用户名: 密码: 验证码:
基于无网格自然单元法的超长桩水平承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学的发展,数值方法在工程上的应用越来越广泛,其中有限元方法在工程上的应用最广。但有限元在处理大变形的非线性力学问题中存在网格畸变或缠结等不足,同时有限元在求解液体振动、裂纹扩展、材料相变和成形等不定边界或可动边界问题时,需要重新划分网格,而新旧网格之间物理量转换将产生新的误差。因此,无网格方法应运而生。无网格方法不需要借助任何单元,直接利用节点构造插值函数,避免了有限元方法的以上缺陷。在多种无网格方法中自然单元法以其独特的优势获得了快速的发展。
     当前,超长桩大量应用于超高层建筑、大跨桥梁和深水港口工程中。然而,超长桩现阶段的研究相对滞后,工程中仍按普通桩理论进行设计,现有理论及分析模型不能充分考虑分层土特性或横纵荷载共同作用的影响,也无法很好地反映超长桩的承载性状。特别在港口工程中,超长桩通常承受很大的水平荷载,并且在横纵荷载共同作用下,往往发生大变形,而传统有限元方法在模拟计算大变形的超长桩和土体的相互作用时存在网格畸变或缠结等问题。
     针对以上问题本文在自然单元法理论基础上进一步改进了插值函数,并将其应用到成层地基中超长桩水平承载力问题上。主要的研究工作及创新点如下:
     1、改进了自然单元法的插值函数,编制三维无网格自然单元法计算程序。本文采用的是Voronoi图中二阶结构的边元素作为插值变量,大幅度提高了计算效率。无网格程序不需要借助任何单元,直接利用节点构造插值函数,避免了有限元中的网格畸变等问题,弥补了有限元在处理大变形、非线性力学等问题中存在的明显缺陷,具有较高的工程实用价值和广阔的应用前景。将程序计算结果与解析解及有限元计算结果相比较,验证了本程序的正确性和合理性。
     2、基于变分原理计入横纵向荷载共同作用下超长桩的P-Δ效应,推导出单元刚度修正矩阵。针对横纵向荷载共同作用下超长桩的大变形问题,建立考虑非线性大变形的无网格自然单元法计算方法。通过对实例的计算分析,验证了该方法的正确性和合理性,得到P-Δ效应特征。结果表明:由于P-Δ效应,桩的位移响应与荷载为非线性关系。当地基土质较差,桩自由长度较大时,P-Δ效应对桩身位移和内力的影响不可忽略。本方法为计算时考虑P-Δ效应提供了一种简便易行的方法,在工程设计和施工中具有一定的价值。
     3、基于无网格自然单元法计算并分析了荷载大小、加载顺序、长径比、桩顶约束条件、水平荷载作用位置、桩土相对刚度比和荷载分布形式等诸多参数对超长桩水平承载力的影响,并得出相关结论。
     4、当层状地基中采用p-y曲线法模拟桩周土非线性特性时,桩周土水平位移的计算误差随荷载增大而增大。针对该问题本文采用层状弹性体系理论考虑土体纵向连续性,并利用层状各向同性体的研究方法,建立了适用于桩周层状地基的水平位移系数传递矩阵解法。根据有限单元等效载荷的计算原理,推导出水平位移系数矩阵,并给出外荷载较大时,p-y曲线法桩周土体水平位移的修正式。根据所建立的模型编制程序,对某三层地基土水平位移系数矩阵进行了计算和分析,验证了该方法的正确性和合理性。由于计入了土体的纵向连续性,本文方法所得的水平位移影响系数曲线在荷载作用点的及其邻近区域较Mindlin解的曲线更平滑,位移小于Mindlin解的结果。这表明当土层间性质差异较大时,本文方法能更好地体现层状土体实际分布差异的影响和临近土层间的相互作用。
Numerical method is widely used in engineering as the development of science, inwhich the finite element has the widest applications. However, the finite element hasthe insufficiency of mesh distortion or tangles in dealing with issues of non-linearmechanics of large transformation and the problems of re-meshing and new errorsgenerated by the physical quantity conversion between the new and the old meshwhen solving issues of indefinite or movable boundaries as fluid vibration, crackpropagation, material phase change and forming, therefore the meshless method isapplied. Different from finite element method, the meshless method requires nodeinformation rather than unit or grid information, which can overcome theinconvenience and defects of applying the finite element method. In a variety ofmeshless methods, natural element method with its unique advantages obtained rapiddevelopment.
     Along with the large-scale construction of high-rise buildings, long-span bridgesand deepwater ports, super-long pile has been widely used to meet the requirements ofbearing capacity and displacement control of foundation. The working mechanismand force character of super-long piles are different from normal piles with a short ormedium length. But presently, as research of super-long pile in layered soil is stillrelatively backward, the method of design and calculation of super-long piles remainsin use of the theory of normal piles. The existing theory and analytical model are notcapable to fully consider characteristics of layered soil or the combined effect oflateral-vertical loads, as well as can not reflect the working properties of super-longpiles accurately.
     The following aspects have been researched on calculation method and bearingbehavior in this paper:
     1. In order to improve the computational efficiency of natural element method,the new interpolating function is constructed by edge elements of Voronoifigure which replaces body elements. The natural element method can overcome the inconvenience and defects of applying the finite element methodto deal with the large deformation problem. This method’s validity andrationale can be verified by calculating and analyzing the examples.
     2. According to the variation principle, this paper calculated the P-Δ effect ofsuper-long pile under the combined effects of lateral and axial loads, andobtained the modified element stiffness matrix. Faced with the largedeformation problem of super-long pile under the combined effects of lateraland axial loads, the nonlinear calculation method is established based on themeshless natural element method. The correctness and rationality of themethod can be verified by calculating and analyzing the example. Thecharacteristic of the P-Δ effect can be obtained. Because of the P-Δ effect, thereis a nonlinear relationship existed between the displacement response andexternal loads. The calculated results indicate that the P-Δ effect cannot beoverlooked where the soil of the foundation is relatively loose and where theunsupported length of pile is relatively large.
     3. According to the natural element method, this paper discussed the influencefactors of horizontal bearing capacity, including load value, loading sequence,length-diameter ratio, pile top restriction, horizontal load position, relativestiffness ratio of pile-soil and load distribution form.
     4. When utilizing the p-y curve to simulate the non-linear characteristics of soilsurrounding pile in layered foundations, due to having not taken into accountthe soil Mass’ longitudinal continuity, the calculation deviation of horizontaldisplacement increases with the growth of a load. This paper adopted thelayered elasticity system theory to consider the soil Mass’ longitudinalcontinuity, as well as utilizing the research method for layered isotropic bodies,assuming that the horizontal resistance is evenly distributed around theperimeter of the pile's cross-section. then an appropriate transfer matrix methodof horizontal displacement coefficient for the soil surrounding pile in layeredfoundations was established. According to the calculation principle of finite element equivalent load, the horizontal displacement coefficient matrix wasdeduced as well as providing a corrected formula for the horizontaldisplacement of soil surrounding pile through the p-y curve method when theexternal load was increased. Following the established model a program wascreated which was used for calculating and analyzing the horizontaldisplacement coefficient matrix of three-layered soil in order to verify thismethod’s validity and rationale. Where there is a relatively large discrepancy inthe soil layers’ properties, this paper’s method is able to reflect the influence onthe layered soil’s actual distributional difference as well as the nearby soillayers’ interaction.
引文
【1】.范文田.轴向与横向荷载同时作用下柔性桩的分析[J].西南交通大学学报,1986(l):39-44
    【2】.赵明华.轴向和横向荷载同时作用下的桩基计算[J].湖南大学学报,1987,14(2):66-81
    【3】.赵明华,侯运秋,曹喜仁.倾斜荷载下基桩的受力研究[J].湖南大学学报,1997,24(2):98-102
    【4】.赵明华,侯运秋,单远铭.倾斜荷载下桥梁桩基的计算与试验研究[J].湖南大学学报,1999,26(2):86-91
    【5】.李微哲,赵明华,单远明,杨明辉.倾斜偏心何在下基桩内力位移分析[J].中南公路工程,2005,30(9):53-57
    【6】.赵明华,李微哲,杨明辉,单远明.成层地基中倾斜偏心荷载下单桩计算分析[J].岩土力学,2007,28(4):670-674
    【7】.赵明华,李微哲,曹文贵.复杂荷载及边界条件下桩基有限杆单元方法研究[J].岩土工程学报,2006,28(9):1059-1063
    【8】.赵明华,李微哲,杨明辉.成层地基中倾斜荷载桩改进有限杆单元法研究[J].工程力学,2008,25(5):79-84
    【9】.郑刚,王丽.竖向及水平荷载加载水平、顺序对单桩承载力的影响[J]岩土工程学报,2008,30(12):1796-1804
    【10】. Koumoto T, Meyerhof G G, Sastry V V R N. Analysis of bearing capacity of rigid pilesunder eccentric and inclined loads[J].Canadian Geotechnical Journal,1986,23(2):127-131
    【11】. Meyerhof G G, Sastry V V R N. Bearing capacity of rigid piles under eccentric andinclined loads[J].Canadian Geotechnical Journal,1985,22(3):267-276
    【12】. Meyerhof G G, Ranjan G.The bearing capacity of rigid piles under inclined loads in sandⅠ:Vertical piles[J].Canadian Geotechnical Journal,1972,9(4):440-446
    【13】. Chari T R, Meyerhof G G. Ultimate capacity of rigid single piles under inclined loads insand[J].Canadian Geotechnical Journal,1983,20(4):849-854
    【14】. Sastry V V R N, Meyerhof G G. Behavior of flexible piles in layered clays undereccentric and inclined loads[J].Canadian Geotechnical Journal,1995,32(3):387-396
    【15】. Meyerhof G G, Ghosh D P. Ultimate capacity of flexible piles under eccentric andinclined loads.[J].Canadian Geotechnical Journal,1989,26(l):34-42
    【16】. Yalcin A S, Meyerhof G G. Bearing capacity of flexible under eccentric and inclinedloads in layered soil[J].Canadian Geotechnical Journal,1991,28(6):909-917
    【17】. Sastry V V R N, Meyerhof G G. Behavior of flexible piles in layered sands undereccentric and inclined loads[J].Canadian Geotechnical Journal,1994,31(4):513-520
    【18】. Sastry V V R N, Meyerhof G G. Behavior of flexible piles under inclinedloads[J].Canadian Geotechnical Journal,1990,27(l):19-28
    【19】. Meyerhof G G. Behavior of pile foundation under special conditions[J].CanadianGeotechnical Journal,1995,32(2):204-222
    【20】.侯运秋,赵明华,曹喜仁.倾斜荷载下基桩的承载力研究[J].中南公路工程,1998,23(l):39-42
    【21】.彭文祥,赵明华.成层地基中倾斜荷载作用下桩的受力研究[J].中南公路工程,1999,24(l):27-30
    【22】. Kim Young-ho, Jeong Sang-seom. Analysis of soil resistance on laterally loaded pilesbased on3D soil-pile interaction[J].Computers and Geotechnics,2011,38(2):248-257
    【23】.郑刚,王丽.竖向及水平荷载加载水平、顺序对单桩承载力的影响[J].岩土工程学报,2008,30(12):1796-1804.
    【24】. Yao Wen-juan, Yin Wu-xian, Chen Jun. Numerical Simulation and Study for Super-LongPile Group under Axis and Lateral Loads [J].Advances in Structural Engineering-AnInternational Journal,2010,13(6):1139-1151
    【25】.姚文娟,仇元忠,程泽坤,超长嵌岩桩初始后屈曲性状分析,岩土工程学报,2009,31(5):738-742
    【26】. Yao Wen-juan, Qiu Yuan-zhong, Chen Ze-kun,Ultimate Bearing Capacity Analysis ofSuper-Long Rock-Socketed Filling Pile Based on Catastrophe Theory, Advances inStructural Engineering-An International Journal,2010,13(2):331-338
    【27】.曾庆有.主动侧向受荷桩桩周土的影像观测与数值模拟[J].岩土力学2012,33(7):2209-2213
    【28】. Karthigeyanl S, Tramakrishna V V G S, Rajagopal K. Numerical investigation of theeffect of vertical load on the lateral response of piles[J]. Journal of Geotechnical andGeoenvironmental Engineering, ASCE,2007,133(5):512-521.
    【29】. Ertugrul Taciroglu, ChangSoon Rha, JohnW Wallace. A robustmacroelementmodel forsoil2p ile interaction under cyclic loads [J]. Journal of Geotechnical andGeoenvironmental Engineering, ASCE,2006,132(10):1304-1314.
    【30】. Changsoon Rha, Ertugrul Taciroglu. Coup led macroelementmodel of soil2structureinteraction in deep foundations[J]. Journal of EngineeringMechanics, ASCE,2007,133(12):1326-1340.
    【31】. Wang Lun-yan, Qian Da-xing, Zhang Jian-wei. Study on p-y curve method forcomputing laterally loaded piles under horizontal distribution loads[C]ICCASM2010International Conference on Computer Application and System Modeling, Proceedings,2010,5:5366-5369
    【32】.程泽坤.基于P-Y曲线法考虑桩土相互作用的高桩结构物分析[J].海洋工程,1998,16(2):73-82
    【33】.苏静波,邵国建,刘宁.基于P-Y曲线法的水平受荷桩非线性有限元分析[J].岩土力学2006,27(10):1782-1785
    【34】.张玲,赵明华,赵衡.双层地基水平受荷桩受力变形分析[J].岩土力学2012,32(2):302-305
    【35】. Poulos H G. Ground movements a Hidden Source of Loading on DeepFoundations[J].Deep Foundations Institute Journal,2007,1(1):37-53
    【36】. Poulos H G. Behavior of laterally loaded piles: I-single piles[J].Journal of the SoilMechanics and Foundations Division,1971,97(SM5):711-731
    【37】. Ai Z Y, Yue Z Q, Tham L G, et al. Ex tended sneddon and muki so lutio ns for multilayered elastic mat erials[J].Int ernational Journal of Engineer ing Science,2002,40:1453-1483.
    【38】.艾智勇,杨敏.多层地基内部作用一水平力时的扩展Mindlin课题解[J].同济大学学报,2000.28(3):272-276
    【39】. Ai Z Y, Han J. Boundary element analysis of axially loaded piles embedded in amulti-layered soil[J].Computers and Geotechnics,2008,36:427-434
    【40】.曹明.混合桩型复合地基的位移相互作用系数解法及其应用研究[D].上海交通大学,2007
    【41】. Zhang X., Song K. Z., Lu M. W. et al. Meshless Methods Based on Collocation withRadial Basis Function. Comput. Mech.2000,26(4):333-343
    【42】.刘欣,朱德懋,陆明万等.基于流形覆盖思想的无网格方法的研究.计算力学学报,2001,18(1):21~27
    【43】.栾茂田,田荣,杨庆等.有限覆盖无单元法在岩土类弱拉型材料接触摩擦问题中的应用.岩土工程学报,2002,24(2):137~141
    【44】. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P. Meshless methods: anoverview and recent developments, Comput. Methods Appl. Mech. Eng.,1996,139:3–47
    【45】. Li S. and Liu W. K. Meshfree and particle methods and their applications. AppliedMechanics Review.55(1):1–34,2002
    【46】. Lucy L.B. A numerical approach to the testing of the fission hypothesis. The Astron. J.,1977,8(12):1013-1024
    【47】. Monaghan J.J. Why particle methods work. SIAM J. Sci. Stat. Comput.,1982,3(4):422
    【48】. Johnson G. R., Petersen E. H., Stryk R. A. Incorporation of an sph option in the epiccode for a wide range of high velocity impact computations. International Journal ofImpact Engineering1993;14:385-394
    【49】. Dyka C. T. Addressing tension instability in SPH methods. Technical ReportNRL/MR/6384, NRL,1994.
    【50】. Swegle J. W., Hicks D. L., Attaway S. W. Smoothed particle hydrodynamics stabilityanalysis. J.Comput. Phys.,1995,116:123~134.
    【51】. Liu W. K., Jun S. and Zhang Y. F. Reproducing kernel particle methods, Int. J. Numer.Meth. Engng.,1995,20:1081-1106
    【52】. Liu W. K., Chen Y. Wavelet and multiple scale reproducing kernel method. Int. J. Numer.Methods Fluids,1995,21:901~931
    【53】. Johnson G. R., Beissel S. R. Normalized smoothing functions for SPH impactcomputations. Int. J. Num. Meth. Eng.,1996,39:2725~2741.
    【54】.张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理.1996,13(4):385~397.
    【55】.贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理.1997,14(2):155~166.
    【56】. Chen J. S., Roque CMOL, Pan C., Sergio Tonini Button. Analysis of metal formingprocess based on meshless method. Journal of Materials Processing Technology,1998,80–81:642–646.
    【57】. Liu W. K., Jun S. Multiple scale reproducing kernel particle method for1argedeformation Problems. Int. J. Numer. Meth. Engrg,1998,41:1339-1362.
    【58】. Hardee E., Chang K. H, Grindeanu I. et al. A structural nonlinear analysis workspace(snaw) based on meshless methods. Advances in Engineering Software,1999,30:153-175
    【59】. Chen J. K., Beraun J. E., Jih C. J. An improvement for tensile instability in smoothedparticle hydrodynamics. Comput. Mech.,1999,23:279~287.
    【60】. Bonet J., Kulasegaram S. Correction and stabilization of smooth particle hydrodynamicsmethods with applications in metal forming simulations. International Journal forNumerical Methods in Engineering2000;47:1189-1214
    【61】. Li S., Liu W. K. Numerical simulation of large deformation of thin shell structures usingmeshfree methods. Comput Mech,2000,25:102-116
    【62】. Vignjevic R., Campbell J., Libersky L. A treatment of zero-energy modes in thesmoothed particle hydrodynamics method. Comput. Methods Appl. Mech. Engrg.,2000,184:67~85.
    【63】. Aluru N.R. A point collocation method based on reproducing Kernel approximations.International Journal for Numerical Methods in Engineering,2000,47:1083-1121
    【64】. Chen J. S., Yoon S. et al. An improved reproducing kernel particle method for nearlyincompressible finite elasticity. Comput. Methods Appl. Mech. Engrg.,2000,181:117~145.
    【65】. Ohs R. R., Aluru N. R. Meshless analysis of piezoelectric devices. Comput. Mech.,2001,27:23~36.
    【66】.毛益民,汤文辉.自由表面流动问题的SPH方法数值模拟.解放军理工大学学报(自然科学版),2001,2(5):92-94
    【67】. Liew K.M., Ng T.Y., Wu Y.C. Meshfree method for large deformation analysis–areproducing kernel particle approach. Engineering Structures,2002,24(5):543-551.
    【68】. Lancaster P., Salkauskas K. Surfaces generated by moving least squares methods. Math.Comput.,1981,37(155):141-158
    【69】. Nayroles B., Touzot G., Villon P. Generalizing the finite element method: diffuseapproximation and diffuse elements. Comput. Mech.1992,10:307-318
    【70】. Belytschko T., Lu Y., Gu L. Element free Galerkin methods. International Journal forNumerical Methods in Engineering,1994,37:229-256
    【71】. Lu Y., Belytschko T., Gu L. Anew implementation of the element free Galerkin method.Computer Methods in Applied Mechanics and Engineering,1994,113:397-414
    【72】. Sulsky D., Chen Z., and Schreyer H. L. A particle method for history-dependentmaterials. Computer Methods in Applied Mechanics and Engineering,1994,118:179-186.
    【73】. nate E., Idelsohn S. R., Zienkiewicz O. C. A finite point method in computationalmechanics. Applications to convective transport and fluid flow. International Journal forNumerical Methods in Engineering,1996,39:3839-3866.
    【74】. Duarte C. A. and Oden J. T.. An H-p adaptive method using clouds. Computer Methodsin Applied Mechanics and Engineering,1996,139:237-262.
    【75】. Liszka T. J., Duarte C. A., Tworzydlo W. W. Hp-meshless cloud method. Comput.Methods. Appl. Mech. Engrg.,1996,139:263-288.
    【76】. Melenk J. M. and Babuska I. The partition of unity finite element method: Basic theoryand applications. Computer Methods in Applied Mechanics and Engineering,1996,139:289-314.
    【77】. Mukherjee Y. X. and Mukherjee S. The boundary node method for potential problems.International Journal for Numerical Methods in Engineering,1997,40(5):797-815.
    【78】. Zhu T., Zhang J., Atluri S. N. A local boundary integral equation (LBIE) method incomputational mechanics, and a meshless discretizaion approach. Comput. Mech.,1998,21:223-235.
    【79】. Atluri S. N. and Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach tononlinear problems in computer modeling and simulation. Computer Modeling andSimulation in Engineering,1998,3:187-196.
    【80】. Ponthot J. P., Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-freeGalerkin method. Comput Methods Appl Mech Engrg.1998,152:19~46.
    【81】.张建辉,邓安福.无单元法(EFG)在筏板基础计算中的应用.岩土工程学报,1999,21(6):691-695
    【82】.庞作会,葛修润等.无网格伽辽金法(EFGM)在边坡开挖问题中的应用.岩土力学,1999,20(1):61~64
    【83】.庞作会,葛修润,王水林.无网格伽辽金法(EFGM)模拟不连续面.工程地质学报,2000,8(3):364-368
    【84】.张雄,陆明万,Wegner J L. A2-D meshless model for jointed rock structures. Int. J.Numer. Methods Engrg.,2000,47(10):1649~1661
    【85】.张伟星,庞辉.弹性地基板计算的无单元法.工程力学.2000,17(3):138~144
    【86】. De S. and Bathe K. J. The method of finite spheres. Computational Mechanics,2000,25:329-345.
    【87】. Aluru N. R. and Li G. Finite cloud method: A true meshless technique based on a fixedreproducing kernel approximation. International Journal for Numerical Methods inEngineering,2001,50(10):2373-2410.
    【88】.李光耀,卡里鲁.弹塑性大变形畸变问题的无网格分析.湖南大学学报(自然科学版),2003,30(1):47-49
    【89】.张延军,肖树芳.无单元法(EFGM)——在岩土工程上有限元法的有力补充.计算力学学报,2003,20(2):179-183
    【90】. Sibson R. A vector identity for the Dirichlet tessellation. Mathematical Proceedings ofthe Cambridge Philosophical Society,1980,87(1):151-155
    【91】. Sibson R. A Brief Description of the Natural Neighbor Interpolant, in InterpretingMultivariate Data, Chichester:Wiley,1981:21–36
    【92】. Belikov V. V., Ivanov V. D., Kontorovich V. K., Korytnik S. A., and Semenov A. Yu. Thenon-Sibsonian interpolation: A new method of interpolation of the values of a functionon an arbitrary set of points. Computational Mathematics and Mathematical Physics,1997,37(1):9-15.
    【93】. Braun J. and Sambridge M. Anumerical method for solving partial differential equationson highly irregular evolving grids, Nature,1995,376,655-660
    【94】. Sukumar N., Moran B., Belytschko T. The natural element method in solid mechanics,Int. J. Numer. Methods Eng.,1998,43(5):839–887.
    【95】. Cueto E., DoblaréM., Gracia L. Imposing essential boundary conditions in the naturalelement method by means of density-scaled α-shapes, Int. J. Numer. Methods Eng.,2000,49(4):519–546.
    【96】. Bueche D., Sukumar N. and Moran B. Dispersive Properties of the Natural ElementMethod, Computational Mechanics,2000,25(2/3):207-219.
    【97】. Sukumar N., Moran B., Yu Semenov A., Belikov V.V. Natural neighbor Galerkinmethods, Int. J. Numer. Methods Eng.,2001,50(1):1–27
    【98】. Idelsohn S. R., nate E., Calvo N., Del Pin F. The meshless finite element method.Int.J.Numer.Meth.Engng,2003;58:893–912.
    【99】. Idelsohn S.R., nate E., Del Pin F. A Lagrangian meshless finite element methodapplied to fluid-structure interaction problems. Computers and Structures,2003,81:655-671
    【100】.蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,2003,35(2):187-193
    【101】. Yvonnet J., Ryckelynck D., Lorong P., Chinesta F. A new extension of the naturalelement method for non-convex and discontinuous domains: the constrained naturalelement method (C-NEM), Internat. J. Numer. Methods Engrg.60(2004)1451–1474
    【102】.朱合华,蔡永昌,李晓军,丁文其.无网格自然邻接点方法在弹塑性分析中的应用.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004.406-410
    【103】.卢波,葛修润,孔祥礼.有限元法无单元法及自然单元法之比较研究.岩石力学与工程学报,2005,24(5):780-786
    【104】. Calvo B., Martinez M. A. and Doblaré M. On solving large strain hyperelastic problemswith the natural element method. Int. J. Numer. Meth. Engng2005,62:159-185
    【105】. J.R.Cho, H.W.Lee,2-D frictionless dynamic contact analysis of large deformable bodiesby Petrov–Galerkin natural element method, Computers and Structures,2007,85:1230–1242
    【106】. E.Pe a,M.A.Martínez,B.Calvo,M.Doblaré, Application of the natural element methodto finite deformation inelastic problems in isotropic and fiber-reinforced biological softtissues, Comput.Methods Appl.Mech.Engrg.,2008,197:1983–1996
    【107】.曾祥勇,朱爱军,邓安福,自然单元法在Winkler地基薄板计算中的应用,2008,25(4):547-551
    【108】.李武,姚文娟,朱合华,蔡永昌,蒙特卡罗数值积分在自然单元法中的应用,岩土工程学报,008,30(5):698-704
    【109】.江涛,章青,单位分解增强自然单元法计算应力强度因子,工程力学,2009,26(6):52-57
    【110】.程卫国,冯峰等(2000).Matlab5.3精要、编程及高级应用.北京:机械工业出版社
    【111】. Chapman, S. J.(2003) Matlab programming for engineers.北京:科学出版社
    【112】.周明,李长虹等(1999).Matlab图形技术-绘图及图形用户接口
    【113】. Sibson R. A vector identity for the Dirichlet tessellation. Mathematical Proceedings ofthe Cambridge Philosophical Society,1980,87(1):151-155
    【114】. Sibson R. A Brief Description of the Natural Neighbor Interpolant, in InterpretingMultivariate Data, Chichester:Wiley,1981:21–36
    【115】. Belikov V. V., Ivanov V. D., Kontorovich V. K., Korytnik S. A., and Semenov A. Yu. Thenon-Sibsonian interpolation: A new method of interpolation of the values of a functionon an arbitrary set of points. Computational Mathematics and Mathematical Physics,1997,37(1):9-15.
    【116】. Braun J. and Sambridge M. Anumerical method for solving partial differential equationson highly irregular evolving grids, Nature,1995,376,655-660
    【117】. Sukumar N., Moran B., Belytschko T. The natural element method in solid mechanics,Int. J. Numer. Methods Eng.,1998,43(5):839–887.
    【118】. Cueto E., DoblaréM., Gracia L. Imposing essential boundary conditions in the naturalelement method by means of density-scaled α-shapes, Int. J. Numer. Methods Eng.,2000,49(4):519–546.
    【119】. Bueche D., Sukumar N. and Moran B. Dispersive Properties of the Natural ElementMethod, Computational Mechanics,2000,25(2/3):207-219.
    【120】. Sukumar N., Moran B., Yu Semenov A., Belikov V.V. Natural neighbor Galerkinmethods, Int. J. Numer. Methods Eng.,2001,50(1):1–27
    【121】. Idelsohn S. R., nate E., Calvo N., Del Pin F. The meshless finite element method.Int.J.Numer.Meth.Engng,2003;58:893–912.
    【122】. Idelsohn S.R., nate E., Del Pin F. A Lagrangian meshless finite element methodapplied to fluid-structure interaction problems. Computers and Structures,2003,81:655-671
    【123】.蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,2003,35(2):187-193
    【124】. Yvonnet J., Ryckelynck D., Lorong P., Chinesta F. A new extension of the naturalelement method for non-convex and discontinuous domains: the constrained naturalelement method (C-NEM), Internat. J. Numer. Methods Engrg.60(2004)1451–1474
    【125】.朱合华,蔡永昌,李晓军,丁文其.无网格自然邻接点方法在弹塑性分析中的应用.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004.406-410
    【126】.卢波,葛修润,孔祥礼.有限元法无单元法及自然单元法之比较研究.岩石力学与工程学报,2005,24(5):780-786
    【127】. Calvo B., Martinez M. A. and Doblaré M. On solving large strain hyperelastic problemswith the natural element method. Int. J. Numer. Meth. Engng2005,62:159-185
    【128】. J.R.Cho, H.W.Lee,2-D frictionless dynamic contact analysis of large deformable bodiesby Petrov–Galerkin natural element method, Computers and Structures,2007,85:1230–1242
    【129】. E.Pe a,M.A.Martínez,B.Calvo,M.Doblaré, Application of the natural element methodto finite deformation inelastic problems in isotropic and fiber-reinforced biological softtissues, Comput.Methods Appl.Mech.Engrg.,2008,197:1983–1996
    【130】.曾祥勇,朱爱军,邓安福,自然单元法在Winkler地基薄板计算中的应用,2008,25(4):547-551
    【131】.李武,姚文娟,朱合华,蔡永昌,蒙特卡罗数值积分在自然单元法中的应用,岩土工程学报,2008,30(5):698-704
    【132】.江涛,章青,单位分解增强自然单元法计算应力强度因子,工程力学,2009,26(6):52-57
    【133】. M. Fleming, Y.A. Chu, B. Moran and T. Belytschko, Enriched element-free Galerkinmethods for crack tip fields, Int J Numer Methods Eng,1997,40:1483–1504.
    【134】. Aluru N.R. A point collocation method based on reproducing Kernel approximations.International Journal for Numerical Methods in Engineering,2000,47:1083-1121
    【135】.程卫国,冯峰等(2000).Matlab5.3精要、编程及高级应用.北京:机械工业出版社
    【136】. Chapman, S. J.(2003) Matlab programming for engineers.北京:科学出版社
    【137】.周明,李长虹等(1999).Matlab图形技术-绘图及图形用户接口
    【138】.戴斌,王建华.自然单元法原理与三维算法实现.上海交通大学学报,2004,38(7):1221-1224,1228
    【139】.卢波,葛修润,王水林.自然单元法数值积分方案研究.岩石力学与工程学报,2005,24(11):1917-1924
    【140】.卢波,葛修润,王水林,自适应自然单元法研究——误差估计,岩石力学与工程学报,2005,24(22):4065-4073
    【141】.卢波,丁秀丽,邬爱清,自适应自然单元法研究——自适应细化,岩土力学,2007,28(增刊):295-300
    【142】.卢波,丁秀丽,邬爱清,自然单元法在岩土工程中应用两例,岩土力学,2006,27(增刊):1123-1129
    【143】.杨国平,张志明.对大变位条件下横向受力桩P-Y曲线的研究[J].水运工程,2002(7):40–45.
    【144】.张英新,王建华,高绍武,二维弹塑性自然单元法算法实现,上海交通大学学报,2005,39(5):727-731
    【145】.晏汀,沈成武,自然单元法在弹性力学中的应用,武汉理工大学学报(交通科学与工程版),2006,30(6):1052-1054
    【146】.王建华,张英新,高绍武,三维弹塑性自然单元法算法实现,计算力学学报,2006,23(5):594-599
    【147】.周国辉,自然单元法在板壳上的应用,2007,MD
    【148】.余天堂,加锚体自然单元法分析与程序设计,计算力学学报,2007,24(5):698-704
    【149】.江涛,章青,基于Lasserre算法的自然单元法形函数计算,力学与实践,2008,30(4):79-83
    【150】.褚衍标,非线性自然单元法的程序实现及其应用研究,2008,MD
    【151】.曾祥勇,邓安福, Winkler地基上正交各向异性板计算的自然单元法,地下空间与工程学报,2008,4(6):1081-1086
    【152】.于国辉,赵继伟,自然单元法在水工结构数值分析中的应用,华北水利水电学院学报,2009,30(1):31-34
    【153】. REUL O. Numerical study of the bearing behavior of piled rafts[J]. International Journalof Geomechanics,2003,4(2):59-67.
    【154】. REUL O, RANDOLPH M F. Piled rafts in overconsolidated clay:comparison of in situmeasurements and numerical analyses[J]. Géotechnique,2003,53(3):301-315.
    【155】. GUO Wei-dong. Pile capacity in nonhomogeneous softening soil[J]. Soils andFoundations,2001,41(2):111-120.
    【156】. Liang F Y, Chen L Z, Shi X G. Numerical analysis of composite piled raft with cushionsubjected to vertical load[J].Computer and Geotechnics,2003,30(6):443-453.
    【157】. Comodromos E M. Response prediction for horizontally loaded pile groups[J].International Journal for Numerical and Analytical Methods in Geomechanics,2005,29:597-625.
    【158】.陈伟.上海软土地区超长桩竖向承载特性试验研究[J].地下空间与工程学报,2011,7(3):504-508.
    【159】. Wenjuan Yao, Yimin Liu, Jun Chen. Characteristics of Negative Skin Friction forSuperlong Piles under Surcharge Loading, ASCE. International Journal ofGeomechanics,2012,12(2):90-97.
    【160】.陈君,姚文娟.考虑负摩阻力作用的超长桩荷载传递计算[J].建筑结构,2010,40(4):96-120.
    【161】. Wenjuan Yao, Wuxian Yin. Numerical Simulation and Study for Super-Long Pile Groupunder Axis and Lateral Loads[J]. Advances in Structural Engineering-An InternationalJournal,2010,13(6):1139-1151.
    【162】.尹武先,姚文娟,程泽坤.轴-横向荷载作用下超长桩数值模拟[J].水利水运工程学报,2009,2(6):15-20.
    【163】. Yao Wen-juan, Qiu Yuan-zhong, Chen Ze-kun. Ultimate Bearing Capacity Analysis ofSuper-Long Rock-Socketed Filling Pile Based on Catastrophe Theory[J]. Advances inStructural Engineering-An International Journal,2010,13(2):331-338.
    【164】.姚文娟,钟倩倩,郭志兴,等.超长桩竖向极限承载力预测与动力稳定性分析[J].力学季刊,2011,32(4):531-538.
    【165】.李微哲,赵明华,单远明,等.倾斜偏心何在下基桩内力位移分析[J].中南公路工程,2005,30(9):53-57.
    【166】.赵明华,李微哲,杨明辉,等.成层地基中倾斜偏心荷载下单桩计算分析[J].岩土力学,2007,28(4):670-674.
    【167】.赵明华,李微哲,曹文贵.复杂荷载及边界条件下桩基有限杆单元方法研究[J].岩土工程学报,2006,28(9):1059-1063.
    【168】.赵明华,李微哲,单远铭,等.成层地基中倾斜荷载桩改进有限杆单元法研究[J].工程力学,2008,25(5):79-84.
    【169】.程泽坤.基于P-Y曲线法考虑桩土相互作用的高桩结构物分析[J].海洋工程,1998,16(2):73-82.
    【170】.陈菊香,刘克萍,俞亚南,等.基于p-y曲线的水平承载群桩有限元分析[J].江南大学学报(自然科学版),2005,4(2):163-167.
    【171】.苏静波,邵国建,刘宁.基于P-Y曲线法的水平受荷桩非线性有限元分析[J].岩土力学2006,27(10):1782-1785.
    【172】.姚文娟,吴怀睿,程泽坤,等.基于p-y曲线法的超长桩非线性数值分析[J].岩土工程学报,2011,33(11):1683-1690.
    【173】.赵明华,李微哲,单远铭,等.成层地基中倾斜荷载桩改进有限杆单元法研究[J].工程力学,2008,25(5):79-84.
    【174】.赵明华,汪优,黄靓.水平受荷桩的非线性无网格法分析,岩土工程学报,2007,29(6):907-912.
    【175】. Liew K.M., Ng T.Y., Wu Y.C. Meshfree method for large deformation analysis–areproducing kernel particle approach[J]. Engineering Structures,2002,24(5):543-551.
    【176】.徐绯,刘斌,郑茂军.动态大变形计算模拟的无网格强积分核函数[J].中国科学:物理学,力学,天文学,2010,40(9):1174-1184.
    【177】.张延军,肖树芳.无单元法(EFGM)——在岩土工程上有限元法的有力补充.计算力学学报,2003,20(2):179-183.
    【178】.赵敏,陈文.基于径向基函数的加权最小二乘无网格法[J].计算力学学报,2011,28(1):66-71.
    【179】.李武,姚文娟,朱合华,等.蒙特卡罗数值积分在自然单元法中的应用[J].岩土工程学报,2008,30(5):698-704.
    【180】.陈莘莘,李庆华,刘应华,等.动力弹塑性分析的无网格自然单元法[J].固体力学学报,2011,32(5):493-499.
    【181】.胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981:35-41.
    【182】.徐枫.基于原型试验的单桩水平承载力分析[J].岩土工程学报,2011,33(2):291-294.
    【183】.张磊,龚晓南,俞建霖.水平荷载单桩计算的非线性地基反力法研究[J].岩土工程学报,2011,33(2):309-314.
    【184】.梁发云,韩杰,李镜培.基坑开挖引起的土体水平位移对单桩性状影响分析[J].岩土工程学报,2008,30(1):260-265.
    【185】. MATTES N S, POULOS H G. Settlement of single compressible pile[J]. Journal of theSoil Mechanics and Foundations Division,1969,95(1):189-208.
    【186】.王启铜.柔性桩的沉降特性及荷载传递规律[D].浙江:浙江大学土木工程系,1991.
    【187】.段继伟,龚晓南,曾国熙.水泥搅拌桩的荷载传递规律[J]..岩土工程学报,1994,16(4):1-6.
    【188】.陈福全,黄伟达.基于Poulos弹性理论的被动桩改进算法[J].岩土力学,2008,29(4):905-910
    【189】.钟阳,王哲人,郭大智等.求解多层弹性半空间非轴对称问题的传递矩阵法[J].土木工程学报,1995,28(1):66-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700