用户名: 密码: 验证码:
钢绞线腐蚀后的部分预应力混凝土梁受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆超载和环境腐蚀是引起桥梁结构使用寿命降低的两个主要原因。车辆超载容易引起混凝土内部发生疲劳损伤,环境腐蚀会致使桥梁结构耐久性降低,从而进一步加重混凝土内部损伤程度。本文结合科技部“863”计划资助项目“基于疲劳和寿命的混凝土桥梁结构设计方法”(2007AA11Z133),对腐蚀钢绞线以及钢绞线腐蚀后的部分预应力混凝土梁开展了静力和疲劳试验研究与分析,主要研究内容和结果如下:
     1、通过对同批钢绞线进行的静力拉伸试验和疲劳试验,研究了腐蚀钢绞线的静力性能和疲劳性能。静力拉伸试验结果表明,钢绞线的塑性变形能力、极限强度以及弹性模量随腐蚀率的增加而衰减。疲劳试验结果表明,钢绞线的疲劳寿命随腐蚀率的增长按指数规律衰减,腐蚀缺陷与疲劳荷载之间的耦合作用是导致疲劳寿命下降的主要原因,腐蚀对钢绞线疲劳性能的影响远比对钢绞线的静力性能影响大。通过试验数据的回归统计建立了腐蚀钢绞线在静载作用下的本构关系模型与疲劳荷载作用下的S-N方程。
     2、通过对同批钢绞线腐蚀后的部分预应力混凝土梁进行四点弯曲的静载和疲劳试验,研究了腐蚀对试验梁静力和疲劳性能的影响。静载试验结果表明,在静载试验中,钢绞线的腐蚀不仅导致部分预应力混凝土梁的破坏形态由延性破坏转为脆性破坏,还影响了腐蚀梁的开裂荷载大小,腐蚀对延性的影响远比对极限承载力影响显著。疲劳试验结果表明,腐蚀梁的疲劳破坏是由腐蚀钢绞线的疲劳断裂引起的,试验梁的疲劳寿命与疲劳强度随着钢绞线腐蚀程度的增加而显著降低。根据试验结果回归建立了疲劳荷载下钢绞线腐蚀后的部分预应力混凝土梁跨中挠度和混凝土残余应变的计算公式。此外,鉴于超载对既有桥梁结构的影响,本章还对一种新型预应力混凝土梁开展了单调荷载与循环荷载下的受力性能研究,结果表明,该种类型梁在单调与循环荷载作用下均有良好的承载能力和延性,具有良好的应用前景。
     3、基于内力平衡方程和平截面假定,推导了试验梁的跨中挠度与钢筋应变关于混凝土受压区边缘应变的表达式,并引入分级加应变法对静载作用下钢绞线腐蚀后的部分预应力混凝土梁的受力过程进行分析。确立了受压区混凝土以及受拉钢筋(包括钢绞线)疲劳本构关系及疲劳破坏准则,运用分段线性方法并结合静载的分级应变法,建立了钢绞线腐蚀后的部分预应力混凝土梁的疲劳损伤全过程分析方法。
     4、运用ANSYS有限元软件对钢绞线腐蚀后的预应力混凝土梁在静力荷载下的受力行为进行了数值分析,分析了钢绞线腐蚀对预应力混凝土梁的静力性能影响,并与试验结果进行比较。根据Corten-Dolan累积损伤理论与ANSYS中的疲劳分析模块对三级变幅疲劳荷载下的试验梁进行了等效疲劳寿命预测。
The vehicle overloading and the environment corrosion are two major reasons for the fatigue life reduction of bridge structures. The vehicle overloading is liable to cause the fatigue damages of interior concrete, while the environment corrosion degrades structure durability and further increases the damage degree of interior concrete. In this thesis, the mechanical properties of corroded strands as well as the mechanical behaviors of partial prestressed concrete beams after strand corroded were investigated under monotonic static loading and constant-amplitude fatigue loadings. This study is an important part of the project of High Technology Plan of the National Department of Technology "Design Method of Concrete Beam Structure Based on Fatigue and Life"(Grant No.2007AA11Z133). The contents include four chapters in the paper as follows.
     1. Monaxial tension tests and fatigue tests were carried on a batch of corroded strands. The static and fatigue properties were studied. The monaxial tension test results showed that the plastic deformation ability, ultimate strength as well as elastic modulus of strands significantly decreased with the increase of corrosion rate. The fatigue test results showed that the fatigue life of strands decreased exponentially with the increase of corrosion rate. The interaction of corroded defects and fatigue loads was the primary reason for a sharp reduction of fatigue life of strand. Strand corrosion had more notable effects on fatigue performance than on static performance. Based on statistics analysis of experimental data, a constitutive relation and S-N curves equation of corroded strand were established respectively in monaxial tensile tests and fatigue tests.
     2. The static and fatigue flexural tests were carried on a batch of partial prestressed concrete beams to study the effects of strand corrosion on the mechanical performance of specimen beams. The static test results showed that strand corrosion not only transformed the ductile failure mode into a more brittle one, but also affected the cracking load of beams. In comparison with ultimate load, ductility of the beams were worst affected by strand corrosion. The fatigue test results showed that the fatigue failures of corroded beams were caused by the fatigue rupture of the corroded strands. The fatigue life and fatigue strength of specimens decreased with the increase of corrosion rate. After experimental statistics, a regression model between midspan deflection and cycle number, and a regression equation between concrete residual strain and cycle number were established, respectively. In addition, due to the effect of overloading on existing bridge structures, a novel prestressed concrete beam was tested under monotonic and cyclic loading to study the mechanic performances in this chapter. The results showed that this beam had satisfactory capacity and ductility both under monotonic and cyclic loading, thus it had a favorable application foreground.
     3. On the basis of the internal force equilibrium and plane section assumption, a simple method based on the strain of concrete at the upper edge of compression zone was derived to calculate the midspan deflection and reinforced steel strain. The step increasing strain method was introduced to analyse the loading procedure of partial prestressed concrete beams with corroded strands in static test. The fatigue rules including constitutive relations and failure criterion of concrete at the upper edge of compression zone and reinforced steel (including prestressing strand) in tension zone were established. And on the basis of the rules, an analysis method for the fatigue damage process of beams was proposed according to the piece wise linear method and the step increasing strain method.
     4、The behavior of partial prestressed concrete beams with corroded strands in static tests were simulated to analyse the effect of strand corrosion on the mechanical performances of test beams by using ANSYS software. The simulation results were also compared with the experimental results. On the basis of Corten-Dolan accumulative damage rule and fatigue analysis module of ANSYS software, the fatigue life of partial prestressed concrete beams with corroded prestressing strands under three variable-amplitude loadings and different corrosion rates of strands were predicted equivalently.
引文
[1]Mehta P K. Concrete durability:fifty year's progress [C]//Proceeding of International Conference on Concrete Durability, ACI SP126-1,1991:1-33.
    [2]罗福午.建筑结构缺陷事故的分析及防治[M].北京:清华大学出版社,1996.
    [3]Mehta P K. Durability-critical issues for the future [J]. Concrete international,1997,19(7):27-33.
    [4]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [5]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6
    [6]屈文俊.现有混凝土桥梁的耐久性评估及寿命预测[D].四川:西南交通大学博士学位论文,1995
    [7]四航局科研所.华南沿海部分码头调查情况分析[J].水运工程.1982,2:1-7.
    [8]Concrete Society/Concrete Bridge Development Group. Durable Post-Tensioned Concrete Bridges [R]. Technical Report No.47 Crowthorne, UK:2002.
    [9]刘椿,朱尔玉,朱晓伟.预应力混凝土桥梁的发展状况及其耐久性研究进展[J].铁道建筑,2005,11:1-2.
    [10]Schupack M. A survey of the durability performance of post-tensioning tendons [J]. ACI Journal, 1978,75(10):501-510.
    [11]Schupack M, Suarez M G. Some recent corrosion embrittlement failures of prestressing systems in the United States [J]. PCI Journal,1982,27(2):38-55.
    [12]Nurnberger U. Corrosion protection of prestressing steels [C]. FIP State-of-the-Art Report, Draft Report, FIP, London,1986.
    [13]Gredersa.碳化深度和氯离子的分布[C]//钢筋混凝土结构的修复与维护国际学术交流会.同济大学,2001.
    [14]金伟良,赵羽习.混凝土结构耐久性[M].科学出版社,北京,2002.
    [15]张德峰,吕志涛.裂缝对预应力混凝土结构耐久性的影响[J].工业建筑,2000,30(11):12-14.
    [16]Maslehuddin M, Allam I A, Al-Sulaimani G J. Effect of rusting of reinforcing steel on its mechanical properties and bond with concrete [J]. ACI Materials Journal 1990,87 (5):496-502.
    [17]Allam I M, Maslehuddin M, Saricimen H. Influence of atmospheric corrosion on the mechanical properties of reinforcing steel [J]. Construction and Building Materials,1993,8 (1):35-41.
    [18]Almusallam A A. Effect of degree of corrosion on the properties of reinforcing steel bars [J]. Construction and Building Materials,2001,15(8):361-368.
    [19]Apostolopoulos C A, Papadopoulos M P, Pantelakis S G. Tensile behavior of corroded reinforcing steel bars BSt 500s [J]. Construction and Building Materials,2006,20(9):782-789.
    [20]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.
    [21]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
    [22]王军强.大气环境下锈蚀钢筋力学性能试验研究分析[J].徐州建筑职业技术学院学报,2003,3(3):25-27.
    [23]吴庆,袁迎曙.锈蚀钢筋力学性能退化规律试验研究[J].土木工程学报,2008,4(12):42-46.
    [24]张克波,张建仁,王磊.锈蚀对钢筋强度影响试验研究[J].公路交通科技,2010,27(12):59-66.
    [25]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报:自然科学版,2006,34(5):586-592.
    [26]Gonzalez J A, Andrade C, Alonso C, et al. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement [J]. Cement and Concrete Research, 1995,25:257-264.
    [27]徐港,张懂,梁桂林,等.坑蚀钢筋力学性能退化的试验研究[J].水电能源科学,2012,30(2):86-88.
    [28]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1):43-46.
    [29]范颖芳,周晶.考虑蚀坑影响的锈蚀钢筋力学性能研究[J].建筑材料学报,2003,6(3):248-252.
    [30]Zhang W P, Dai H C, Gu X L, et al. Stochastic model of stress-strain relationship for corroded reinforcing steel bars [C]//Proceedings of the 10th East Asia-Pacific Conference on Structural Engineering & Construction. Bankok:Asian Institute of Technology,2006:457-462.
    [31]范颖芳,张英姿等.基于概率分析的锈蚀钢筋力学性能研究[J].建筑材料学报,2006,2.
    [32]马亚丽.基于可靠性分析的钢筋混凝土结构耐久寿命预测[D]:(博士学位论文).北京:北京工业大学,2006.
    [33]含氯工业大气的腐蚀对高强度预应力钢筋65Mn SiV机械性能的影响[J].建筑结构,1972:7-13.
    [34]Vehovar L, Kuhar V, Vehovar A. Hydrogen-assisted stress-corrosion of prestressing wires in a motorway viaduct [J].Engineering Failure Analysis,1998,5(1):21-27.
    [35]刘其伟,张鹏飞,赵佳军.PC连续梁桥孔道压浆调查及钢绞线力学性能研究[J].施工技术,2007,36(2):63-66.
    [36]李富民.氯盐环境钢绞线预应力混凝土结构的腐蚀效应[D]:(博士学位论文).徐州:中国矿业大学,2008.
    [37]郑亚明,欧阳平,安琳.锈蚀钢绞线力学性能的试验研究[J].现代交通技术,2005,2(6):33-36.
    [38]罗小勇,李政.无粘结预应力钢绞线锈蚀后力学性能研究[J].铁道学报,2008,30(2):108-112.
    [39]曾严红,顾祥林,张伟平,等.锈蚀预应力筋力学性能研究[J].建筑材料学报,2010,13(2):169-174.
    [40]Macdougall C, Bartlett F M. Mechanical model for unbonded seven-wire tendon with single broken wire [J]. Journal of Engineering Mechanics, ASCE,2006,132(12):1345-1353.
    [41]刘文华,李文春,马全声.高强钢丝钢绞线在海洋环境中的腐蚀试验[J].港口工程,1991,(6):35-42.
    [42]曹建安,文雨松.长沙铁道学院学报[J].1998,16(4):15-18.
    [43]李士彬.锈蚀钢筋混凝土梁的弯曲疲劳性能及寿命预测[D]:(博士学位论文).上海:同济大学,2007.
    [44]Apostolopoulos C A. Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue[J]. Construction and Building Materials,2007,21 (7):1447-1456.
    [45]徐伟,张敏.受腐蚀桥梁钢丝的力学性能和剩余强度[J].世界桥梁,2006,(2):54-58.
    [46]Li H, Lan C M, Ju Y, et al. Experimental and numerical study of the fatigue properties of corroded parallel wire cables [J]. Journal of Bridge Engineering,2012,17(2):211-220.
    [47]Almusallam A A, Al-gahthani A S, Aziz A R, et al. Effect of reinforcement corrosion on bond strength [J].Construction and Building Materials,1996,10(2):123-129.
    [48]Al-Sulaimani G J, Kaleemullah M, Basunbul I A, et al. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members [J]. ACI Structural Journal,1990,87(2): 220-231.
    [49]Yalciner H, Eren O, Sensoy S. An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level [J]. Cement and Concrete Research,2012,42(5):643-655.
    [50]Chung L, Jay Kim J H, Yi S T. Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars [J]. Cement & Concrete Composite,2008,30 (7):603-611.
    [51]Fang C, Lundgren K, Plos M, et al. Bond behaviour of corroded reinforcing steel bars in concrete [J]. cement and concrete research,2006,36(10):1931-1938.
    [52]陈留国,方从启,寇新建,等.受腐蚀钢筋混凝土的粘结性能[J].工业建筑,2004,34(5):15-17.
    [53]Maslehuddin M, Allam I A, Al-Sulaimani G J, et al. Effect of rusting of reinforcing steel on its mechanical properties and bond with concrete [J]. ACI Materials Journal,1990,87(5):496-502.
    [54]何世钦,贡金鑫.钢筋混凝土梁中锈蚀钢筋粘结性能的试验研究[J].哈尔滨工业大学学报,2006,38(12):2167-2170.
    [55]王林科,陶峰,王庆霖,等.锈后钢筋混凝土粘结锚固的试验研究[J].工业建筑,1996,26(4):14-16.
    [56]范颖芳,黄振国,李健美,等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑,1999,29(8):49-51.
    [57]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑,1999,29(11):47-50.
    [58]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002,36(4):352-356.
    [59]王英,郑文忠,卫纪德,等.预应力钢绞线(束)粘结锚固性能初探[J].工业建筑,1994,24(3):19-23.
    [60]徐有邻,宇秉训,姜红,等.三股钢绞线基本性能的试验研究[J].工业建筑,1998,28(9):31-36.
    [61]李方元,赵人达.高强混凝土与钢绞线的粘结滑移试验研究[J].四川建筑科学研究,2003,29(4):4-6.
    [62]Li F M, Yuan Y S. Effects of corrosion on bond behavior between steel strand and concrete [J]. Construction and Building Materials.2013,38:413-422.
    [63]王立鹏,巩思锋.钢筋混凝土梁电化学锈蚀及受弯承载力试验研究[J].山东大学学报(工学版),2009,39(2):113-117.
    [64]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11.
    [65]Cabrera J G. Deterioration of concrete due to reinforcement steel corrosion [J]. Cement and Concrete Research,1996,18:47-59.
    [66]惠云玲,李荣,林志伸,等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):14-18.
    [67]沈德建,吴胜兴.大气环境锈蚀钢筋混凝土梁力学性能试验研究及分析[J].土木工程学报,2009,42(8):75-82.
    [68]Yoon S, Wang K, Weiss J, Shah S. Interaction between loading, corrosion, and serviceability of reinforced concrete [J]. ACI Material Journal,2000,97(6):637-644.
    [69]Ballim Y, Reid J C, Kemp A R. Deflection of RC beams under simultaneous load and steel corrosion [J]. Magazine of Concrete Research,2003,55(4):405-406.
    [70]El Maaddawy T, Soudki K, Topper T. Long-term performance of corrosion-damaged reinforced concrete beams [J]. ACI Structural Journal,2005,102(5):649-656.
    [71]Vidal T, Castel A, Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment [J]. Cement and Concrete Research,2007, 37:1551-1561.
    [72]Malumbela G, Moyo P, Alexander M. Behaviour of RC beams corroded under sustained service loads [J]. Construction and Building Materials,2009,23(11):3346-3351.
    [73]何世钦,贡金鑫.负载钢筋混凝土梁钢筋锈蚀及使用性能试验研究[J].东南大学学报(自然科学版),2004,34(4):474-479.
    [74]滕海文,周乐云,杨森茂,等.不同应力比下锈蚀钢筋混凝土梁承载力试验研究[J].建筑科学,2010,26(11):56-58.
    [75]易伟建,赵新.持续荷载作用下钢筋锈蚀对混凝土梁工作性能的影响[J].土木工程学报,2006,39(1):8-12.
    [76]鲁列.荷载与氯盐环境下混凝土构件的腐蚀试验研究[D]:(硕士学位论文).杭州:浙江工业大学,2010.
    [77]淡丹辉,何广汉.钢筋混凝土构件均匀锈蚀与应力的耦合效应分析[J].西南交通大学学报,2001,36(2):181-184.
    [78]Gonzalez J A, Andrade C, Alonso C, et al. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement [J]. Cement and Concrete Research, 1995,25(2):257-264.
    [79]金伟良,夏晋.坑蚀对钢筋混凝土梁抗弯承载力的影响[J].建筑结构,2009,(4):100-102.
    [80]Stewart M G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure [J]. Structural Safety,2004,26(4):453-470.
    [81]倪国荣,金伟良,朱伟华,等.钢筋坑蚀对混凝土梁抗弯性能的影响[D].建筑结构,2008,(7):
    [82]朱尔玉,刘椿,何立,等.预应力混凝土桥梁腐蚀后的受力性能分析[J].中国安全科学学报,2006,16(2):136-140.
    [83]蔺恩超.预应力筋应力腐蚀后预应力混凝土梁的受力性能试验研究[D]:(硕士学位论文).扬州:扬州大学,2006.
    [84]朱兰芳.预应力混凝土受弯构件受硫酸盐腐蚀后的力学性能研究[D]:(硕士学位论文).扬州:扬州大学,2009.
    [85]徐荣.预应力混凝土梁在冻融循环下和氯离子腐蚀后受力性能研究[D]:(硕士学位论文).扬州:扬州大学,2007.
    [86]陈好.冻融循环与氯盐侵蚀耦合作用下预应力混凝土构件劣化性能研究[D]:(博士学位论文).镇江:江苏大学,2011.
    [87]Bennett E. W., Chandrasekhar C S. Supplementary tensile reinforcement in prestressed concrete beams [J]. Concrete,1972,6(10):35-39.
    [88]Abeles P W, Brown E I, Hu C H. Behavior of under reinforced prestressed concrete subjected to different stress ranges [J]. ACI SP 41-12,1974:279-300.
    [89]Abeles P W, Brown E I, Hu C H. Fatigue resistance of under-reinforced prestressed beams subjected to different stress range:Miner's Hypothesis [J]. ACI SP 141-11,1974:237-277.
    [90]Fauchart J, Kavyrchine M, Trinh J. Left bracket performance of prestressed and reinforced concrete joists under repeated loads right bracket [J]. Annales de 1'Institute Technique du Batiment et des Travaux Publics,1975, (326):21-31.
    [91]沈在康,孙惠中,马坤贞,等.允许出现裂缝的部分预应力混凝土梁的疲劳性能[R]//钢筋混凝土结构研究报告选集(2),北京:中国建筑工业出版社,1981.
    [92]沈在康,孙惠中,马坤贞,等.部分预应力混凝土梁正截面疲劳性能及计算方法.建筑结构学报[J].1981,2(1):1-13.
    [93]Harajli M H, Naaman A E. Static and fatigue tests on partially prestressed bams [J]. Journal of Structural Engineering,1985,111(7):1602-1619.
    [94]El Shahawi M, Batchelor B D. Fatigue of partially prestressed concrete [J]. Journal of Structural Engineering,1986,112(3):524-537.
    [95]钟明全,车惠民,邵小康.部分预应力砼梁的非预应力钢筋应力状态研究[J].重庆交通学院学报,1993,12(1):1-6.
    [96]钟明全.疲劳加载对部分预应力混凝土梁钢筋应力、裂缝宽度及静力强度的影响[J].西南交通大学学报,1995,30(3):283-290.
    [97]傅日荣,傅传国,童启明,等.部分预应力混凝土梁裂缝闭合的试验研究[J].工业建筑,1995,25(12):9-28.
    [98]蓝宗建,庞同和,刘航,等.部分预应力混凝土梁裂缝闭合性能的试验研究[J].建筑结构学报,1998,19(1):33-40.
    [99]冯秀峰.混合配筋部分预应力混凝土梁疲劳性能研究[D]:(博士学位论文).大连:大连理工大学,2005.
    [100]罗小勇,余志武,聂建国等.自密实预应力混凝土梁的疲劳性能试验研究[J].建筑结构学报,2003,24(3):76-81.
    [101]田种德,李慧民,顾传霖.钢筋混凝土受弯构件正截面疲劳验算方法的研究[C]//钢筋混凝土结构研究报告选集(2).北京:中国建筑工业出版社,1981:235-254.
    [102]Mohsen E I Shahawi, Barrington deV Batchelor. Fatigue of partially prestressed concrete [J]. Journal of Structural Engineering,1986,112(3):524-537.
    [103]王岩,石志飞.钢筋与混凝土界面的疲劳裂纹扩展研究[C]//第十届全国疲劳与断裂学术会议论文,2000(12):248-251.
    [104]Fang C, Gylltoft K, Lundgren K, et al. Effect of corrosion on bond in reinforced concrete under cyclic Ioading[J]. Cement and Concrete Research,2006,36(3):548-555.
    [105]易美英.重复荷载下受腐蚀钢筋混凝土梁承载力研究[D]:(硕士学位论文).上海:上海交通大学,2008.
    [106]Oyado M, Hasegawa M, Sato T. Characteristics of fatigue and evaluation of RC beam damaged by accelerated corrosion[J]. QR of RTRI,2003,44(2):72-77.
    [107]Okada K, Kobayashi K, Miyagaw T. Influence of longitudinal cracking due to reinforcement corrosion on characteristies of reinforced concrete members [J]. ACI Structural Journal,1988, 5(2):134-140.
    [108]Masoud S, Soudki K, Topper T. Postrepair Fatigue Performance of FRP-Repaired Corroded RC Beams:Experimental and Analytical Investigation [J]. Journal of Composites for Construction,2005, 9(5):441-449.
    [109]王海超,贡金鑫,曲秀华.钢筋混凝土梁腐蚀后疲劳性能的试验研究[J].土木工程学报,2005,38(11):32-37.
    [110]黄杰.锈蚀钢筋混凝土梁抗弯疲劳试验研究与分析[D]:(硕士学位论文).南京:南京航空航天大学,2006.
    [111]吴瑾,黄杰.低锈蚀率钢筋混凝土梁疲劳性能试验研究[J].工业建筑,2009,39(5):65-67.
    [112]易伟建,孙晓东.锈蚀钢筋混凝土梁疲劳性能试验研究[J].土木工程学报,2007,40(3):6-10.
    [113]Hodgkiess T, Arthur P D, Earl J C. Corrosion Fatigue of Reinforced Concrete in Seawater[J]. Materials Performance,1984(7):27-31.
    [114]王海超,贡金鑫,宋元成.钢筋混凝土梁腐蚀疲劳的试验研究[J].建筑结构学报,2004,25(5):105-110.
    [115]Lovegorve J M, Salah E D. Deflection and cracking of reinforced concrete repeated loading faituge [J]. ACI SP 75-6,1982:133-152.
    [116]钟铭,王海龙,刘仲波,等.高强钢筋高强混凝土梁静力和疲劳性能试验研究[J].建筑结构学报,2005,26(2):94-100.
    [117]梁书亭,蒋永生,姜宁辉.高强钢筋高强混凝土梁裂缝宽度验算方法的研究[J].南京建筑工程学院学报,1998,45(2):10-15.
    [118]宋永发,宋玉普,许劲松.重复荷载作用下无粘结部分预应力高强混凝土梁变形及延性试验研究[J].2001,14(3):44-50.
    [119]王瑞敏,赵国藩,王清湘,等.钢筋混凝土受弯构件在重复荷载作用下的变形和裂缝宽度计算[J].1991,4(1):65-71.
    [120]王瑞敏.混凝土结构的疲劳性能研究[D]:(博士学位论文).大连:大连理工大学,1989.
    [121]吕海燕,戴公连,李德建.预应力混凝土梁在疲劳荷载作用下的变形[J].长沙铁道学院学报,1998,16(1):24-28.
    [122]戴公连,徐名枢.预应力、部分预应力、钢筋混凝土梁在疲劳荷载作用下挠度试验研究[J].铁道科学与工程学报,1991,9(3):90-100.
    [123]陈俊杰.无粘结部分预应力混凝土梁疲劳变形与裂缝研究[D]:(硕士学位论文).长沙:中南大学,2008.
    [124]聂建国,王宇航.钢-混凝土组合梁在疲劳荷载作用下的变形计算[J].清华大学学报(自然科学版),2009,49(12):1915-1918.
    [125]李建军.钢-混凝土组合梁疲劳性能的试验研究[D]:(硕士学位论文).北京:清华大学,2002.
    [126]杨德滋.部分预应力混凝土梁疲劳性能研究[D]:(博士学位论文).成都:西南交通大学,1990.
    [127]刘立新,汪小林,于秋波,等.疲劳荷载作用下部分预应力混凝土梁的挠度研究[J].郑州大学学报(工学版),2007,28(4):4-7.
    [128]张克波.静载和疲劳荷载作用下PPC受弯构件的挠度[J].长沙交通学院学报,1990,6(4):59-68.
    [129]胡铁明,黄承逵,陈小锋,等.钢纤维自应力混凝土叠合梁负弯矩区疲劳性能试验研究[J].土木工程学报,2009,42(11):23-30.
    [130]章坚洋,宋玉普,章一涛.混合配筋部分预应力混凝土梁在疲劳荷载下的裂缝宽度计算[J].混凝土,2005,(12):21-24.
    [131]何世钦,滕起,徐锡权,等.混凝土梁腐蚀疲劳刚度衰减规律[J].哈尔滨工业大学学报,2008,40(6):961-964.
    [132]Xie J H, Huang P Y, Guo Y C. Fatigue behavior of reinforced concrete beams strengthened with prestressed fiber reinforced polymer [J]. Construction and Building Materials,2012,27(1):149-157.
    [133]ACI Committee 215. Consideration of design of noncrete stucture subject to fatigue loading. ACI Journal,1974,71(3):97-121.
    [134]CEB-FPI模式规范(混凝土结构).CEB欧洲混凝土国际委员会,1990.中国建筑科学研究院结构所规范室译,1991.
    [135]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [136]中华人民共和国行业标准.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-99)[S].北京:中国铁道出版社。
    [137]中华人民共和国国家标准.铁路工程结构可靠度设计统一标准(GB 50216-94)[S].北京:中国计划出版社,1995.
    [138]宋玉普,赵顺波,王瑞敏,等.钢筋混凝土疲劳性能的非线性有限单元法分析[J].海洋学报,1993,15(3):116-125.
    [139]罗许国.高性能粉煤灰混凝土铁路桥梁受力性能试验和理论研究[D]:(博士学位论文).长沙:中南大学,2008.
    [140]朱劲松,朱先存.钢筋混凝土桥梁疲劳累积损伤失效过程简化分析方法[M].工程力学,2012,29(5):107-121.
    [141]休尔施(Suresh.S.)著王中光等译.材料的疲劳[M].北京:国防工业出版社,1993.
    [142]刘荣桂,付凯,颜庭成,等.预应力混凝土结构在冻融损伤条件下的疲劳寿命预测模型研究[J].建筑结构学报,2009,30(3):79-86.
    [143]牛鹏志,黄培彦,姚国文,等.CFL增强RC梁的疲劳累积损伤模型[J].华南理工大学学报,2007,35(2):23-26.
    [144]仲伟秋,贡金鑫.钢筋电化学快速锈蚀试验控制方法[J].建筑技术开发,2002,29(4):28-29.
    [145]中华人民共和国城乡建设环境保护部.GBJ82-85普通混凝土长期性能和耐久性试验方法[S].北京:中国建筑工业出版社,1985.
    [146]马林.国产1860级低松弛预应力钢绞线疲劳性能研究[J].铁道标准设计,2000,20(5):21-23.
    [147]李君实.钢绞线脉动拉伸疲劳试验和双层叠加式夹具[J].理化检验-物理分册,2002,38(10):438441.
    [148]姚明初.混凝土在等幅和变幅重复应力下疲劳性能的研究[R]//铁道部科学研究院报告,1999.
    [149]Holmen J.O. Fatigue of concrete by constant and variable amplitude loading [J]. Fatigue Strength of Concrete Structures, ACI Publication SP-75,1982:71-110.
    [150]张利梅.高效预应力混凝土梁受力性能及延性研究[D]:(博士学位论文).大连:大连理工大学,2004.
    [151]朱劲松,宋玉普,肖汝诚.混凝土疲劳特性与疲劳损伤后等效单轴本构关系[J].建筑材料学报,2005,8(6):609-614.
    [152]王时越,张立翔,徐人平等.混凝土疲劳刚度衰减规律试验研究[J].力学与实践,2003,25(5):55-57.
    [153]Holman J O. Fatigue of concrete by constant and variable amplitude loading [J]. ACI Special Publication, Fatigue of Concrete Structures,1982,75(4):71-110.
    [154]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2006.
    [155]Aas-Jakobsen K., Lenschow R. Behavior of reinforced columns subjected to fatigue loading [J]. Journal of the American Concrete Institute,1973,70(3):199-206.
    [156]张建玲.缓粘结部分预应力混凝土梁疲劳性能试验研究[D].大连:大连理工大学,2006.
    [157]Li Q S, Fang J Q, Jeary A P. Free vibration analysis of cantilevered tall structures under various axial loads [J]. Journal of Engineering Structures, ASCE,2002,22(5):525-534.
    [158]混凝土疲劳专题组.混凝土受弯构件疲劳可靠性验算方法的研究[R].北京:中国建筑工业出版社,1994.
    [159]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2001,41(3):355-358.
    [160]Miner M A. Cumulative fatigue damage [J]. Journal of the Applied Mechanics,1945,67(2): 159-164.
    [161]Corten H T, Dolan T L. Cumulative fatigue damage [J]. Proceed of the Inter. Confer on Fatigue of Materials, IME and ASME,1956.
    [162]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报,1994,27(3):33-40.
    [163]Manson S S. Application of a double linear damage rule to cumulative fatigue [J]. ASTM STP 415, 1967.
    [164]朱红兵,余志武,蒋丽忠.基于Corten-Dolan累积损伤准则的等效等幅疲劳应力幅值计算方法[J].公路交通科技,2010,27(1):54-57.
    [165]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700