEEE,2011:6090-6093.
    [57]刘慧,刘国海,沈跃.基于快速提升小波变换的谐波实时检测新方法[J].江苏大学学报(自然科学版),2009,30(3):288-292.
    [58]周龙华,付青,余世杰,等.基于小波变换的谐波检测技术[J].电力系统及其自动化学报,2010,22(1):80-85.
    [59]丁屹峰,程浩忠,吕干云,等.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报,2005,20(10):94-97.
    [60]N. E. Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]. Proceedings of the Royal Society of London,1998.
    [61]刘慧,刘国海,沈跃.采用希尔伯特振动分解的非整数次谐波检测新方法[J].高电压技术,2009,35(7):1758-1764.
    [62]Zhou Luowei, Li Zicheng. A novel active power filter based on the least compensation current control method [J]. IEEE Transactions on Power Electronics,2000,15(4):655-659.
    [63]K. K. C. Yu, N. R. Watson, J. Arrillaga. An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking [J]. IEEE Transactions on Power Delivery,2005, 20(2):1577-1584.
    [64]Fangrui Liu, Ali I. Maswood. A novel variable hysteresis band current control of three-phase three-level unity PF rectifier with constant switching frequency [J]. IEEE Transactions on Power Electronics,2006,21(6):1727-1734.
    [65]孟建华,蔚泉清,刘靖峰.定时和滞环相结合的跟踪控制方法[J].西安工程大学学报,2008,22(5):592-595.
    [66]曾江,焦连伟,倪以信,等.有源滤波器定频滞环电流控制新方法[J].电网技术,2000,24(6):1-8.
    [67]Simone Buso, Sandro Fasolo, Luigi Malesani, et al. A dead-beat adaptive hysteresis current control [J]. IEEE Transactions on industry applications,2000,36(4):1174-1180.
    [68]Murat Kale, Engin Ozdemir. An adaptive hysteresis band current controller for shunt active power filter [J]. Electric power systems research,2005,73:113-119.
    [69]Wang Jianze, Peng Fenghua, Wu Qitao, et al. A novel control method for shunt active power filters using SVPWM [C]. Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE. Seattle, WA, USA:IEEE,2004:129-134.
    [70]王文,罗安,黎燕,等.一种新型有源电力滤波器的SVPWM算法[J].中国电机工程学报,2012,32(18):52-59.
    [71]T. Ghennam, E. M. Berkouk, B. Francois. A novel space-vector current control based on circular hysteresis areas of a three-phase neutral point clamped inverter [J]. IEEE Transactions on Industrial Electronics,2010,57(8):2669-2678.
    [72]郭自勇,周有庆,刘宏超,等.一种基于电压空间矢量的有源电力滤波器的滞环电流控制新方法[J].中国电机工程学报,2007,27(1):112-117.
    [73]谈龙成,陈永刚,常国洁,等.有源电力滤波器的电流控制新方法[J].电网技术,2006,30(21):62-65.
    [74]Smedley K M, Zhou L. Unified constant-frequency integration control of active power filters steady-state and dynamics [J]. IEEE Transactions on Power Electronics,2000,16(3):428-436.
    [75]徐明,周林,王伟,等.单相有源电力滤波器的单周控制策略综述[J].电网技术,2006,30(22):81-86.
    [76]胡志坤,胡成,刘守明,等.电流反馈有源电力滤波器单周控制策略[J].电机与控制学报,2011,15(2):20-25.
    [77]钟庆,吴捷,杨金明.并联型有源电力滤波器的无源性控制[J].控制与决策,2004,19(1):77-80.
    [78]薛花,姜建国.基于无源性的并联型有源电力滤波器控制策略[J].电力系统自动化,2006,30(22):12-20.
    [79]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [80]Zhiqiang Gao. Scaling and bandwidth-parameterization based controller tuning [C]. Proceedings of American Control Conference,2003:4989-4996.
    [81]钟庆,吴捷,徐政.自抗扰控制器在并联型有源滤波器中的应用[J].电子系统自动化,2002,26(16):22-25.
    [82]韩雪冰,孙玉坤,黄重月.基于自抗扰控制器的有源滤波器直接电流控制[J].电测与仪表,2008,45(513):11-14.
    [83]郭卫农,段善旭,康勇,等.电压型逆变器的无差拍控制技术研究[J].华中理工大学学报,2000,28(6):30-33.
    [84]Claro C A, Kaffka J, Campos A. A fully digital control employing a dead beat technique for active power filters[C].30th Annual IEEE Power Electronics Specialists Conference, Piscataway, USA:IEEE,1999:143-148.
    [85]Nishida K, Konishi Y, Nakaoka M. Current control implementation with deadbeat algorithm for three-phase current-source active power filter [J]. IEE Proceedings-Electric Power Applications, 2002,149(4):275-282.
    [86]曾繁鹏,纪延超,王建赜.有源电力滤波器改进无差拍控制方法[J].电气控制,2009,(16):52-55.
    [87]张晓,李新宇,周睿.三相四桥臂并联型APF无差拍控制策略的研究[J].电力系统保护与控制,2011,39(20):78-83.
    [88]何英杰,刘进军,王兆安,等.基于重复预测原理的三电平APF无差拍控制方法[J].电工技术学报,2010,25(2):114-120.
    [89]张国荣,邵竹星,陈林.基于改进重复预测原理的并联有源电力滤波器无差拍控制策略[J].农业工程学报,2012,28(13):172-178.
    [90]吴勇,徐金榜,王庆义,等.并联有源电力滤波器电流预测控制[J].华中科技大学学报(自然科学版),2008,36(4):99-102.
    [91]J.H.Marks, T.C.Green. Predictive control of active power filters[C].32nd Annual IEEE Power Electronics Specialists Conference, Piscataway, USA:IEEE,2001(3):1396-1401.
    [92]Byung-Moon Han, Byong-Yeul Bae, Seppo J. Ovaska. Reference signal generator for active power filters using improved adaptive predictive filter [J]. IEEE Transactions on Industrial Electronics,2005,52(2):576-584.
    [93]徐子利,罗春风.基于灰色预测理论的并联型混合电力有源滤波器研究[J].电力系统保护与控制,2009,37(22):83-86.
    [94]于晶荣,滕召胜,章兢,等.有源电力滤波器预测电流控制及稳定性分析[J].电工技术学报,2009,24(7):164-170.
    [95]余发山,孙标广,郭建锋.基于预测电流控制的有源电力滤波器研究[J].河南理工大学学报(自然科学版),2011,30(1):80-84.
    [96]惠晶,唐鑫鑫.基于广义预测算法的APF预测控制器的研究[J].电力电子技术,2012,46(2):83-85.
    [97]P Mattavelli, F P Maraf. Repetitive-based control for selective harmonic compensation in active power filters [J]. IEEE Transactions on Industrial Electronics,2004,51(5):1018-1024.
    [98]Grino R, Cardoner R, Costa Castello R, et al. Digital repetitive control of a three-phase four-wire shunt active filter [J]. IEEE Transactions on Industrial Electronics,2007,54(3): 1495-1503.
    [99]宋冲,仇志凌,陈国柱.有源电力滤波器重复控制设计及调试[J].电力电子技术,2008,42(7):17-19.
    [100]夏向阳,罗安,范瑞祥,等.有源滤波器控制延时的新型补偿方法[J].电工技术学报,2008,23(11):166-172.
    [101]洪磊,陈晓,陈国柱.基于重复控制的并联型混合有源滤波器高性能控制策略[J].电力自动化设备,2012,32(10):94-98.
    [102]V. Cardenas, N. Vazquez, C. Hernandez et, al. Sliding mode control applied to a three-phase shunt active power filter using compensation with instantaneous reactive power theory [C]. Power Electronics Specialist Conference, IEEE, May 1998:236-241.
    [103]N. Mendalek, K. Al-Haddad, F. Fnaiech et, al. Sliding mode control of a 3-phase 3-wire shunt active filter in the dq frame[C]. Canadian Conference on Electrical and Computer Engineering, IEEE, May 2001:765-769.
    [104]罗安,章兢,付青.新型注入式并联混合型有源电力滤波器[J].电工技术学报,2005,20(2):51-55.
    [105]周卫平,吴正国,刘大明.有源电力滤波器变趋近律滑模变结构控制[J].中国电机工程学报,2005,25(23):91-94.
    [106]E.Wiebe-Quintana, J.L. Duran-Gomez, P.R. Acosta-Cano. Delta-sigma integral sliding-mode control strategy of a three-phase active power filter using d-q frame theory [C]. Electronics, Robotics and Automotive Mechanics Conference,2006, (2):291-298.
    [107]胡志坤,张乾,刘守明.三相并联型有源滤波器的滑模控制方法[J].电工技术学报,2011,26(12):122-128.
    [108]童梅,童杰,蒋静坪.有源滤波器的神经网络控制[J].电工技术学报,2000,15(1):57-60.
    [109]刘建宝,陈伟,赵录怀.有源电力滤波器新型神经网络控制方法[J].现代电子技术,2004,(3):6-11.
    [110]顾颖杰,汤洪海,刘艳红.新型复合神经网络控制的并联有源电力滤波器[J].电力系统及其自动化学报,2005,17(6):39-42.
    [111]刘国海,黄重月,韩雪冰.基于逆系统方法有源滤波器控制策略的研究[J].电力电子技术,2009,43(3):1-3.
    [112]石峰,岳永涛,查晓明.三相APF非线性解耦控制的建模与仿真[J].高电压技术,2008,34(5):935-941.
    [113]乐江源,谢运祥,张志.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报,2010,30(15):32-39.
    [114]乐江源,谢运祥,张志.有源电力滤波器状态反馈精确线性化控制[J].电力自动化设备,2010,30(2):81-85.
    [115]K.Nishida, M.Nakaoka. Deadbeat current control with adaptive predictor for three-phase voltage-source active power filter [C]. Power Electronics Specialists Conference,2004. Aachen, Germany:IEEE,2004(2):1010-1016.
    [116]张国荣,邵竹星,陈林.基于改进重复预测原理的并联有源电力滤波器无差拍控制策略[J].农业工程学报,2012,28(13):172-178.
    [117]Costa-Castello R, Grino R, Fossas E. Odd-harmonic digital repetitive control of a single-phase current active filter [J]. IEEE Transactions on Power Electronics,2004,19(4):1060-1068.
    [118]魏学良,戴珂,方昕,等.三相并联型有源电力滤波器补偿电流性能分析与改进[J].中国电机工程学报,2007,27(28):113-119.
    [119]武健,何娜,徐殿国.重复控制在并联有源滤波器中的应用[J].中国电机工程学报,2008,28(18):66-72.
    [120]唐欣,罗安.基于重复控制的有源滤波器的三态滞环控制方法[J].电工技术学报,2009, 24(9):134-139.
    [121]贾要勤,王晓滨,杨强.并联有源电力滤波器的自适应重复控制[J].电工技术学报,2011,26(10):118-122.
    [122]Xiaojie Shi, Yuwen Shen, Zhiqiang Wang, et al. A repetitive-based controller for a hybrid filter with high quality grid current waveform[C]. Applied Power Electronics Conference and Exposition (APEC),2011, Fort Worth, TX:IEEE,2011:757-762.
    [123]张东江,仇志凌,李玉玲,等:基于LCL滤波器的高稳态性能并联有源电力滤波器[J].电工技术学报,2011,26(10):137-143.
    [124]于晶荣,粟梅,孙尧.有源电力滤波器的改进重复控制及其优化设计[J].电工技术学报,2012,27(2):235-242.
    [125]邱晓初,肖建,刘小建.一种APF模糊自适应可变环宽滞环控制器[J].电力系统保护与控制,2012,40(7):73-77.
    [126]冯亚琼,王昕,周荔丹,等.神经网络自适应PI控制器在有源滤波器中的应用明.电力系统保护与控制,2011,39(16):74-79.
    [127]俞万能,褚建新.一种三相并联有源滤波器的仿真研究[J].系统仿真学报,2007,19(20):4624-4626.
    [128]Zhong Tang, Yong Wan, Youhua Jiang, et al. Research of APF based on fuzzy-sliding mode variable structure control strategy [C]. Electricity Distribution (CICED),2010, Nanjng, China: IEEE,2010:1-5.
    [1]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(第2版)[M].北京:机械工业出版社,2005.
    [2]郑恩让,杨润贤,高森.关于电力系统FFT谐波检测存在问题的研究[J].继电器,2006,34(18):52-56.
    [3]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66.
    [4]薛蕙,杨仁刚.基于FFT的高精度谐波检测算法[J].中国电机工程学报,2002,22(12):106-110.
    [5]M. Depenbrock. The FBD-Method, a Generally Applicable Tool for Analysing Power Relations [J]. IEEE Transactions on Power Systems,1993,8(2):381-387.
    [6]Reyes S. Herrera, Patricio Salmeron. Instantaneous Reactive Power Theory:A Reference in the Nonlinear Loads Compensation [J]. IEEE Transactions on Industrial Electronics,2009,56(6): 2015-2022.
    [7]李乔,吴捷.自适应谐波电流检测方法用于有源电力滤波器的仿真研究[J].电工技术学报,2004,19(12):86-90.
    [8]R. R. Pereira, C.H. da Silva, L.E. Borges da Silva, et al. Application of adaptive filters in active power filters [C]. Power Electronics Conference,2009. COBEP'09. Brazilian:IEEE,2009: 770-774.
    [9]王俊杰,姚刚,郑益慧,等.有源电力滤波器多重因子自适应谐波检测法[J].电力电子技术,2011,45(1):45-47.
    [10]刘国海,吕汉闻,陈兆岭,等.基于修正遗忘因子RLS算法的谐波电流检测新方法[J].电工技术学报,2010,25(1):172-177.
    [11]Wang Qun, Wu Ning, Wang Zhao-an. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit [J]. IEEE Transactions on Instrumentation and Measurement,2001,50(1):77-84.
    [12]李智华,刘振,吕振彬.基于人工神经网络谐波电流检测算法的电力有源滤波器[J].上海大学学报(自然科学版),2010,16(3):323-326.
    [13]Cakir, M. A novel reference current estimation schema for Active Power Filters without synchronization signal [J]. International Review of Electrical Engineering-Iree,2012,7(4): 4684-4696.
    [14]J Sebastian Tepper, Juan W Dixon, Gustavo Venegas, et al. A simple frequency-independent method for calculating the reactive and harmonic current in a nonlinear load [J]. IEEE Transactions on Industrial Electronics,1996,43(6):647-654.
    [15]Yanfang Wang, Zhiqiang Li, Guangling Guo. Research on methods of harmonic detection based on second generation wavelet algorithm[C]. Electric Information and Control Engineering (ICEICE2011), Wuhan, China:IEEE,2011:6090-6093.
    [16]刘慧,刘国海,沈跃.基于快速提升小波变换的谐波实时检测新方法[J].江苏大学学报(自然科学版),2009,30(3):288-292.
    [17]王少杰,罗安,孙贤大.谐波及无功电流检测低通滤波器的优化设计方法[J].中南大学学报,2010,41(3):1022-1027.
    [18]B Widrow, S P Sterns. Adaptive Signal Processing [M]. Englewood Cliffs. NJ:Prentice-Hall, Inc.,1985.
    [19]Husoy J H, Abadi M S E. Unified approach to adaptive filters and their performance [J]. IET Signal Process,2008,2(2):97-109.
    [20]Pereira R R, Da Silva C H, Veloso G F C, et al. A new strategy to step-size control of adaptive filters in the harmonic detection for shunt active power filter[C]. Industry Applications Society Annual Meeting,2008, Houston, TX, United States, IEEE,2009:1-5.
    [21]Hubscher P I, Bermudez J C M, Nascimento V H. A mean-square stability analysis of the least mean fourth adaptive algorithm [J]. IEEE Transactions on Signal Processing,2007,55(8): 4018-4028.
    [22]Hosseini K, Montazeri A, Alikhanian, et al. New classes of LMS and LMF adaptive algorithms [C]. Information and Communication Technologies:From Theory to Applications (ICTTA) 3rd International Conference,2008, Damascus, Syria, IEEE,2008:1-5.
    [23]李辉,吴正国,邹云屏,等.变步长自适应算法在有源滤波器谐波检测中的应用[J].中国电机工程学报,2006,26(9):99-103.
    [24]李竹,杨培林,行小帅.一种改进变步长LMS算法及其在系统辨识中的应用[J].仪器仪表学报,2007,28(7):1340-1344.
    [25]He Y J, Zou Y P, Tang J, et al. Digital realization of a novel detection algorithm based on instantaneous reactive power theory[C].33rd Annual Conference of IEEE Industrial Electronics Society (IECON), Taipai, IEEE,2007:1869-1874.
    [26]刘国海,刘颖,陈兆岭,等.一种LMS/LMF自适应谐波电路检测方法[J].数据采集与处理,2010,25(6):707-711.
    [1]Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications [J]. IEEE Transactions on Industrial Electronics,1998,45(2):722-729.
    [2]Murat Kale, Engin Ozdemir. An adaptive hysteresis band current controller for shunt active power filter [J]. Electric power systems research,2005,73:113-119.
    [3]Wang Jianze, Peng Fenghua, Wu Qitao, et al. A novel control method for shunt active power filters using SVPWM [J]. Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE. Seattle, WA, USA:IEEE,2004:129-134.
    [4]徐明,周林,王伟,等.单相有源电力滤波器的单周控制策略综述[J].电网技术,2006,30(22):81-86.
    [5]钟庆,吴捷,杨金明.并联型有源电力滤波器的无源性控制[J].控制与决策,2004,19(1):77-80.
    [6]钟庆,吴捷,徐政.自抗扰控制器在并联型有源滤波器中的应用[J].电子系统自动化,2002,26(16):22-25
    [7]Claro C A, Kaffka J, Campos A. A fully digital control employing a dead beat technique for active power filters[C].30th Annual IEEE Power Electronics Specialists Conference, Piscataway, USA:IEEE,1999:143-148
    [8]于晶荣,滕召胜,章兢,等.有源电力滤波器预测电流控制及稳定性分析[J].电工技术学报,2009,24(7):164-170.
    [9]Grino R, Cardoner R, Costa Castello R, et al. Digital repetitive control of a three-phase four-wire shunt active filter [J]. IEEE Transactions on Industrial Electronics,2007,54(3): 1495-1503
    [10]N. Mendalek, K. Al-Haddad, F. Fnaiech et, al. Sliding mode control of a 3-phase 3-wire shunt active filter in the dq frame[C]. Canadian Conference on Electrical and Computer Engineering, IEEE, May 2001:765-769.
    [11]顾颖杰,汤洪海,刘艳红.新型复合神经网络控制的并联有源电力滤波器[J].电力系统及其自动化学报,2005,17(6):39-42.
    [12]乐江源,谢运祥,张志.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报,2010,30(15):32-39.
    [13]K.Nishida, M.Nakaoka. Deadbeat current control with adaptive predictor for three-phase voltage-source active power filter [C]. Power Electronics Specialists Conference,2004. Aachen, Germany:IEEE,2004(2):1010-1016.
    [14]魏学良,戴珂,方昕,等.三相并联型有源电力滤波器补偿电流性能分析与改进[J].中国电机工程学报,2007,27(28):113-119.
    [15]唐欣,罗安.基于重复控制的有源滤波器的三态滞环控制方法[J].电工技术学报,2009, 24(9):134-139.
    [16]T. Ghennam, E.M. Berkouk, B. Francois. A novel space-vector current control based on circular hysteresis areas of a three-phase neutral point clamped inverter [J]. IEEE Transactions on Industrial Electronics,2010,57(8):2669-2678.
    [17]A. Bozi. ek, B. Blazi., I. PapiO. Performance evaluation of a time-optimal current controller for a voltage-source converter and comparison with a hysteresis controller [J]. IEEE Transactions on Industrial Electronics,2011,26(2):859-868.
    [18]舒泽亮,汤坚,郭育华,等.基于空间矢量双滞环策略的STATCOM直接电流控制方法[J].中国电机工程学报,2007,27(25):103-107.
    [19]郑建勇,王杰,梅军,等.基于电压空间矢量的滞环电流控制方法和APF的系统设计[J].电力自动化设备,2011,35(5):49-52.
    [20]谈龙成,陈永刚,常国洁,等.有源电力滤波器的电流控制新方法[J].电网技术,2006,30(21):62-65.
    [21]叶小军,曾江,王克英,等.并联有源电力滤波器双滞环电流控制策略[J].电力系统保护与控制,2009,37(9):60-64.
    [22]郭自勇,周有庆,刘宏超,等.一种基于电压空间矢量的有源电力滤波器的滞环电流控制新方法[J].中国电机工程学报,2007,27(1):112-117.
    [23]Mohseni M, Islam S. A novel current controller for three-phase voltage-source inverters[C]. Proceeding of 35th Annual Conference of IEEE (IECON'09), Porto, Portugal:IEEE,2009: 76-81.
    [1]N. Mendalek, K. Al-Haddad, F. Fnaiech, et al. Nonlinear control technique to enhance dynamic performance of a shunt active power filter[J]. IEE Proceedings of Electric Power Applications, 2003,150(4):373-379.
    [2]S. Rahmani, N. Mendalek, K. Al-Haddad. Experimental design of a nonlinear control technique for three-phase shunt active power filter[J]. IEEE Transactions on Industrial Electronics,2010, 57(10):3364-3375.
    [3]高为炳.非线性控制系统导论[M].北京:科学出版社,1988.
    [4]冯纯伯.非线性控制系统分析与设计[M].南京:东南大学出版社,1990.
    [5]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [6]戴先中,刘国海,张兴华.交流传动神经网络逆控制[M].北京:机械工业出版社,2007.
    [7]乐江源,谢运祥,张志.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报,2010,30(15):32-39.
    [8]乐江源,谢运祥,张志.有源电力滤波器状态反馈精确线性化控制[J].电力自动化设备,2010,30(2):81-85.
    [9]Xianzhong Dai, Guohai Liu, Hao Zhang, et al. Neural network inverse synchronous control of two-motor variable frequency speed-regulating system [C]. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control (ICNSC'06), Ft. Lauderdale, FL: IEEE,2006:1070-1075.
    [10]戴先中,张兴华,刘国海,等.感应电机的神经网络逆系统线性化解耦控制[J].中国电机工程学报,2004,24(1):112-117.
    [11]X. Dai, D. He, T. Zhang, et al. ANN generalised inversion for the linearisation and decoupling control of nonlinear systems [J]. IEE Proceedings of Control Theory and Applications,2003, 150(3):267-277.
    [12]戴先中,刘国海.两变频调速电机系统的神经网络逆同步控制[J].自动化学报,2005,31(6):890-900.
    [13]王正齐,刘贤兴.基于神经网络逆系统的无轴承异步电机非线性内模控制[J].自动化学报,2013,39(4):433-439.
    [14]戴先中,张腾,张凯锋,等.发电机励磁与汽门系统解耦控制的神经网络逆系统方法[J].中国电机工程学报,2002,22(11):75-80.
    [15]Yuhan Ding, Guohai Liu, Xianzhong Dai. Soft-sensing method based on modified ANN inversion and its application in erythromycin fermentation [C].2012 International Conference on Information and Automation (ICIA), Shenyang, China:IEEE,2012:900-905.
    [16]张良均,曹晶,蒋世忠.神经网络实用教程[M].北京:机械工业出版社,2008.
    [17]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [1]郑雪生,李春文,汤洪海,等.三相PWM电压型逆变器的积分滑模控制[J].电工技术学报,2007,22(12):105-109.
    [2]Jianxin Xu. A new periodic adaptive control approach for time-varying parameters with known periodicity [J]. IEEE Transactions on Automatic Control,2004,49(4):579-583.
    [3]Xiaoming Zha, Jianjun Sun, Yunping Chen. Application of iterative learning control to active power filter and its robustness design [C]. Power Electronics Specialist Conference, IEEE,2003: 785-790.
    [4]Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components [J]. IEEE Transactions on Industry Applications,1984,20(3):625-630.
    [5]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(第2版)[M].北京:机械工业出版社,2005.
    [6]H.Akagi, E.H.Watanabe, M.Aredes著.瞬时功率理论及其在电力调节中的应用[M].徐政译.北京:机械工业出版社,2009.
    [7]姜齐荣,赵东元,陈建业.有源电力滤波器一结构·原理·控制[M].北京:科学出版社,2005.
    [8]Hong Qi, Zhenhua Shao, Ruiquan Lin. Improved non-fragile H∞ control on three-phase four-leg shunt active power filter [C].2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), IEEE,2010:693-697
    [9]徐金富,张振环,刘会金,等.基于双环控制思路的有源电力滤波器H_oo控制[J].电力自动化设备,2009,29(12):41-47.
    [10]齐虹,林瑞全.具有控制器参数摄动的并联型有源电力滤波器H∞控制器设计[J].电力自动化设备,2010,30(1):58-61.
    [11]Zhang Zhenhuan, Liu Huijin, Lei Xi, et al. Port controlled hamiltonian modeling and periodic adaptive L2 disturbance attenuation control algorithm for Active Power Filter [C],2010 International Conference on Power System Technology (POWERCON), IEEE,2010:1-8.
    [12]张振环,刘会金,张全明,等.基于PCH模型的有源电力滤波器滑动耗散阻尼限幅自适应L-2增益控制[J].电工技术学报,2008,23(3):80-91.
    [13]Li Qiao, Wu Jie. Application of auto-disturbance rejection control for a shunt hybrid active power filter [C]. Proceedings of 2005 IEEE International Symposium on Industrial Electronics (ISIE'05), Dubrovnik, Croatia:IEEE,2005:627-632.
    [14]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997.
    [15]V. Cardenas, N. Vazquez, C. Hernandez, et al. Sliding mode control applied to a three-phase shunt active power filter using compensation with instantaneous reactive power theory [C]. Power Electronics Specialist Conference, IEEE, May 1998:236-241.
    [16]N. Mendalek, K. Al-Haddad, F. Fnaiech, et al. Sliding mode control of a 3-phase 3-wire shunt active filter in the dq frame[C]. Canadian Conference on Electrical and Computer Engineering, IEEE, May 2001:765-769.
    [17]习伟,殷波,赵子岩,等.三相四线制电力有源滤波器的滑模变结构控制[J].电网技术,2004,28(5):18-21.
    [18]N. Mendalek, K. Al-Haddad, H. Y. Kanaan, et al. Sliding mode control of three-phase four-leg shunt active power filter[C]. Power Electronics Specialist Conference, IEEE,2008,4362-4367.
    [19]Hui Wang, Qingmin Li, Yulei Gong, et al. An adaptive sliding mode control methodology applied to shunt active power filter [C]. Asia-Pacific Power and Energy Engineering Conference,2010, (1):1-4.
    [20]张晓,孔令军,孙华,等.三相三线制并联型有源电力滤波器的准滑模变结构控制[J].电力系统保护与控制,2011,39(21):40-44.
    [21]Wiebe-Quintana E., Duran-Gomez, J.L. Acosta-Cano, P.R.. Delta-sigma integral sliding-mode control strategy of a three-phase active power filter using d-q frame theory [C]. Electronics, Robotics and Automotive Mechanics Conference,2006, (2):291-298.
    [22]胡志坤,张乾,刘守明.三相并联型有源滤波器的滑模控制方法[J].电工技术学报,2011,26(12):122-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700