用户名: 密码: 验证码:
风能发电机整机及关键部件动力学分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能发电机是利用风能驱动发电机,将机械能转化为电能的大型机组。经过20年的发展,我国已在该领域处于领水平。
     本文利用UG,ANSYS等软件对风能发电机整机、关键部件进行了动力学分析与研究,将动力学分析方法与有限元分析软件结合起来,验证了实验数据的合理性。具体内容有:
     1、风能发电机整机动力学分析。采用动力学软件FASTC(美国可再生能源实验室(NREL)开发)中提供的自由度模型,建立FAST线性化动力学方程,采用假设模态法建立风能发电机的结构动力学模型。
     2、风能发电机整机动态特性分析。风能发电机的大型化使叶片和塔架的柔性不断增强,结构之间的耦合作用不可避免,加上风速的随机性等环境因素的作用,风能发电机多体系统结构的动态响应变得更加复杂。本部分主要针对风能发电机的多体系统动力学特性进行研究。
     3、风能发电机叶片动力学分析。把风能发电机叶片看成是细长悬臂梁,因此可以用ANSYS程序中的柔性动力分析模块。该模块是用来计算在交变载荷作用下柔性体结构的响应,即由于耦合载荷作用使得风能发电机叶片的加速度、变形量在任意时刻都是变化的。还可分析出随时间变化的叶根的力和扭矩,这些力和扭矩为轮毂的进一步分析提供了理论数据。
     4、风能发电机塔架动力学分析。风载荷对风能发电机塔架结构的作用由于其在空间和时间上的多变性变得更加复杂。本部分的整体模型是基于塔架顶端自由底端考虑基础刚度弹性约束模型与顶端自由底端固定所建立的,计算固有频率和振型,考察塔架动态特性受塔底基础刚度和塔顶机头质量的影响,分析风载荷对塔架的动态响应,为今后进一步研究风能发电机塔架结构提供依据。
     5、风能发电机传动系统动力学分析。传动系统是风能发电机的重要组成部分,其性能的优劣在一定程度上决定着风能发电机能否正常运行。本部分将UG、ADAMS、ANSYS、ROMAX等软件有机的结合起来,充分发挥各软件的优势,研究及设计分析风能发电机传动系统的动力学情况。
     本文对风能发电机的整机及关键部件进行了动力学分析与研究。对风能发电机整机进行了建模和动力学分析,然后对风能发电机关键部件即叶片、塔架和传动系统进行了动力学分析,得到了相关的结论。为今后风能发电机系统的科学设计,整机、关键部件的故障预测评估提供了理论支持。
The wind turbine is the use of wind-driven generators, large units of mechanical energy into electrical energy. After20years of development, China has been leading in the field level.
     UG, ANSYS, and other software dynamic analysis and research on wind power generator machine, key components, dynamic analysis methods and finite element analysis software to verify the experimental data are reasonable. Specific work content:
     1、The whole dynamic analysis of wind turbines. Dynamics software FAST (United States Renewable Energy Laboratory (NREL) development) degrees of freedom in the model, the establishment of FAST linearized kinetic equation, using the assumed mode method to establish the structural dynamics model of the wind power generator.
     2、The whole dynamic characteristics of the wind generator. Large-scale wind generator blades and the tower of flexible and constantly enhance the coupling between the structure is inevitable, and the role of the randomness of the wind speed and other environmental factors, wind energy generator structure of the dynamic response of the body systems become more complex. This section focuses on the multi-body system dynamics of the wind energy generators.
     3、Wind turbine blade dynamics. Wind energy turbine blade as a the slender cantilever, so you can use flexible dynamic analysis module in the ANSYS program. This module is used to calculate the alternating flexible response of the structure under load, so that the acceleration of the wind turbine blade loads due to the coupling, the deformation change at any time. Can also analyze the change with time of the force and torque of the blade root,these forces and torques as the theoretical data for further analysis of the hub.
     4、Wind turbine tower dynamics. Wind loads on the role of the wind turbine tower structure becomes more complex because of its variability in space and time. This part of the overall model is based on the top of the tower bottom of the freedom to consider the foundation stiffness elastic constraint model is fixed to the bottom of the top free, calculate the natural frequency and modal investigated the tower dynamic characteristics by the bottom of the tower foundation stiffness and tower head quality impact analysis of the dynamic response of the wind load on the tower, to provide a basis for further study of wind turbine tower structure.
     5、Wind turbine drive system dynamics.The drive system is an important part of the wind power generator, the performance of the pros and cons of wind turbines to some extent determines whether the normal operation. This section the UG, ADAMS, ANSYS,ROMAX software organic, give full play to the advantages of the software, research and design analysis of wind turbine drive system dynamics.
     In this paper, the machine and key components of the wind energy generators kinetic analysis in research. Modeling and dynamic analysis of wind energy generating machine, and then the key components of wind turbines, blades, towers and transmission dynamics analysis to obtain the relevant conclusions. Provides a theoretical support for the assessment of the scientific design of the wind power generator system in the future, the whole key components of the failure prediction.
引文
[1]CARNE,THOMASG. Modal testing of wind turbines[A].2002:4753,389
    [2]US S, TOLUN S. Structural design and analysis of wind turbine rotor blades laminated sandwichcomposires[A]. Engineering Construction and in Challenging Environments. 2004.492-498.
    [3]KONG C, BANGA J, SUGIYAMA Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J].Energy,2005,30(11-12): 2101-2114.
    [4]Yiping Wang. Wenlei Sun. Qun Zhao. Research on Dynamic Characteristics of 750KW Wind Turbine Flexible Blades[C]. Applied Mechanics and Materials (AMM)Journal(ISSN:1660-9336).2010.10.25:1-4
    [5]姚兴佳,刘颖明,刘光德,邢作霞,鲍洁秋.大型风能发电机振动分析和在线状态监测技术[J].沈阳工业大学学报.2007.12:627-632
    [6]L. J. Vermeer, J. N. Srensenb, A. Crespoc. Wind turbine wake aerodynamics. Progress in Aerospace Sciences,2003, (39):467-510
    [7]Sumitabh Biswas, N. Sreedbard, Y. P. Singh. Dynamic Analysis of a Vertical Axis Wind Turbine Using a New Windload Estimation Technique. Computers& Structures,1997,65(6):903^916
    [8]曹人靖,刘冥.基于压力表示法的水平轴风能发电机风轮气动弹性稳定性模型及应用.太阳能学报,2003,24(2):27-31
    [9]Molenaar. D, Dijkstra S. State of the Art of Wind Turbine Design Codes:Main Overview for Cost-effective Generation. Wind Engineering,23(5):295-311
    [10]信伟平.风能发电机旋转叶片动力特性及响应分析.汕头大学硕士学位论文.2005:9-11
    [11]陈余岳.风能发电机玻璃钢叶片疲劳分析.玻璃钢,2001,(4):1-4
    [12]陈余岳.玻璃钢风能发电机叶片疲劳设计.风力发电,1992:17-21
    [13]陈雨.袁国青.水平轴风能发电机叶片自振频率计算方法研究[J].玻璃钢/复合材料.2008.5(3):1
    [14]陈绍杰.申振华.徐鹤山.复合材料与风能发电机叶片[J].复合材料与风能发电机叶片2008.3(2):4
    [15]李传胜.张锦南.真空灌注成型工艺在大型风能发电机叶片中的应用[C].玻璃钢学会第十六届全国玻璃钢/复合材料学术年会议论文集2006.E-15:254-256
    [16]D. C. Quarton.The evolution of wind turbine design analysis-a twenty year progress review[J]. Wind Energy,1998,1:5-24.
    [17]S. YE.1996 in State of the art of aerolastic codes for wind turbine calculations[R] , International Energy Agency,28th Meeting of Experts(B. M. Pedersen, editor) 71-76. Lyngby:DTU.
    [18]J. C. HOUBOLT and G. W. BROOKS. Differential equations of motion for combined flapwise bending, cordwise bending, and torsion of twisted nonuniform rotor blades[R].1957 NACA-Report-1346.
    [19]S. KRENK and B. JEPPESEN. Analytical solution to the dynamic analysis of laminated beams using higher order refined theory[J]. Computers&Structures,1989,32:1035-1043.
    [20]A. Baumgart. A mathematical model for wind turbine blades[J]. Journal of Sound and Vibration,2002,251:1-12.
    [21]P. J. Murtagh, B. Basu and B. M. Broderick. Mode acceleration approach for rotating wind turbine blades[J]. Proc. IMechE, Part K:J.Multi-body Dynamics,2004,218(3):159-166.
    [22]R. Younsi, I. El-Batanony and J. Tritsch. Dynamic study of a wind turbine blade with horizontal axis[J]. European Journal of Mechanics, A/Solids,2001,20(2):241-252.
    [23]T. Kenneth, R. Flemming. Loads and dynamics for stall regulated wind turbines[R], Report of Risoe National Laboratory,1993, Roskide, Denmark.
    [24]A. D. Wright, R.O. Osgood. Analysis of a two-bladed, teetering-hub turbine using the ADAMS software[A]. In:WINDPOWER, AWEA, Minneapolis,1994:813-820.
    [25]R. W. Thresher, A. D. Wright, E. L. Hershberg, A computer analysis of wind turbine blade dynamic loads [J]. ASME Journal of Solar Energy Engineering,1986,108:17-25.
    [26]J. W. Larsen and S. R. K. Nielsen, Non-linear dynamics of wind turbine wings[J], International Journal of Non-Linear Mechanics,2006,41(5):629-643.
    [27]Ph. Devinant, T. Laverne and J. Hureau. Experimental study of wind-turbine airfoil aerodynamics in high turbulence[J], Journal of Wind Engineering and Industrial Aerodynamics,2002,90:689-707.
    [28]D. H. Hodges and E. H. Dowell. Nonlinear equations of motion for the elastic bending and torsion of twisted non-uniform rotor blades[R], NASA TN D-7818, December 1974.
    [29]H. Ozguven and D. R. Houser. Mathematical models used in gear dynamics-a review[J]. Journal of Sound and Vibration,1998,121:383-411.101
    [30]T. Gellermann. Me?technische Erfassung von Belastungen des mechanischen Stranges[J]. AZTExpertentage 2001-Dezentrale Energieversorgung-Windenergie, ZT-Allianz-Zentrum fur Technik, Ismaning,19. und 20.11.2001.
    [31]B. Schlecht, D. Wunsch and A. Christianhemmers. Theoretical Investigations on the dynamic behaviour of bucket wheel drives[J]. Bulk Solids Handling,1999,19(1):71-80.
    [32]B. Schlecht. Simulation of the bucket wheel drive of a compact bucket wheel excavator [Z], Vortrag anl??lich der Fachtagung,4th World Congress on Gearing and Power Transmission, Paris,16. bis 18.Mrz 1999.
    [33]F. Cunliffe, J. D. Smith and D. B. Welbourn. Dynamic tooth loads in epicyclic gears [J]. ASME Journal of Engineering for Industry,1974:578-584.
    [34]Y. Hayashi,X. Li, I. Hayashi,K. Endou and W. Watanabe. Measurement and some discussions on the dynamic load sharing in planetary gears[J]. Bulletin of the JSME,1986,29: 2290-2297.
    [35]T. Hidaka and Y. Terauchi. Dynamic behavior of planetary gear-1st Report, Load Distribution in the planetary gear[J]. Bulletin of the JSME 1976a,19:690-698.
    [36]T. Hidaka, Y. Terauchi and K. Ishioka. Dynamic behavior of planetary gear-2nd Report, Displacement of sun and ring gear[J]. Bulletin of the JSME 1976b,19:1563-1570.
    [37]T. Hidaka,Y. Terauchi and K. Nagamura. Dynamic behavior of planetary gear-6th report, Influence of mesh-phase[J]. Bulletin of the JSME,1979,22:1026-1033.
    [38]T. Hidaka,Y. Terauchi and K. Ishioka. Dynamic behavior of planetary gear-4th report, Influence of of the transmitted tooth load on the dynamic increment load[J]. Bulletin of the JSME,1979,22:877-884.
    [39]T. Hidaka, Y. Terauchi and M. Fujii. Analysis of dynamic tooth load on planetary gear[J].Bulletin of the JSME,1980,23:315-323.
    [40]A. Kahraman. Planetary gear train dynamics[J]. ASME Journal of Mechanical Design,1994, 116:713-720.
    [41]R.G. Parker, V. Agashe and S.M. Vijayakar. Dynamic response of a planetary gear system using a finite element/contact mechanics model[J]. ASME Journal of Mechanical Design,2000,122:304-310.
    [42]V. K. Ambarisha and R. G. Parker. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration,2007,302:577-595.
    [43]J.Lin and R. G. Parker. Planetary gear parametric instability caused by mesh stiffness variation [J]. Journal of Sound and Vibration,2002,249:129-145.
    [44]V. K. Ambarisha and R. G. Parker. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration,2007,302:577-595.102
    [45]D. Kiracofe and R.G. Parker. Structured vibration modes of general compound planetary gear systems[J]. ASME Journal of Vibration and Acoustics,2007,129:1-16.
    [46]V. K. Ambarisha and R. G. Parker. Suppression of planet mode response in planetary gear dynamics through mesh phasing[J]. ASME Journal of Vibration and Acoustics,2006,128: 133-142.
    [47]J. L. M. Peeters, D. Vandepitte and P. Sas. Analysis of internal drive train dynamics in a wind turbine[J].Wind Energy,2006,9:141-161.
    [48]R. C. Smith and E. J. Haug. DADS- Dynamic Analysis and Design:System Multibody Systems Handbook, Berlin:Springer-Verlag,1990.
    [49]B. Schlecht and S. Gutt. Multibody-system-simulation of drive trains of wind turbines[A]. Fifth World Congress on Computational Mechanics. Vienna, Austria.2002.
    [50]Simpack User Routine Manual:User Routines-Force and Control Germany. Intec GmbH 2003.
    [51]Donghoon Lee, H.Dewey, P. Hodges and J. P. Mayuresh. Multi-flexible-body dynamic analysis of horizontal axis wind turbines[J]. Wind Energy,2002,5:281-300.
    [52]S. Rissanen and S. Uski. Modelling and measurements of dynamic loads of an arctic wind turbine[R],Presentation at BOREAS VII 7-8 March 2005.
    [53]Surya Santoso and Ha Thu Le. Fundamental time-domain wind turbine models for wind power studies [J]. Renewable Energy,2007,32:2436-2452.
    [54]A. D. Garrad and D. C.Quarton. Symbolic computing as a tool in wind turbine dynamics[J]. Journal of Sound and Vibration,1986,109(1):65-78.
    [55]G. H. James. Extraction of modal parameters from an operating HAWT using the natural excitation technique(NExT). Proc.13th ASME Wind Energy Symp. [C].1994:227-232.
    [56]D. J. Malcolm and G. H. James.1996, Identification of natural operating modes of HAWTs from modeling data. Proc. of 15th ASME Wind Energy Symp[C].1996:24-31.
    [57]D. W. Lobitz and W. N.Sullivan. VAWTDYN:A Numerical Package for the Dynamic Analysis of Vertical Axis Wind Turbine[R]. Technical Report SAND-80-0085. Sandia National Laboratories. Albuquerque. NM.1980.
    [58]T. G. Carne, D. W. Lobitz, A. R. Nord and R. A. Watson. Finite element analysis and modal testing of a rotating wind turbine [A]. Presented at the AIAA/ASME/ASCE/AHS Structures-Structural.Dynamics and Materials Conf. New Orleans, LA,1982.
    [59]T. G. Carne, D. R.Martinez and S. R. Ibrahim. Modal identification of a rotating blade system. Technical Report SAND82-2115, UC-32, Sandia National Laboratories, Albuquerque, NM,1983.103
    [60]G. H. James, T. G.Carne and J. P. Lauffer. The natural excitation technique(NExT)for modal parameter extraction from operating wind turbines, Technical Report SAND92-1666, UC-261, Sandia National Laboratories, Albuquerque, NM,1993.
    [61]T. Yamane. Coupled Rotor/Tower Stability Analysis of a 6-Meter Experimental Wind Turbine. Proc. of 6th ASME Wind Energy Symp., Dallas, TX,1987:59-66.
    [62]G. S. Bir and C. P. Butterfield. Modal dynamics of a next-generation flexible-rotor soft-tower wind turbine, Proc. of 15th Int. Modal Analysis Conf., Orlando, FL,1997:76-84.
    [63]W. J. Johnson. Helicopter Theory. Princeton, NJ:Princeton Univ. Press,1980.
    [64]G. S. Bir and M. Robinson. Code development for control design applications(Phase Ⅰ: Structural Modeling). Proc. of 18th ASME Wind Energy Symp., Reno, NV,1990:114-123.
    [65]D. Hodges and M.Patil. Multi-flexible body analysis for application to wind turbine control design, Proc. of 19th ASME Wind Energy Symp.,Reno, NV,2000:110-120.
    [66]K. Stol. Dynamics modeling and periodic control of horizontal-axis wind turbines. Ph. D. thesis, Univ. of Colorado at Boulder, Boulder CO,2001.
    [67]K. Stol, M. Balas and G. Bir, Floquet modal analysis of a teetered-Rotor wind turbine, ASME Journal of solar energy engineering[J],2002,124:364-371.
    [68]J. W. Larsen and S. R. K. Nilsen. Nonlinear parameteric instability of wind turbine wings[J]. Journal of Sound and Vibration,2007,299:64-82.
    [69]F. Rasmussen, M. H. Hansen, K. Thomsen, T. J. Larsen, F. Bertagnol io, J. Johansen, H. A. Madsen, C. Bak and A. M. Hansen. Present status of aeroelasticity of wind turbines [J]. Wind Energy, 2003,6:213-228.
    [70]A. C. Hansenand D.J.Laino. User's guide to the wind turbine dynamics computer programs YawDyn and AeroDyn for ADAMS[R].Technical Report,Mechanical Engineering Department, University of Utah, Salt Lake City,UT 1998.
    [71]J. Jonkman and J. Cotrell. A demonstration of the ability of RCAS to model wind turbines[R]. Technical Report NREL/TP-500-34632, National Renewable Energy Laboratory, Golden, CO,2003.
    [72]A. Ahlstr?m. Emergency stop simulation using a FEM model developed for large blade deflections[J].Wind Energy in press.
    [73]A. Ahlstrom. Influence of wind turbine flexibility on loads and power production[J]. wind energy,2005,9(3):237-249.
    [74]L. Vedmar and A. Andersson. A method to determine dynamic loads on spur gear teeth and on bearings[J]. Journal of Sound and Vibration,2003,267:1065-1084.
    [75]G. Litak and M. I. Friswell. Vibrations in gear systems [J]. Chaos 2003,16:145-150.104
    [76]G. R. Parker and L. Jian. Mesh stiffness variation instabilities in two-stage gear systems[J]. Journal of Vibration and Acoustics,2002,124:68-76.
    [77]A. Kahraman and R. Singh. Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibration,1990,142:49-75.
    [78]N. Sarkar, R. E.Ellis and T. N. Moore. Backlash detection in geared mechanisms modelling, simulation, and experimentation[J]. Mechanical Systems and Signal Processing,1997, 11(3):391-408.
    [79]L. Walha, T. Fakhfakh and M. Haddar, Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash[J], Mechanism and Machine Theory (in pressed).
    [80]T. C. Lim and R. Singh. Vibration transmission through rolling element bearings, PART I: Bearing stiffness formulation[J]. Journal of Sound and Vibration,1990,139(2):179""199.
    [81]T. C. Lim and R. Singh. Vibration transmission through rolling element bearings, PART II: System studies[J]. Journal of Sound and Vibration,1990,139(2):201-225.
    [82]N. Sawalhi and R.B. Randall, Simulating gear and bearing interactions in the presence of faults Part Ⅰ. The combined gear bearing dynamic model and the simulation of localized bearing faults [J].Mechanical System and Signal Processing,2008,22:1924-1951.
    [83]N. Sawalhi and R. B. Randall, Simulating gear and bearing interactions in the presence of faults Part Ⅱ.Simulation of the vibrations produced by extended bearing faults[J]. Mechanical System and Signal Processing,2008,22:1952-1966.
    [84]朱才朝,黄琪,唐倩.风力发电升速齿轮箱传动系统接触齿数及载荷分配[J].农业机械学报,2006,37(7):86-89.
    [85]朱才朝,黄泽好,唐倩,谭勇虎.风力发电升速齿轮箱系统耦合非线性动态特性研究[J].机械工程学报,2005,41(8):203-207.
    [86]王旭东,林腾蛟,李润方,刘文,杜雪松.风能发电机齿轮系统内部动态激励和响应分析[J].2006,22(3):47-49.
    [87]勒艳丽,刘凯,马朝锋.风能发电机增速行星传动系统均载分析[J].重型机械,2007(5):42-52.
    [88]孙黎,王碧石,王春秀.大型风能发电机齿轮箱的有限元分析[J].华东电力,2008,36(7):74-75.
    [89]Holm-J?rgensen K.,Nielsen S. R. K.,A component mode synthesis algorithm for multibody dynamics of wind turbines, Journal of Sound and Vibration,2009,326:753-767
    [90]K. Y. Maalawi, A model for yawing dynamic optimization of a wind turbine structure, International Journal of Mechanical Sciences,2007,49:1130-1138.
    [91]M. Rahimi,M. Parniani, Dynamic behavior and transient stability analysis of fixed speed windturbines, Renewable Energy,2009,34:2613-2624.
    [92]M.Martins and A. Perdana et al, Validation of fixed speed wind turbine dynamic models withmeasured data, Renewable Energy,2007,32:1301-1316.
    [93]姚兴佳.王士荣.董丽萍.风力发电讲座(二).88
    [94]王承煦.张源.风力发电.北京电力出版社.2002.6:43-48
    [95]倪受元.风力发电讲座.6-10
    [96]王长贵,王芳淳,董路影,叶东嵘,毛和璜,高纪凡.小型新能源和可再生能源发电系统建设与管理[M].中国电力出版社.2004.2(1):51-52
    [97]周洁.国内风电制造行业综述[J].机械制造,2007.5.19(45):1-2
    [98]于化楠.褚福磊.刘莹.风能发电机气动弹性稳定性问题综述[J].机械设计,2008.6.(25):1-2
    [99]朱孝录.机械零件失效分析概述[J].机械工人(冷加工).1999.2(1):33-35
    [100]张栋.钟培道等.失效分析[M].国防工业出版社.2004:52-65
    [101]楼华山.4V-105柴油机曲轴的疲劳可靠性研究[J].柳州职业技术学院学报.2010(2):1-2
    [102]徐宜等.基于雨流法的机械疲劳分析[J].车辆与动力技术.2008(3):1-2
    [103]Metals Handbook 9th ed. Vol.11, Failure Analysis and Prevention,ASM, Ohio,1993
    [104]李本立,安玉华.风能发电机气动弹性稳定性的分析.太阳能学报,1996,17(4):314-320
    [105]卞于中.风能发电机叶片气动弹性实验研究.气动实验与测量控制,1994,8(3):40-47
    [106]陆佑方著.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [107]P. J.Moriarty, A. C. Hansen, "AeroDyn Theory Manual, "NREL/EL-500-29798, Golden, CO:National Renewable Energy Laboratory,2005.
    [108]Jonkman, J. M. and Buhl Jr., M. L., "FAST User's Guide," NREL/EL-500-29798, Golden, CO:National Renewable Energy Laboratory,2005.
    [109]王永智,陶其斌.风力机塔架的结构动力分析[J].太阳能学报,1995,16(2):162-169.
    [110]窦修荣,黄珊秋,宋宪耕.大型水平轴风力机塔架的风诱发振动响应[J].太阳能学报,1997,18(2):205-211.
    [111]周勃,费朝阳,陈长征.风能发电机塔架的振动特性研究[J].振动工程学报,2004,17:903-905.
    [112]郭威,徐玉秀.离网型风能发电机塔架振动问题的模态分析[J].可再生能源,2006,(5):65-67.
    [113]李斌,姜福杰.风能发电机锥筒型塔架的模态分析[J].内蒙古科技大学学报.2009,28(4):364-368.
    [114]陈小波,李静,陈健云.风能发电机塔架和叶片随机响应及极值反应分析[J].太阳能学报.2010,31(8):1042-1048.
    [115]N. Bazeos.G. D. Hatzigeorgiou, L. D. Hondros, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures,2002, (24):1015-1025.
    [116]费志中.弹性稳定[M].北京:煤炭工业出版社,1989.
    [117]钱翼谩.空气动力学[M].北京:北京航空航天大学出版社,2005.
    [118]J.W. Larsen,R. Iwankiewicz, S. R. K. Nielsen. Nonlinear stochastic stability analysis of wind turbine by Monte Carlo simulations[J]. Probabilistic Engineering Mechanics, 2007,(22):181-193.
    [119]李本立,宋宪耕,贺德馨等.风能发电机结构动力学[M].北京:北京航空航天大学出版社.1999.
    [120]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [121]赵荣珍,吕钢.水平轴风能发电机塔架的振动模态分析[J].兰州理工大学学报.2009,35(2):33-36.
    [122]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [123]Tony Burton等著,武鑫等译.风能技术[M].科学出版社.2007:59-63
    [124]Trudnowski D J, Khan J M, Petritz E M. Fixed-speed wind generator and wind park modelingfor transient stability studies[J]. IEEE Transactions on Power Systems,2004, 19(4):1911-1917.
    [125]李辉,韩力,赵斌等.风力机等效模型对机组暂态稳定分析结果的影响[J].中国电机工程学报,2008,28(17):105-111.
    [126]许本文.机械振动与模态分析基础[M].北京:机械工业出版社,1998
    [127]美.R.克拉夫,J.彭津.结构动力学第二版(修订版)[M].北京:高等教育社.2006:46-67.
    [128]edri, R;A1. Nais,M.O. Prestressed modal analysis using finite element package ANSYS[J]. Third International Conference On Numerical Analysis and Its Applications, NAA 2004.
    [129]宫靖远主编.风电场工程技术手册[M].北京:机械工业出版社.2005:54-126
    [130]李军,刑俊文等.IDAMS实例教程[M].北京:北京理工大学出版社.2002,07
    [131]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005,1
    [132]Mechanical Dynamics inc. Using ADAMS/Solver[M].2002:82-95
    [133]王玉芳,童忠钫.圆柱撞击发身机理的研究、振动、测试与诊断[J].1991,11(1):16-22.
    [134]Yen J. Constrained equations of motion in multibody dynamics as ODEs on manifolds. SIAM J. Numer. Anal.1993.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700