用户名: 密码: 验证码:
冰浆的管道输送热流动特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在区域供冷系统中,以冰浆代替传统载冷介质是实现系统经济性投运的理想途径之一。冰浆的管道输送是冰浆在区域供冷系统中应用时重要的组成环节,伴随着浆体的管道输送,冰浆呈现出区别于纯流体的非均质性流动及潜热释放等特有的物理现象。这些物理现象的存在,极大地增进了对冰浆热流动规律的认知及刻画难度。因此,作为冰浆工程推广的基础性研究,获知冰浆输送中非均质流动的场特征、量化冰粒子非均匀分布对流变及流阻规律的改变、探索冰浆热流动的基本传热规律及其对流动特性产生的影响将具有重要的理论意义及实用价值。
     针对上述目标,本文采用两相流理论与计算流体力学相结合的方法,研究了不同形状管道内冰浆的流动特性及传热特性。对于冰浆流动特性,首先,将冰粒子间的相互作用类比于稠密气体分子间的相互作用,应用两相流欧拉-欧拉模型及颗粒动力学的相关理论研究了水平、垂直及90。弯管道内冰浆非均质性等温流动的场特征。其次,基于冰浆非均质性等温流动的场特征,分段考虑了因冰粒子非均匀分布对冰浆流变特性的改变,基于分段流变模型和混合模型求解出冰浆非均质性流动阻力分布规律。而后,结合两相流欧拉-欧拉三维微分模型,引入颗粒浓度扩散方程和非均质流动曲面方程,建立出适用于工程设计阶段的冰浆非均质性等温流动阻力“准二维”模型,并验证了数学模型的有效性。最后,根据对冰浆非均质性等温流动的场特征、流变特性及流动阻力规律所取得的理论认知,在专业实验室内搭建冰浆非均质性等温流动实验测试平台,基于实验研究方法进一步探讨了冰浆流动特性的基本规律。同时,对比了“准二维”模型、欧拉-欧拉模型、混合模型及拟单相流模型对冰浆流动阻力的预测性能。对于冰浆传热特性,采用热焓多孔介质模型与两相流欧拉-欧拉模型相结合的方式,研究了水平管道内冰浆热流动过程中冰粒子的相变传热特性及其对流动规律产生的影响。
     研究结果表明,对于冰浆流动特性,基于颗粒动力学理论的两相流欧拉-欧拉模型能够有效刻画出不同形状管道内冰浆非均质性等温流动的场特征。整体而言,随着流速的减小、冰粒子浓度的升高以及颗粒直径的增大,冰浆非均质性流动过程增强。在水平和竖直管道内,当局部区域内冰粒子浓度及流速高于某一限值时,冰粒子浓度分布出现反转。在90。弯管道内,冰浆流经弯管段时逐渐呈现出“二次流”现象,这一作用加剧了冰粒子与载流体间的混合。针对所选取的非均质性流动工况及冰浆构成,应充分考虑随运行工况变化时冰浆由牛顿向非牛顿流变特性的转变。当流速较高时,Thomas粘度方程能够较为准确地刻画出冰浆粘度。随着流速降低,可借助非牛顿宾汉流变模型加以描述。基于分段流变模型及混合模型,能够量化出管道顶部冰粒子聚集对剪切应力产生的影响,获得因冰粒子非均匀分布所产生的流阻规律。为了进一步提高冰浆非均质性流动阻力的求解效率,基于欧拉-欧拉三维微分模型,建立了冰浆非均质性流动阻力“准二维”模型。该模型充分考虑了非均质性流动的场特征,同时还能够分项量化出各流体相所占的阻力份额。对于冰浆传热特性,其对流换热过程将随着冰粒子浓度及流速的增大而增强。沿着管道流动方向冰粒子的相变使得冰浆的非均质性流动过程减弱,冰浆的流动阻力降低。
In order to improve the efficiency and running cost of existing district cooling systems, it may be an ideal choice to use ice slurry as a substitute for traditional cold carrier fluid. When ice slurry is applied to district cooling systems, the pipe flow is an important component of ice slurry engineering application system. During ice slurry flow, the fluid presents special thermodynamic characteristics, such as heterogeneous flow patterns and latent heat release. And the special thermodynamic characteristics increase difficulty in characterizing ice slurry thermo-flow. Therefore, it is important to develop technologies that can describe ice slurry flow distribution, rheological behavior, flow resistance and heat transfer from the system design point of view.
     With the above objectives, this thesis uses solid-liquid flow theory and Computational Fluid Dynamics (CFD) as the main tool to study ice slurry thermodynamic characteristics in various pipes. Firstly, the present study treated ice particles interaction as the interaction of dense gas moleculars. And based on kinetic theory of granular flow, an Euler-Euler CFD model was applied to calculate ice slurry isothermal flow distribution. Then, the available flow characteristics were used to describe the rheological behavior piecewise. Meanwhile, the heterogeneous flow resistance was solved with Mixture model and piecewise rheological model. Further, by means of concentration diffusion equations and hypersurface equations, a 'quasi-two-dimensional'resistance model was derived from a three-dimensional Euler-Euler differential model. Finally, considering the heterogeneous ice slurry flow distribution characteristics and rheological properties, the ice slurry flow behaviour was experimentally investigated. And the experimental results were adopted to test the different flow resistance models. For ice slurry heat transfer behaviour, its phase change transfer characteristics and the effect on ice slurry flow distribution were discussed based on enthalpy-porosity model and Euler-Euler model.
     It is found that, based on kinetic theory of granular flow, the Euler-Euler CFD model was validated to be an effective tool for describing ice slurry flow in various pipes. In general, the ice slurry flow will become obviously heterogeneous with an increase of ice particle concentration and particle diameter but a decrease of flow velocity. In horizontal and vertical pipe flow, the phenomenon of ice particles repelling from the pipe wall appears in some conditions. In the horizontal90°elbow, it will gradually present a clear secondary flow image and the secondary flow action enhances the mixing between ice particles and carrier fluid. Considering the heterogeneous flow and the selected slurry composition, the ice slurry rheological behavior should be calculated piecewise for Newtonian and Non-Newtonian behaviour. When the flow velocity is high, Thomas equation can be appropriate for describing viscosity of ice slurry. With a decrease of flow velocity, the ice slurry can be treated as Bingham fluid. Based on the piecewise rheological model, the interaction between ice particles and pipe wall could be considered due to heterogeneous ice slurry flow. And the Mixture CFD model is able to calculate ice slurry flow resistance excellently. For further improving the solution efficiency of ice slurry flow resistance, a'quasi-two-dimensional' resistance model was derived. The resistance model can not only realize the ice slurry flow resistance fast calculation, but also provide each flow phase resistance. For ice slurry heat transfer behaviour, the heat transfer process will be promoted with an increase of flow velocity and ice particle concentration. Meanwhile, melting of the ice particles makes the heterogeneous flow process be weakened, and the ice slurry flow resistance reduces along the pipe flow direction.
引文
[1]第十一届全国人民代表大会.中华人民共和国国民经济和社会发展第十二个五年规划纲要[R].北京:人民出版社,2011.
    [2]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008[R].北京:中国建筑工业出版社,2008.
    [3]ZHANG P., MA Z. W.. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems [J]. Renewable and Sustainable Energy Reviews,2012,16(7):5021-5058.
    [4]杨涛,谢一鹏,汪健斌,刘岩,敬刚,王仕华.冰浆蓄冷中央空调系统:中国,200910108601[P].2010,01,20.
    [5]EGOLF P. W., KAUFFELD M.. From physical properties of ice slurries to industrial ice slurry applications [J]. International Journal of Refrigeration,2005,28(1):4-12.
    [6]KITANOVSKI A., POREDOS A.. Concentration distribution and viscosity of ice-slurry in heterogeneous flow [J]. International Journal of Refrigeration,2002,25(6):827-835.
    [7]KAUFFELD M., WANG M. J., GOLDSTEIN V., et al. Ice slurry applications [J]. International Journal of Refrigeration,2010,33(8):1-15.
    [8]AYEL V., LOTTIN O., PEERHOSSAINI H.. Rheology, flow behaviour and heat transfer of ice slurries: a review of the state of the art [J]. International Journal of Refrigeration,2003,26(1):95-107.
    [9]GROZDEK M., KHODABANDEH R., LUNDQVIST P.. Experimental investigation of ice slurry flow pressure drop in horizontal tubes [J]. Experimental Thermal and Fluid Science,2009,33(2):357-370.
    [10]NIEZGODA-ZELASKO B., ZALEWSKI W.. Momentum transfer of ice slurry flows in tubes, experimental investigations [J]. International Journal of Refrigeration,2006,29(3):418-428.
    [11]DOESTSCH C.. Pressure drop caculation of ice slurries using the casson model [C]. The Fifth Workshop on Ice Slurries of the International Institute of Refrigeration, Stockholm:International Institute of Refrigeration,2002.
    [12]KAUFFELD M., KAWAJI M., EGOLF P.W.. Handbook on ice slurries-Fundamentals and Engineering [M]. Paris:International Institute of Refrigeration,2005:59-60.
    [13]ILLAN F., VIEDMA A.. Experimental study on pressure drop and heat transfer in pipelines for brine based ice slurry. Part II:Dimensional analysis and rheological model [J]. International Journal of Refrigeration,2009,32(6):1024-1031.
    [14]PAPANASTASIOU T. C..Flows of materials with yield [J]. Journal of Rheology,1987,31(5): 385-404.
    [15]姚豪,周春艳,梁德清,樊栓狮,冯自平.水合物浆和冰浆高密度潜热输送研究进展[J].化工学报,2003,54(Supp 1):57-61.
    [16]魏娟,章学来.冰浆传热与压降的研究进展[J].能源技术,2005,26(2):52-54.
    [17]MA Z. W., ZHANG P.. Pressure drops and loss coefficients of a phase change material slurry in pipe fittings [J]. International Journal of Refrigeration,2012,36(4):992-1002.
    [18]SNOEK C., JOANIS S., GUPTA R.. Pressure drop characteristics of ice-water flows [C]. Proceedings of the First International Symposium on Two-Phase Flow Modelling and Experimentation, Rome: ETS,1995.
    [19]BEL O.. Contribution to the study of thermo hydraulic behavior for two-phase mixture:the ice slurry. Theoretical and experimental study [D]. Lyon:Institute National of Sciences Application,1996.
    [20]GRANDUM S., NAKAGOMI K.. Characteristics of ice slurry containing antifreeze protein for ice storage applications [J]. Journal of Thermophysics and Heat Transfer,1997,11(3):461-466.
    [21]LAKHDAR M. B.. Thermo hydraulic behavior of two-phase refrigerant fluid:the ice slurry-Theoretical and experimental study [D]. Lyon:Institute National of Sciences Application,1998.
    [22]INABA H.. New challenge in advanced thermal energy transportation using functionally thermal fluids [J]. International Journal of Thermal Sciences,2000,39:991-1003.
    [23]JENSEN E., CHRISTENSEN K., HANSEN T., et al. Pressure drop and heat transfer with ice slurry [C]. Conference of the International Institute of Refrigeration, West Lafayette:Purdue University, 2000.
    [24]MEEWISSE J. W., FERREIRA C. A.. Optimal properties of ice slurries in secondary cooling systems [C]. Conference of the International Institute of Refrigeration, West Lafayette:Purdue University, 2000.
    [25]STUTZ B.. Coaxial exchangers heat Transfer by a loaded bearing fluid [C]. French Congress of Heat Pumps, Nantes:[Unspecified],2001.
    [26]NIEZGODA-ZELASKO B., ZELASKO J.. Generalized non-Newtonian flow of ice-slurry [J]. Chemical Engineering and Processing,2007,46(10):895-904.
    [27]KOZICKI W., CHOU C.H., TIU C., Non-Newtonian flow in ducts of arbitrary cross-sectional shape [J]. Chemical Engineering Science,1966,21(8):665-679.
    [28]BROWN N. P., HEYWOOD N. I.. Slurry Handling:Design of Solid-Liquid Systems [M]. Germany: Springer,1991:143-146.
    [29]SKELLAND A. H. P.. Non-Newtonian flow and heat transfer [M]. New York:Wiley,1967.
    [30]TOMITA Y.. On the fundamental formula of Non-Newtonian Flow [J]. Bulletin of JSME,1952,2(7): 469-474.
    [31]Darby. R.. Hydrodynamics of slurries and suspensions. Encyclopedia of Fluid Mechanics. Slurry Flow Technology [M]. Texas:Gulf Publishing Company,1986:49-91.
    [32]刘永红,陈沛霖.水平管道中冰浆流动的摩阻特性的实验研究[J].力学与实践,1997,19(6):36-38.
    [33]DORON P., BARNEA D.. A three-layer model for solid-liquid flow in horizontal pipes [J]. International Journal of Multiphase Flow,1993,19(6):1029-1043.
    [34]明岗,陈沛霖.冰浆管内流动的絮网结构设想及阻力计算模型[J].同济大学学报,2001,29(3):347-351.
    [35]SONG W. J., XIAO R., FENG Z. P.. Experimental investigation on tetra-n-butyl-ammonium bromide clathrate hydrate slurry flows in a horizontal tube:Flow behavior and its rheological model [J]. HVAC&R Research,2012,18(3):461-467.
    [36]MA Z. W., ZHANG P.. Pressure drop and heat transfer characteristics of clathrate hydrate slurry in a plate heat exchanger [J]. International Journal of Refrigeration,2011,34(3):796-806.
    [37]KNODEL B. D., FRANCE D. M., CHOI U. S., et al. Heat transfer and pressure drop in ice-water slurries [J]. Applied Thermal Engineering,2000,20(7):671-685.
    [38]BELLAS J., CHAER I., TASSOU S. A.. Heat transfer and pressure drop of ice slurries in plate heat exchangers [J]. Applied Thermal Engineering,2002,22(7):721-732.
    [39]EGLOF P. W., KITANOVSKI A., CAESAR D. A., et al. Thermodynamics and heat transfer of ice slurries [J]. International Journal of Refrigeration,2005,28(1):51-59.
    [40]STAMATIOU E., KAWAJI M.. Thermal and flow behavior of ice slurries in a vertical rectangular channel. Part I:Local distribution measurements in adiabatic flow [J]. International Journal of Heat and Mass Transfer,2005,48(17):3527-3543.
    [41]STAMATIOU E., KAWAJI M.. Thermal and flow behavior of ice slurries in a vertical rectangular channel—Part II. Forced convective melting heat transfer [J]. International Journal of Heat and Mass Transfer,2005,48(17):3544-3559.
    [42]NIEZGODA-ZELASKO B.. Heat transfer of ice slurry flows in tubes [J]. International Journal of Refrigeration,2006,29(3):437-450.
    [43]NIEZGODA-ZELASKO B., ZELASKO J.. Melting of ice slurry under forced convection conditions in tubes [J]. Experimental Thermal and Fluid Science,2008,32(8):1597-1608.
    [44]GROZDEK M., KHODABANDEH R., LUNDQVIST P., et al. Experimental investigation of ice slurry heat transfer in horizontal tube [J]. International Journal of Refrigeration,2009,32(6): 1310-1322.
    [45]ILLAN F., VIEDMA A.. Prediction of ice slurry performance in a corrugated tube heat exchanger [J]. International Journal of Refrigeration,2009,32(6):1302-1309.
    [46]KALAISELVAM S., KARTHIK P., PRAKASH S. R.. Numerical investigation of heat transfer and pressure drop characteristics of tube-fin heat exchangers in ice slurry HVAC system [J]. Applied Thermal Engineering,2009,29(8-9):1831-1839.
    [47]BEDECARRATS J. P., STRUB F., PEUVREL C.. Thermal and hydrodynamic considerations of ice slurry in heat exchangers [J]. International Journal of Refrigeration,2009,32(7):1791-1800.
    [48]KOUSKSOU T., JAMIL A., RHAFIKI T. E., et al. Prediction of the heat transfer coefficient for ice slurry flows in a horizontal pipe [J]. Energy Conversion and Management,2010,51(6):1311-1318.
    [49]JOSE F. S., RUBEN D., FRANCISCO J. U., et al. Experimental analysis on pressure drop and heat transfer of a terminal fan-coil unit with ice slurry as cooling medium [J]. International Journal of Refrigeration,2010,33(6):1095-1104.
    [50]RENAUD-BOIVIN S., POIRIER M., GALANIS N.. Experimental study of hydraulic and thermal behavior of an ice slurry in a shell and tube heat exchanger [J]. Experimental Thermal and Fluid Science,2012,37(2):130-141.
    [51]CHRISTENSEN K. G., KAUFFELD M.. Heat transfer measurements with ice slurry [C]. International Conference on Heat Transfer Issues on Natural Refrigerants, Maryland:College Park,1997.
    [52]JENSEN E. N., CHRISTENSEN K. G., Hansen T. M., et al. Pressure drop and heat transfer with ice slurry [C]. Final Proceedings of the International Institute of Refrigeration, IIF/IIR-Gustav Lorentzen Conference on Natural Working Fluids. West Lafayette:Purdue University,2000.
    [53]马志伟,张鹏,王如竹.水合物浆体在直管中的流动换热特性研究[J].工程热物理学报,2010,31(8):1398-1403.
    [54]MA Z. W., ZHANG P., WANG R. Z., et al. Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes [J]. International Journal of Heat and Mass Transfer,2010,53(19-20): 3745-3757.
    [55]SONG W. J., XIAO R., CHONG H., et al. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube:Forced convective heat transfer behaviors [J]. International Journal of Refrigeration,2009,32(7):1801-1807.
    [56]ZOU D. Q., FENG Z. P., XIAO R., et al. Preparation and flow characteristic of a novel phase change fluid for latent heat transfer [J]. Solar Energy Materials & Solar Cells,2010,94(12):2292-2297.
    [57]KOUSKSOU T., JAMIL A., EL RHAFIKI T. et al. Prediction of the heat transfer coefficient for ice slurry flows in a horizontal pipe [J]. Energy Conversion and Management,2010,51 (6):1311-1318.
    [58]DUTIL Y., ROUSSE D. R., SALAH N. B., et al. A review on phase-change materials:Mathematical modeling and simulations [J]. Renewable and Sustainable Energy Reviews,2011, (15):112-130.
    [59]ZHANG Y. W., HU X. X., WANG X., Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries [J]. Heat and Mass Transfer,2003,40(1-2): 59-66.
    [60]ROY S. K., AVANIC B. L.. Turbulent heat transfer with phase change material suspensions [J]. International Journal of Heat and Mass Transfer,2001,44(12):2277-2285.
    [61]SABBAH R.. Numerical and experimental investigation of heat transfer characteristics of liquid flow with micro-encapsulated phase change material [D]. Chicago:College of the Illinois Institute of Technology,2008.
    [62]SABBAH R., SEYED-YAGOOBi J., AL-HALLAJ S.. Heat transfer characteristics of liquid flow with micro-encapsulated phase change material:numerical study [J]. Journal of Heat Transfer,2011, 133(12):1-9.
    [63]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2006.
    [64]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [65]倪晋仁,工光谦,张红武.固液两相流基本理论及其最新应用[M].北京:科学出版社,1991.
    [66]岳湘安.液固两相流基础[M].北京:石油工业出版社,1996.
    [67]GIDASPOW D.. Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descritions[M]. New York:Academic Press,1994.
    [68]WACHEM B. G. M., SCHOUTEN J. C., KRISHNA R., et al. Validation of the Eulerian simulated dynamic behaviour of gas-solid fluidised beds [J]. Chemical Engineering Science,1999,54(13-14): 2141-2149.
    [69]WACHEM B. G. M., SASIC S.. Derivation, Simulation and Validation of a Cohesive Particle Flow CFD Model [J]. AIChE Journal,2008,54(1):9-19.
    [70]ENWALD H., PEIRANO E., ALMSTEDT A. E.. Eulerian two-phase flow therory applied to fluidization [J]. International Journal of Multiphase flow,1996,22(Supplement):21-66.
    [71]HELLAND E., BOURNOT H., OCCELLI R.. Drag reduction and cluster formation in a circulating fluidised bed [J]. Chemical Engineering Science,2007,62(1-2):148-158.
    [72]REUGE N., CADORET L., COUFORT-SAUDEJAUD C., et al. Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics:Influence of the dissipation parameters [J]. Chemical Engineering Science,2008,63(22):5540-5551.
    [73]DORON P., SIMKHIS M., BARNEA D.. Flow of solid-liquid mixtures in inclined pipes [J]. International Journal of Multiphase flow,1997,23(2):313-323.
    [74]GILLIES R. G., SHOOK C. A.. Modelling High Concentration Settling Slurry Flows [J]. Canadian Journal of Chemical Engineering,2000,78(4):709-716.
    [75]EKAMBARA K., SEAN SANDERS R., NANDAKUMAR K., et al. Hydrodynamic Simulation of Horizontal Slurry Pipeline Flow Using ANSYS-CFX [J]. Industrial & Engineering Chemistry Research,2009,48(17):8159-8171.
    [76]EESA M., BARIGOU M.. Horizontal laminar flow of coarse nearly-neutrally buoyant particles in non-Newtonian conveying fluids:CFD and PEPT experiments compared [J]. International Journal of Multiphase Flow,2008,34(11):997-1007.
    [77]EESA M., BARIGOU M.. CFD investigation of the pipe transport of coarse solids in laminar power law fluids [J]. Chemical Engineering Science,2009,64(2):322-333.
    [78]BRAUER H.. Movement of single particle in various flow fluid [J]. Adavances in Transport Processess,1982,2:352-432.
    [79]RIZK M. A., ELGHOBASHI S. E.. The motion of a spherical particle suspended in a turbulent flow near a plane wall [J]. Physics of Fluids,1985,28(3):806-817.
    [80]ISHII M., ZUBER N.. Drag coefficient and relative velocity in bubbly, droplet or particulate flows [J]. AIChE Journal 1979,25(5):843-855.
    [81]IHME F., SCHMIDT-TRAUB H., BRAUER H.. Theoretical studies on mass transfer and flow past spheres [J]. Chemie Ingenieur Technik,1972,44(5):306-313.
    [82]ODAR F.. Verification of the proposed equation of the forces on a sphere accelerating in a viscous fluid [J]. Journal of Fluid Mechanics,1966,25(3):591-592.
    [83]MANNINEN M., TAIVASSALO V.. On the mixture model for multiphase flow [R]. Finland:VTT, 1996.
    [84]LING P., SKUDARNOV P. V., LIN C. X., et al. Numerical investigations of liquid-solid slurry flows in a fully developed turbulent flow region [J]. International Journal of Heat and Fluid Flow,2003, 24(3):389-398.
    [85]LIN C. X., EBADIAN M. A.. A numerical study of developing slurry flow in the entrance region of a horizontal pipe [J]. Computers & Fluids,2008,37(8):965-974.
    [86]MONTEIRO A. C. S., BANSAL P. K.. Pressure drop characteristics and rheological modeling of ice slurry flow in pipes [J]. International Journal of Refrigeration,2010,33(8):1523-1532.
    [87]NIEZGODA-ZELASKO B., ZALEWSKI W.. Momentum transfer of ice slurry flows in tubes, modeling [J]. International Journal of Refrigeration,2006,29(3):429-436.
    [88]VUARNOZ D., SARI O., EGOLF P. W., et al. Ultrasonic velocity profiler UVP-XW for ice slurry flow characterisation [C]. The Third International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, Lausanne:Swiss Federal Institute of Technology,2002.
    [89]SARI O., VUARNOZ D., MEILI F., et al. Visualization of ice slurries and ice slurry flow [C]. The Second Workshop on Ice Slurries of the International Institute of Refrigeration, France:International Institute of Refrigeration,2000.
    [90]NASR-EL-DIN H., SHOOK C. A.. The lateral variation of solids concentration in horizontal slurry pipeline flow [J]. International Journal of Multiphase Flow,1987,13(5):661-70.
    [91]TAKERO H., SHUICHI Y., TUYOSHI S., et al. Ice/water slurry blocking phenomenon at a tube orifice [J]. Annals of the New York Academy of Sciences,2002,972(1):171-176.
    [92]BURNS A. D., FRANK T., HAMILL I., et al. The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows [C]. Fifth International Conference on Multiphase Flow, Yokohama:The Japanese Society for Multiphase Flow,2004.
    [93]GILLIES R. G., SHOOK C. A.. Modelling High Concentration Settling Slurry Flows [J]. Canadian Journal of Chemical Engineering,2000,78(4):709-716.
    [94]KAUSHAL D. R., SATO K., TOYOTA T., et al. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry [J]. International Journal of Multiphase Flow,2005,31(7):809-823.
    [95]MATOUSEK V.. Pressure drops and flow patterns in sand-mixture pipes [J]. Experimental Thermal and Fluid Science,2002,26(6-7):693-702.
    [96]LEE D. W., YOON C. I., YOON E. S., et al. Experimental study on flow and pressure drop of ice slurry for various pipes [C]. Fifth Workshop on Ice-Slurries of the International Institute of Refrigeration, Stockholm:International Institute of Refrigeration,2002.
    [97]LEE D. W., YOON E. S., JOO M. C., et al. Heat transfer characteristics of the ice slurry at melting process in a tube flow [J]. International Journal of Refrigeration,2006,29(3):451-455.
    [98]SUDO K., SUMIDA M., HIBARA H.. Experiment investigation on turbulent flow in a circular-sectioned 90-degree bend [J]. Experiments in Fluids,1998,25(1):42-49.
    [99]POPE S. B.. Turbulent flows [M]. New York:Cambridge University Press,2005.
    [100]THOMAS D. G.. Transport characteristics of suspension:Ⅷ. A note on the viscosity of Newtonian suspensions of uniform spherical particles [J]. Journal of Colloid Science,1965,20(3):267.
    [101]Fluent Inc. Fluent 6.3 User's Guide [M]. Lebanon:Fluent Inc,2006.
    [102]Fluent Inc. UDF Manual [M]. Lebanon:Fluent Inc,2006.
    [103]MELINDER A.. Properties and other aspects of aqueous solutions used for single phase and ice slurry applications [J]. International Journal of Refrigeration,2010,33(8):1506-1512.
    [104]CHHABRA R.P., RICHARDSON J.F.. Non-Newtonian Flow in the Process Industries-Fundamentals and Engineering Applications [M].Oxford:Butterworth-Heinemann,1999.
    [105]TOMITA Y.. On the fundamental of non-Newtonian Flow [J]. Bull. Japanese Society of Mechanical Engineers,1959,2(7):469-474.
    [106]大连理工大学应用数学系.工科微积分(上册)[M].大连:大连理工大学出版社,2004.
    [107]大连理工大学应用数学系.工科微积分(下册)[M].大连:大连理工大学出版社,2004.
    [108]Hagg C..Ice slurry as secondary fluid in refrigeration systems [D]. Sweden:School of Industrial Engineering and Management,2005.
    [109]ASHRAE. ANSI/ASHRAE Guideline 2-2005, Guide for Engineering Analysis for Experimental Data [S]. Atlanta:ASHRAE,2005.
    [110]MELINDER A.. Thermophysical properties of aqueous solutions used as secondary working fluids [D]. Sweden:Royal Institute of Technology,2007.
    [111]CHHABRA R. P., RICHARDSON J. F.. Non-Newtonian flow in the process industries-Engineering Applications(2nd Edition) [M]. Oxford:Butterworth-Heinemann,2011.
    [112]MELINDER A., GRANRYD E.. Using property values of aqueous solutions and ice to estimate ice concentrations and enthalpies of ice slurries [J]. International Journal of Refrigeration,2005,28(1): 13-19.
    [113]GUILPART J., FOURNASION L., LAKHDAR M. A., et al. Experimental study and calculation method of transport characteristics of ice slurries [C]. First Workshop on Ice-Slurries of the International Institute of Refrigeration, France:International Institute of Refrigeration,1999.
    [114]SWAMINATHAN C. R., VOLLER V. R.. On the enthalpy method [J]. International Journal of Numerical Methods for Heat & Fluid Flow,1993,3(3):233-44.
    [115]ALEXIADES V., SOLOMON A. D.. Mathematical modeling of melting and freezing processes [M]. USA:Hemisphere Publishing Corporation,1993.
    [116]NEDJAR B.. An enthalpy-based finite element method for nonlinear heat problems involving phase change [J]. Computers & Structures,2002,80(1):9-21.
    [117]ZENG R. L., WANG X., CHEN B. J., et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux [J]. Applied Energy,2009,86(12): 2661-2670.
    [118]VOLLER V. R.. An enthalpy method for convection/diffusion phase change [J]. International Journal for Numerical Methods in Engineering,1987,24(1):271-284.
    [119]EGOLF P. W., KITANOVSKI A., ATA-CAESAR D., et al. Thermodynamics and heat transfer of ice slurries [J]. International Journal of Refrigeration,2005,28(1):51-59.
    [120]BERGMAN T. L., LAVINE A. S., INCROPERA F. P., et al. Fundamentals of Heat and Mass Transfer (7th Edition) [M]. USA:JOHN WILEY & SONS,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700