用户名: 密码: 验证码:
托卡马克中误差场锁模现象的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
托卡马克金属结构造成的误差场对未来的聚变装置运行有着非常重要的影响。误差场引起的锁模现象可能诱发撕裂模磁岛甚至引起等离子体大破裂。误差场锁模作为托卡马克运行时重要的物理现象,在国际上得到广泛的研究与关注,且实验、理论和模拟都进行了深入的探讨。实验上,国际著名托卡马克装置,诸如JET、DIII-D、COMPASS、 C-Mod等都深入开展了一系列的实验,并与理论进行仔细对比。理论上,误差场锁模物理也得到了国际理论界的广泛研究,核聚变理论界许多国际知名的学者都对误差场的不同形式进行了深入的研究。而模拟研究正在逐步与真实托卡马克等离子体位形接近,即从单纯的研究物理机制的平板几何转向多种耦合的三维实际位形、从磁流体转向双流体以及进一步向动理学的深化。通过二十多年的研究,误差场锁模物理图像越来越清晰和丰满。然而已有理论中仍然存在一些欠缺与不足之处。本文首先对误差场锁模的相关知识进行较全面的介绍,然后深入分析并讨论相关理论和实验,在此基础上解决了其中存在的一些问题。本文大致内容如下:
     绪论部分将托卡马克关键物理问题进行了综述性的归纳与概括。并在此基础上重点回顾了误差场锁模研究的研究历史与进展。指出了误差场锁模在托卡马克关键物理问题中的重要性。
     第二章,列出了误差场渗透最新理论进展中重要的理论推导,即双流体近似下线性理论、非线性理论,线性动理学理论,并给出双流体近似下线性理论中一些关键细节,作为后继章节工作的基础。
     第三章,探讨磁流体近似下误差场渗透的非线性理论。针对磁流体近似下误差场渗透的非线性理论展开了讨论。通过分析得出以前磁流体近似下的非线性理论中,Rutherford机制和Waelbroeck机制间的过渡机制,其一系列参数均没有体现出平滑的过渡趋势,即没有起到很好的过渡作用。在详细分析理论中一些关键细节后,用比较合理的分析(即过渡机制要包含Rutherford机制和Waelbroeck机制间两者的混合性质),修正了以前非线性渗透理论。修改后的机制各个参数基本上都表现出平滑的过渡效果。为了更好地证实该理论分析,通过模拟,从误差场锁定阈值、临界锁定时的磁岛宽度分别与初始速度的定标很好地证实了前面的理论分析。为了更直观地表现其中物理图像,也列出三个机制中达到锁定阈值时的电流分布情况,进一步证实了前面的理论分析。在第三章的最后,针对托卡马克中较受关注的Rutherford机制展开了讨论,分析和模拟讨论得出以前相关模拟文章中的粘性-电阻机制是Rutherford机制。然而从误差场的定标上来说,两者的结论基本一致,因此可以互换使用。通过固定误差场幅值进一步确认了得到的结论。
     第四章,讨论误差场渗透理论在托卡马卡中的应用。将以前理论参数定标转化到实验参数定标的两种假设分别进行了讨论。选取比较好的假设,得到的密度定标在非线性的相邻机制之间过渡得比较好。并对自二十世纪九十年代初期以来典型的托卡马克装置中误差场锁模相关实验研究进行了分类及讨论。详细分析了一些装置误差场锁模的实验结果,并得出实验中比较准确的物理机制。通过理论分析,分析了J-TEXT装置参数及最近误差场锁模运行参数,发现目前其锁模实验覆盖了磁流体近似下误差场渗透的全部三种非线性机制。理论分析结果与实验数据拟合吻合。
     第五章,通过数值模拟研究反磁剪切位形下的误差场渗透问题。考虑实际托卡马克运行可能包含不同平衡状态,因此在反磁剪切位形下考虑了三种平衡状态,即稳定状态、临界状态及不稳定状态。仔细分析了三种平衡状态下非锁定和锁定情况的主要特征,并讨论了相关机制。模拟结果显示在通常运行双撕裂模稳定情况下,一旦双撕裂模外侧有理面锁定,内侧有理面也会很快锁定,两个有理面上磁岛相互驱动并迅速生长起来,在大范围破坏等离子体约束。这个结果提醒人们要对反磁剪切位形下的误差场锁模有足够的重视。
     最后是本论文的结论与展望。
Many investigations indicate that error field will play a significant role in future fusion reactor operations. During the tokamak operation, the error field will still induce the mode locking phenomenon, and further lead to island growth and even major disruption. Meantime, as a remarkable physical phenomenon, error field locked mode receives extensive attention and investigation, and researches are carried out from the points of experiment, theory and simulation. Experimentally, the world's notable tokamakdevices, such as JET, DIII-D, COMPASS, C-Mod etc also took series of investigation. Theoretically, error field locked mode physics also receives extensive studies in the nuclear fusion theoretical cycle. And the simulation was mainly developed in recent years. Nowadays, the simulation are made forward to the real configurations of tokamak plasmas, i.e. from simple study on physical regimes in the slab geometry to coupled three dimensional configuration, and from single fluid to two-fluid and further kinetics. With more than twenty years' studies, error field locked mode physics have become more and more clear. However, revisiting these theories, we still find the necessity of further developments of the existing theories. In this thesis, a comprehensive introduction to error field locked mode is shown at first, and then follows deep analyses to the relevant theory and experiment. On the basis of these, proper answers to these problems are given. The context of this thesis is as follows:
     In introduction, the key physics problems in tokamaks in the previous special topic are summarized at first. After then the research history and progress on error field relevant investigation is reviewed. Besides, the significance of error field locked mode in tokamak physics problems is also pointed out.
     In chapter2, the newest significant theoretical progress on error field penetration, i.e. linear and nonlinear theories at the two-fluid frame and also linear kinetic theory are present. Some key details in the linear theory under the condition of two-fluid approximation are also shown.
     In chapter3, nonlinear error field penetration theories under the condition of magnetohydrodymics (MHD) approximation are reviewed and re-analysed. A discussion on nonlinear error field penetration theory under the condition of MHD approximation is given first. With detailed analysis, the previous transition regime shows little smooth transition characteristic is found. A new transition regime that shows well smooth transition for nearly all parameters is given. To better verify this analysis, a relevant simulation is given. The relation between critical error field amplitude and critical island width, and the detailed scaling results verify our opinion. Besides, we then present the electric current profiles in the three nonlinear regimes at the time of critical error field amplitude. These again verify our theoretical analysis. At the last part of chapter3, extra discussions on the crucial Rutherford regime are shown.
     In chapter4, the error field penetration theory is applied in tokamaks. First, a discussion on the two assumptions that are employed when the theoretical scalings transform into experiment parameters is present. On the basis of these, the better assumption is selected, and the more reasonable density scalings are then obtained. Based on these above, an analysis on the error field locked mode relevant experiment investigations is given. After then, follows a comprehensive classification. At the end of chapter4, the theoretical analysis on the very recent error field locked mode experiment results in J-TEXT tokamak is shown. And the present error field locked mode experiments cover all three nonlinear regimes in the frame of MHD. The theoretical result matches well with the experiment data.
     In chapter5, error field penetration in reversed magnetic shear configuration is investigated. To give the comprehensive discussion, three states, i.e. stable, marginal and unstable states are considered. The significance is that once error field induces mode locking at the outer rational surface when the double tearing mode is initially stable, the double tearing mode will grow up. This will induce plasma disruption. Hence significant attention should be paid.
     At last a summary and prospect ends this thesis.
引文
[1]IAEA. Sustainable Development and Nuclear Power[EB/OL]. http://www.iaea.org/Public ations/Booklets/Development/index.html.
    [2]M. Kikuchi, K. Lackner, M. Q. Tran. Fusion Physics[EB/OL]. http://www-pub.iaea.org/b ooks/IAEABooks/8879/Fusion-Physics.
    [3]林尊琪.激光惯性约束聚变(ICF)驱动器的研究进展和快点火概念平台[R].黄山:第五届全国光子学大会,2004.
    [4]ITER官方网站.Progress in Fusion[EB/OL]. http://www.iter.org/sci/beyonditer.
    [5]郑春开.等离子体物理讲义(第一章)[R].2009.
    [6]林尊琪.激光核聚变的发展[J].中国激光.2010,37(9):2202-2207.
    [7]范滇元,张小民.激光核聚变与高功率激光:历史与进展[J].物理.2010,39(9):589-596.
    [8]刘成安,师学明.美国激光惯性约束聚变能源研究综述[J].原子核物理评论.2013,30(1):89-93.
    [9]I. P. B. Editors, I. P. E. G. C. a. Co-Chairs, I. J. C. Team, et al. Chapter 1:Overview and summary [J]. Nuclear Fusion.1999,39(12):2137-2174.
    [10]M. Shimada, D. J. Campbell,V. Mukhovatov, et al. Chapter 1:Overview and summary [J]. Nuclear Fusion.2007,47(6):S1-S17.
    [11]万宝年.我国磁约束聚变进展与展望[J].中国科学基金.2008,2008(1):1-7.
    [12]潘传红.国际热核实验反应堆(ITER)计划与未来核聚变能源[J].物理.2010,39(6):375-378.
    [13]康卫红.中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第10册(核情报(含计算机技术)分卷、核技术经济与管理现代化分卷)[C].贵阳:中国核学会,2011.
    [14]中华人民共和国科技部.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL]. ht tp://www.most.gov.cn/kjgh/kjghzcq/.
    [15]中华人民共和国科技部.国家“十二五”科学和技术发展规划[EB/OL].http://www.most. gov.cn/kjgh/.
    [16]国际托卡马克物理活动(ITPA)官方网站.http://itpa.ipp.mpg.de/.
    [17]J. D. Lawson. Some criteria for a power producing thermonuclear reactor [J]. Proceed ings of the Physical Society. Section B.1957,70(1):6-10.
    [18]石秉仁.磁约束聚变:原理与实践[M].北京:原子能出版社,1999:12,61-109.
    [19]J. D. Callen. Effects of 3D magnetic perturbations on toroidal plasmas [J]. Nuclear Fusion.2011,51(9):094026.
    [20]W. A. Craven, A. J. Wootton. TEXT-U error field measured from MHD dynamics [J].Nucle ar Fusion.1998,38(4):585-595.
    [21]T. E. Evans, K. H. Burrell.M. E. Fenstermacher, et al. The physics of edge resonant magnetic perturbations in hot tokamak plasmas [J]. Physics of Plasmas.2006,13(5):0 56121.
    [22]施文丰J-TEXT托卡马克装置随机扰动磁场系统的建立[D].武汉:华中科技大学,2011.
    [23]B. Rao, Y. H. Ding, K. X. Yu, et al. Measurement of 2/1 intrinsic error field of Joint TEXT tokamak [J]. Review of Scientific Instruments.2013,84(4):043504-04350 5.
    [24]G. Zhuang,K. W. Gentle, B. Rao, et al. Recent research work on the J-TEXT tokamak [J]. Nuclear Fusion.2013,53(10):104014.
    [25]F. L. Waelbroeck, I. Joseph, E. Nardon, et al. Role of singular layers in the plasma response to resonant magnetic perturbations [J]. Nuclear Fusion.2012,52(7):0740 04.
    [26]M. E. Fenstermacher, T. E. Evans, T. H. Osborne, et al. Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D [J]. Physics of Plasmas.2008,15(5):056122.
    [27]I. Barlow, M. Bigi.J. Bird, et al. The error field correction coils on the JET machine [J]. Fusion Engineering and Design.2001,58-59(0):189-193.
    [28]E. J. Doyle, W. A. Houlberg,Y. Kamada, et al. Chapter 2:Plasma confinement and transport [J]. Nuclear Fusion.2007,47(6):S18-S127.
    [29]T. C. Hender, J. C. Wesley, J. Bialek, et al. Chapter 3:MHD stability, operational limits and disruptions [J]. Nuclear Fusion.2007,47(6):S128-S202.
    [30]A. Loarte,B. Lipschultz, A. S. Kukushkin, et al. Chapter 4:Power and particle control [J]. Nuclear Fusion.2007,47(6):S203-S263.
    [31]A. Fasoli,C. Gormenzano,H. L. Berk, et al. Chapter 5:Physics of energetic ions [J]. Nuclear Fusion.2007,47(6):S264-S284.
    [32]C. Gormezano, A. C. C. Sips, T. C. Luce, et al. Chapter 6:Steady state operation [J]. Nuclear Fusion.2007,47(6):S285-S336.
    [33]A. J. H. Donne, A. E. Costley, R. Barnsley, et al. Chapter 7:Diagnostics [J]. Nuclear Fusion.2007,47(6):S337-S384.
    [34]Y. Gribov, D. Humphreys, K. Kajiwara, et al. Chapter 8:Plasma operation and control [J]. Nuclear Fusion.2007,47(6):S385.
    [35]V. Mukhovatov, M. Shimada, K. Lackner, et al. Chapter 9:ITER contributions for Demo plasma development [J]. Nuclear Fusion.2007,47(6):S404.
    [36]兰涛.托卡马克边缘等离子体中测地声模的实验研究[D].合肥:中国科技大学,2008.
    [37]陈伟.HL-2A装置上鱼骨模不稳定性和剪切阿尔芬本征模的研究[D].成都:核工业西南物理研究院,2010.
    [38]仇志勇.托卡马克等离子体中测地声模的理论研究[D].合肥:中国科学技术大学,2008.
    [39]虞立敏.多波非线性共振加热及托卡马克中阿尔芬本征模的研究[D].杭州:浙江大学,2009.
    [40]邱励俭.聚变能及其应用[M].北京:科学出版社,2008:204-467.
    [41]F. L. Hinton, R. D. Hazeltine. Theory of plasma transport in toroidal confinement systems [J].Reviews of Modern Physics.1976,48(2):239-308.
    [42]朱士尧.核聚变原理[M].合肥:中国科学技术大学出版社,1992:357-366.
    [43]高喆.高比压等离子体中的微观漂移不稳定性[D].北京:清华大学,2002.
    [44]C. J. McDevitt,P. H. Diamond,O. D. Guercan, et al. A novel mechanism for exciting intrinsic toroidal rotation [J].Physics of Plasmas.2009,16(5):052302.
    [45]P. H. Diamond, C. J. McDevitt,O. D. Guercan, et al. Physics of non-diffusive turbule nt transport of momentum and the origins of spontaneous rotation in tokamaks [J]. Nu clear Fusion.2009,49(4):045002.
    [46]D. Biskamp. Nonlinear Magnetohydrodynamics[M]. Cambridge:Cambridge University Pre ss,1997:49-84,240-261.
    [47]J. A. Wesson. Tokamaks [M].Oxford:Clarendon Press,2004:303-416.
    [48]胡希伟.等离子体理论基础[M].北京:北京大学出版社,2006:114-218.
    [49]B. B. Kadomtsev. Disruptive instability in tokamaks [J]. Soviet Journal of Plasma Physics 1975,1(5):389-391.
    [50]J. A. Wesson. Sawtooth reconnection [J]. Nuclear Fusion.1990,30(12):2545.
    [51]F. Porcelli. Collisionless m=1 tearing mode [J]. Physical Review Letters.1991,66 (4):425-428.
    [52]J. F. Drake, R. G. Kleva. Collisionless reconnection and the sawtooth crash [J].Phy sical Review Letters.1991,66(11):1458-1461.
    [53]X. Wang, A. Bhattacharjee. Nonlinear dynamics of the m=1 instability and fast sawtooth collapse in high-temperature plasmas [J]. Physical Review Letters.1993,7 0(11):1627.
    [54]F. Porcelli, D. Boucher, M. N. Rosenbluth. Model for the sawtooth period and amplitude [J]. Plasma Physics and Controlled Fusion.1996,38(12):2163.
    [55]I. T. Chapman, R. Scannell.W. A. Cooper, et al. Magnetic reconnection triggering magnetohydrodynamic instabilities during a sawtooth crash in a tokamak plasma [J]. Physical Review Letters.2010,105(25):255002.
    [56]P. H. Rutherford. Nonlinear growth of the tearing mode [J]. Physics of Fluids.1973,1 6(11):1903.
    [57]H. Cai,S. Wang,Y. Xu, et al. Influence of energetic ions on tearing modes [J]. Physic al Review Letters.2011,106(7):075002.
    [58]G. Z. Hao, A. K. Wang, Y. Q. Liu, et al. Effect of trapped energetic particles on the resistive wall mode [J]. Physical Review Letters.2011,107(1):015001.
    [59]L. Chen, R. B. White, M. N. Rosenbluth. Excitation of Internal Kink Modes by Trapped Energetic Beam Ions [J]. Physical Review Letters.1984,52(13):1122-1125.
    [60]S. Matsuda, M. Yoshikawa. Magnetic island formation due to error field in the JFT-2 tokamak [J].Japanese Journal of Applied Physics.1975,14(1):87-94.
    [61]B. V. Waddell,B. Carreras,H. R. Hicks, et al. Nonlinear interaction of tearing modes in highly resistive tokamaks [J]. Physics of Fluids.1979,22(5):896-910.
    [62]T. H. Jensen, M. S. Chu. Low-frequency linear response of a cylindrical tokamak with arbitrary cross-section to'helical'perturbations [J]. Journal of Plasma Physics.1980,24(02):229-236.
    [63]A. H. Boozer. Force on a moving plasma by a finite conductivity wall [J]. Physics of Fluids.1981,24(7):1387-1389.
    [64]T. H. Jensen, M. S. Chu. A linear model for the tearing mode of a tokamak plasma with flow and a resistive wall boundary condition [J]. Journal of Plasma Physic s.1983,30 (AUG):57-63.
    [65]P. N. Hu. Fast reconnection of magnetic fields in a plasma [J].Physics of Fluid s.1983,26 (8):2234-2239.
    [66]T. S. Hahm, R. M. Kulsrud. Forced magnetic reconnection [J]. Physics of Fluids.198 5,28 (8):2412-2418.
    [67]E. Lazzaro, M. F. F. Nave. Feedback control of rotating resistive modes [J]. Physics of Fluids.1988,31(6):1623-1629.
    [68]G. Berge, L. K. Sandal, J. A. Wesson. Rotation and mode locking in tokamaks [J]. Physi ca Scripta.1989,40(2):173-187.
    [69]T. C. Hender, C. G. Gimblett, D. C. Robinson. Effects of a resistive wall on magnetoh ydrodynamic instabilities [J]. Nuclear Fusion.1989,29(8):1279.
    [70]M. F. F. Nave, J. A. Wesson. Mode-locking in tokamaks [J]. Nuclear Fusion.1990,3 0(12):2575-2583.
    [71]R. Fitzpatrick, T. C. Hender. The interaction of resonant magnetic perturbations with rotating plasmas [J]. Physics of Fluids B:Plasma Physics.1991,3(3):644-673.
    [72]T. H. Jensen, A. W. Leonard, R. J. La Haye, et al. Effects of plasma flow on error field islands [J]. Physics of Fluids B:Plasma Physics.1991,3(7):1650-1656.
    [73]A. Reiman, D. Monticello. Tokamak error fields and locked modes [J]. Physics of Fluids B:Plasma Physics.1991,3(8):2230-2235.
    [74]J. T. Scoville,R. J. L. Haye, A. G. Kellman, et al. Locked modes in DⅢ-D and a method for prevention of the low density mode [J]. Nuclear Fusion.1991,31(5):8 75-890.
    [75]T. C. Hender, R. Fitzpatrick, A. W. Morris, et al. Effect of resonant magnetic pertur bations on COMPASS-C tokamak discharges [J]. Nuclear Fusion.1992,32(12):2091-211 7.
    [76]R. J. La Haye, R. Fitzpatrick, T. C. Hender, et al. Critical error fields for locked mode instability in tokamaks [J]. Physics of Fluids B:Plasma Physics.1992,4(7):2 098-2103.
    [77]R. Fitzpatrick. Interaction of tearing modes with external structures in cylindric al geometry (plasma) [J]. Nuclear Fusion.1993,33(7):1049-1084.
    [78]R. Fitzpatrick, R. J. Hastie.T. J. Martin, et al. Stability of coupled tearing modes in tokamaks [J]. Nuclear Fusion.1993,33(10):1533-1576.
    [79]T. H. Jensen, A. W. Leonard, A. W. Hyatt. A simple model for driven islands in tokamak s [J]. Physics of Fluids B:Plasma Physics.1993,5(4):1239-1247.
    [80]R. Fitzpatrick. Stability of coupled tearing and twisting modes in tokamaks [J].Phy sics of Plasmas.1994,1(10):3308-3336.
    [81]0. A. Hurricane, T. H. Jensen, A. B. Hassam. Two-dimensional magnetohydrodynamic simulation of a flowing plasma interacting with an externally imposed magnetic field [J].Physics of Plasmas.1995,2(6):1976-1981.
    [82]R. Fitzpatrick. Driven Reconnection in Magnetic Fusion Experiments[EB/OL]. http:// farside. ph. utexas. edu/papers/lecture.html.
    [83]A. H. Boozer. Shielding of resonant magnetic perturbations by rotation [J]. Physics of Plasmas.1996,3(12):4620-4627.
    [84]A. H. Boozer, N. Pomphrey. Current density and plasma displacement near perturbed rational surfaces [J]. Physics of Plasmas.2010,17(11):110707.
    [85]X. Wang, A. Bhattacharjee. Forced reconnection and current sheet formation in Taylor's model [J]. Physics of Fluids B:Plasma Physics.1992,4(7):1795-1799.
    [86]Z. W. Ma, X. Wang, A. Bhattacharjee. Forced magnetic reconnection and the persistenc e of current sheets in static and rotating plasmas due to a sinusoidal boundary perturbation [J]. Physics of Plasmas.1996,3(6):2427-2433.
    [87]X. Wang, A. Bhattacharjee. Forced reconnection and mode locking in rotating cylindr ical plasmas [J]. Physics of Plasmas.1997,4(3):748-754.
    [88]R. Fitzpatrick. Bifurcated states of a rotating tokamak plasma in the presence of a static error-field [J]. Physics of Plasmas.1998,5(9):3325-3341.
    [89]R. J. Buttery,M. De' Benedetti, D. A. Gates, et al. Error field mode studies on JET, COMPASS-D and DIII-D, and implications for ITER [J]. Nuclear Fusion.1999,39 (11Y):1827-1835.
    [90]R. J. Buttery, M. De' Benedetti, T. C. Hender, et al. Error field experiments in JET [J]. Nuclear Fusion.2000,40(4):807-819.
    [91]E. Lazzaro, R. J. Buttery, T. C. Hender, et al. Error field locked modes thresholds in rotating plasmas, anomalous braking and spin-up [J]. Physics of Plasmas.200 2,9(9):3906-3918.
    [92]A. H. Boozer. Error field amplification and rotation damping in tokamak plasmas [J]. Physical Review Letters.2001,86(22):5059-5061.
    [93]F. L. Waelbroeck. Shielding of resonant magnetic perturbations in the long mean-fre e path regime [J].Physics of Plasmas.2003,10(10):4040-4047.
    [94]A. Cole, R. Fitzpatrick. Drift-magnetohydrodynamical model of error-field penetra tion in tokamak plasmas [J].Physics of Plasmas.2006,13(3):032503.
    [95]F. H. Martin, B. I. Ivan, V. K. Sergei, et al. Kinetic modelling of the interaction of rotating magnetic fields with a radially inhomogeneous plasma [J]. Nuclear Fusio n.2006,46(4):S159.
    [96]F. H. Martin,B. I. Ivan, V. K. Sergei, et al. Kinetic estimate of the shielding of resonant magnetic field perturbations by the plasma in DIII-D [J]. Nuclear Fusio n.2008,48 (2):024005.
    [97]I. B. Ivanov, M. F. Heyn,S. V. Kasilov, et al. Kinetic linear model of the interactio n of helical magnetic perturbations with cylindrical plasmas [J]. Physics of Plasma s.2011,18(2):022501-022511.
    [98]A. J. Cole,C. C. Hegna, J. D. Callen. Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas [J]. Physical Review Lett ers.2007,99(6):065001.
    [99]A. J. Cole, C. C. Hegna, J. D. Callen. Neoclassical toroidal viscosity and error-fie Id penetration in tokamaks [J]. Physics of Plasmas.2008,15(5):056102.
    [100]Y. Sun, Y. Liang, H. R. Koslowski, et al. Toroidal rotation braking with n=1 magnet ic perturbation field on JET [J]. Plasma Physics and Controlled Fusion.2010,52 (10):105007.
    [101]Y. Sun, Y. Liang, K. C. Shaing, et al. Neoclassical toroidal plasma viscosity torque in collisionless regimes in tokamaks [J]. Physical Review Letters.2010,105(14):1 45002.
    [102]Y. Sun, Y. Liang, K. C. Shaing, et al. Modelling of the neoclassical toroidal plasma viscosity torque in tokamaks [J]. Nuclear Fusion.2011,51(5):053015.
    [103]Y. Sun,Y. Liang, K. C. Shaing, et al. Non-resonant magnetic braking on JET and TEXTOR [J]. Nuclear Fusion.2012,52(8):083007.
    [104]A. J. Cole, J. D. Callen, W. M. Solomon, et al. Observation of peak neoclassical toroidal viscous force in the DIII-D tokamak [J]. Physical Review Letters.2011,10 6(22):225002.
    [105]A. J. Cole, J. D. Callen, W. M. Solomon, et al. Peak neoclassical toroidal viscosity at low toroidal rotation in the DIII-D tokamak [J]. Physics of Plasmas.2011,1 8(5):055711-055719.
    [106]R. Fitzpatrick. Nonlinear error-field penetration in low density ohmically heated tokamak plasmas [J]. Plasma Physics and Controlled Fusion.2012,54(9):094002.
    [107]Q. Yu, S. Guenter, Y. Kikuchi, et al. Numerical modelling of error field penetration [J]. Nuclear Fusion.2008,48(2):024007.
    [108]Q. Yu,S. Guenter, K. H. Finken. Effect of resonant helical magnetic fields on plasma rotation [J]. Physics of Plasmas.2009,16(4):042301.
    [109]Q. Yu, S. Guenter. Effect of resonant magnetic perturbations on particle confineme nt [J]. Nuclear Fusion.2009,49(6):062001.
    [110]Q. Yu, S. Guenter. Plasma response to externally applied resonant magnetic perturb ations [J].Nuclear Fusion.2011,51(7):073030.
    [111]Y. Liu,A. Kirk, E. Nardon. Full toroidal plasma response to externally applied nonaxisymmetric magnetic fields [J]. Physics of Plasmas.2010,17(12):122502-1225 17.
    [112]Y. Liu, J. W. Connor, S. C. Cowley, et al. Continuum resonance induced electromagnet ic torque by a rotating plasma response to static resonant magnetic perturbation field [J]. Physics of Plasmas.2012,19(10):102507-102508.
    [113]Y. Liu, A. Kirk, Y. Sun. Toroidal modeling of penetration of the resonant magnetic perturbation field [J]. Physics of Plasmas.2013,20(4):042503.
    [114]T. E. Evans, R. A. Moyer, P. R. Thomas, et al. Suppression of Large Edge-Localized Modes in High-Confinement DIII-D Plasmas with a Stochastic Magnetic Boundary [J]. Physical Review Letters.2004,92 (23):235003.
    [115]T. E. Evans, R. A. Moyer, J. G. Watkins, et al. Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas [J].Nuclear Fusion.2005,45(7):595.
    [116]T. E. Evans, R. A. Moyer, K. H. Burrell, et al. Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas [J]. Nature Physics.2006,2(6):419-423.
    [117]Y. Liang, H. R. Koslowski,P. R. Thomas, et al. Active control of type-I edge-locali zed modes with n=1 perturbation fields in the JET tokamak [J]. Physical Review Letters.2007,98(26):265004.
    [118]M. Leconte, P. H. Diamond. Effect of resonant magnetic perturbations on secondary structures in drift-wave turbulence [J]. Physics of Plasmas.2011,18(8):082309.
    [119]M. Leconte, P. H. Diamond. Impact of resonant magnetic perturbations on nonlinearl y driven modes in drift-wave turbulence [J].Physics of Plasmas.2012,19(5):055 903.
    [120]C. C. Hegna, J. D. Callen, R. J. LaHaye. Dynamics of seed magnetic island formation due to geometrically coupled perturbations [J]. Physics of Plasmas.1999,6(1):130-136.
    [121]C. C. Hegna. The physics of neoclassical magnetohydrodynamic tearing modes [J]. Physics of Plasmas.1998,5(5):1767-1774.
    [122]A. Gude, S. Gunter, S. Sesnic, et al. Seed island of neoclassical tearing modes at ASDEX Upgrade [J]. Nuclear Fusion.1999,39(1):127.
    [123]V. D. Pustovitov. Resonant field amplification as a mechanism for seed island formation [J]. Nuclear Fusion.2005,45(4):245.
    [124]Q. Yu,S. Guumlnter, K. Lackner, et al. Seed island formation by forced magnetic reconnection [J]. Nuclear Fusion.2012,52(6):063020.
    [125]严龙文,杨青巍,钱俊等.HL-1M装置锁模不稳定性研究[J].核聚变与等离子体物理.2000,20(4):193-197.
    [126]董家齐,石小麟,阳彦鑫等.螺旋对称扰动磁场对托卡克共振磁面的影响[J].核聚变.1980,1(4):231-237.
    [127]石小麟,董家齐.自由边界螺旋对称磁流体平衡的数值研究[J].核聚变与等离子体物理.1981,1(3):129-133.
    [128]赵君煜.托卡马克装置误差场的作用与对策研究[R].国家自然科学基金重点基金结题报告,2003.
    [129]Q. M. Hu, Q. Yu, B. Rao, et al. Effect of externally applied resonant magnetic pertur bations on resistive tearing modes [J]. Nuclear Fusion.2012,52(8):083011.
    [130]W. Jin, Y. H. Ding, B. Rao, et al. Dependence of plasma responses to an externally applied perturbation field on MHD oscillation frequency on the J-TEXT tokamak [J]. Plasma Physics and Controlled Fusion.2013,55(3):035010.
    [131]T. Xu, Q.-M. Hu,X.-W. Hu, et al. Locking of tearing modes by the error field [J].Chi nese Physics Letters.2011,28(9):095202.
    [132]J. F. Drake, Y. C. Lee. Kinetic theory of tearing instabilities [J]. Physics of Fluids.1977,20(8):1341-1353.
    [133]R. Fitzpatrick, F. L. Waelbroeck. Two-fluid magnetic island dynamics in slab geome try. I. Isolated islands [J]. Physics of Plasmas.2005,12(2):022307.
    [134]C. Bruno.M. G. John, L. J. John. Resistive instabilities in a diffuse linear pinch [J]. Nuclear Fusion.1966,6(2):101.
    [135]A. Bondeson, J. R. Sobel. Energy balance of the collisional tearing mode [J].Physi cs of Fluids.1984,27(8):2028-2034.
    [136]F. Porcelli. Viscous resistive magnetic reconnection [J]. Physics of Fluids.1987, 30(6):1734-1742.
    [137]J. W. Connor, J. B. Taylor. Ballooning modes or Fourier modes in a toroidal plasma? [J]. Physics of Fluids.1987,30(10):3180-3185.
    [138]蔡辉山.电子磁流体中的磁场重联不稳定性的理论研究[D].合肥:中国科学技术大学,2008.
    [139]R. Fitzpatrick, F. L. Waelbroeck. A drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in the pedestals of H-mode tokamak plasmas [J]. Physics.of Plasmas.2010,17(6):062503.
    [140]K. C. Shaing. Magnetohydrodynamic-activity-induced toroidal momentum dissipatio n in collisionless regimes in tokamaks [J]. Physics of Plasmas.2003,10(5):1443-1448.
    [141]P. A. Sweet. Proceedings of the International Astronomical Union Symposium on Electromagnetic Phenomena in Cosmical Physics, Stockholm,1956[C]. Cambridge:C ambridge University Press,1958.
    [142]E. N. Parker. Sweets mechanism for merging magnetic fields in conducting fluids [J].Journal of Geophysical Research.1957,62(4):509.
    [143]F. L. Waelbroeck. Current sheets and nonlinear growth of the m=1 kink-tearing mode [J].Physics of Fluids B:Plasma Physics.1989,1(12):2372-2380.
    [144]S. Mirnov, J. Wesley, N. Fujisawa, et al. Chapter 3:MHD stability, operational limits and disruptions [J]. Nuclear Fusion.1999,39(12):2251-2389.
    [145]D. Biskamp. Magnetic reconnection via current sheets [J]. Physics of Fluids.1986, 29(5):1520.
    [146]A. T. Y. Lui. A synthesis of magnetospheric substorm models [J]. Journal of Geophys ical Research.1991,96(A2):1849-1856.
    [147]J. F. Drake, R. G. Kleva, M. E. Mandt. Structure of thin current layers:implicatio ns for magnetic reconnection [J]. Physical Review Letters.1994,73(9):1251-1254.
    [148]Z. W. Ma,C. S. Ng, X. Wang, et al. Dynamics of current sheet formation and recon nection in two-dimensional coronal loops [J]. Physics of Plasmas.1995,2(8):3184-3193.
    [149]X. Wang, A. Bhattacharjee, Z. W. Ma. Scaling of collisionless forced reconnection [J]. Physical Review Letters.2001,87(26):265003.
    [150]V. Angelopoulos. The THEMIS mission [J]. Space Science Reviews.2008,141 (1):5-34.
    [151]S. von Goeler,W. Stodiek, N. Sauthoff. Studies of internal disruptions and m=1 oscillations in tokamak discharges with soft-X-Ray tecniques [J]. Physical Revie w Letters.1974,33(20):1201-1203.
    [152]W. Park, D. A. Monticello, R. B. White. Reconnection rates of magnetic fields includ ing the effects of viscosity [J]. Physics of Fluids.1984,27(1):137-149.
    [153]H. P. Furth, J. Killeen, M. N. Rosenbluth. Finite-Resistivity Instabilities of a sheet pinch [J]. Physics of Fluids.1963,6(4):459-484.
    [154]E. N. Parker. The solar-flare phenomenon and the theory of reconnection and annihi liation of magnetic fields [J].The Astrophysical Journal Supplement Series.1963, 8:177-211.
    [155]R. Fitzpatrick. Plasma parameter scaling of the error-field penetration threshold in tokamaks [J]. Physics of Plasmas.2003,10(5):1782-1787.
    [156]傅竹风,胡友秋.空间等离子体数值模拟[M].合肥:安徽科学技术出版社,1995:574-587.
    [157]Y. Kikuchi,K. H. Finken, M. Jakubowski, et al. Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak [J]. Plasma Physics and Controlled Fusion.2006,48(2):169.
    [158]S. M. Wolfe, I. H. Hutchinson, R. S. Granetz, et al. Nonaxisymmetric field effects on Alcator C-Mod [J]. Physics of Plasmas.2005,12(5):056110.
    [159]R. C. Wolf, W. Biel,M. F. M. de Bock, et al. Effect of the dynamic ergodic divertor in the TEXTOR tokamak on MHD stability, plasma rotation and transport [J]. Nuclear Fusion.2005,45(12):1700-1707.
    [160]A. Hasegawa, C. Uberoi.The Alfven Wave [M].Washington DC US Department of Energy Technical Information Center,1982:6.
    [161]S. Lundquist. Experimental Investigations of Magneto-Hydrodynamic Waves [J].Phys ical Review.1949,76(12):1805-1809.
    [162]S. Lundquist. Experimental demonstration of magneto-hydrodynamics waves [J].Natu re.1949,164(4160):145-146.
    [163]王水,李罗权.磁场重联[M].合肥:安徽教育出版社,1999:14.
    [164]世界上所有托卡马克装置集合.http://www. tokamak. info/.
    [165]G. M. Fishpool, P. S. Haynes. Field error instabilities in JET [J].Nuclear Fusio n.1994,34(1):109-119.
    [166]N. Wang, B. Rao, Y. Ding, et al. Study of penetration of resonant magnetic perturbat ions in J-TEXT [J].Nuclear Fusion(accepted).2013.
    [167]P. L. Pritchett, Y. C. Lee, J. F. Drake. Linear analysis of the double-tearing mode [J]. Physics of Fluids.1980,23(7):1368-1374.
    [168]Z. Chang, W. Park,E. D. Fredrickson, et al. Off-axis sawteeth and double-tearing reconnection in reversed magnetic shear plasmas in TFTR [J]. Physical Review Lette rs.1996,77(17):3553-3556.
    [169]E. Fredrickson,M. Bell.R. V. Budny, et al. Nonlinear evolution of double tearing modes in tokamaks [J]. Physics of Plasmas.2000,7(10):4112-4120.
    [170]B. Carreras,H. R. Hicks, B. V. Waddell. Tearing-mode activity for hollow current profiles [J].Nuclear Fusion.1979,19(5):583.
    [171]Y. Ishii,A. I. Smolyakov, M. Takechi. Plasma rotation effects on magnetic island formation and the trigger of disruptions in reversed shear plasma [J]. Nuclear Fusion.2009,49 (8):085006.
    [172]X.-Q. Wang, X. Wang, W.-B. Xu, et al. Interlocking and nonlinear saturation of doubl e tearing modes in differentially rotating plasmas [J]. Physics of Plasmas.2011,1 .8(1):012102.
    [173]J. P. Freidberg. Ideal Magnetohydrodynamics[M]. New York:Plenum Press,1987:120.
    [174]郑春开.等离子体物理[M].北京:北京大学出版社,2009:197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700