用户名: 密码: 验证码:
钢筋混凝土结构的二阶效应及非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土偏心受压构件的二阶效应一直是钢筋混凝土结构研究的重要内容,虽然国内外学者已进行了大量的研究,并取得了很多成果,且一些成果已应用于结构设计规范中,但由于问题的复杂性,很多方面还不够完善,还需要进行深入的研究。本文对钢筋混凝土轴心受压构件的非线性稳定性、偏心受压构件的二阶效应进行了研究,同时研究了钢筋混凝土结构的非线性分析方法,主要内容包括:
     (1)对一般支撑和约束条件的构件进行分析,得出构件计算长度系数的计算公式及一些特定情况的简化计算公式。
     (2)从非线性稳定理论出发对钢筋混凝土轴心受压构件的承载力进行了研究,给出了混凝土构件临界状态时纵向弯曲系数计算公式。研究表明,徐变对轴心受压构件的非线性稳定性有很大影响。
     (3)通过几何非线性和材料非线性分析并考虑钢筋混凝土的拉伸硬化效应,对无侧移钢筋混凝土细长柱的荷载-变形特性进行了研究,提出附加变形、抗弯刚度及等效弯矩系数的计算公式。与62组等弯矩受压构件和33组不等弯矩受压构件试验结果的对比表明,本文等弯矩柱附加变形公式的计算结果好于GB500102010规范公式的计算结果,等效弯矩系数公式计算结果好于美国规范ACI318-08和欧洲规范EN1992-1-1:2004公式,与我国规范GB50010—2010相当。
     (4)考虑二阶效应的计算方法,按我国规范、美国规范和欧洲规范计算了钢筋混凝土偏心受压构件和构件截面的轴力-弯矩曲线。分析表明,不考虑偏心受压构件的二阶效应时,按我国规范和欧洲规范计算的截面承载力比较接近,由于美国规范考虑了强度折减系数的影响,其计算的承载力比较小;计算考虑二阶效应的构件承载力时,我国规范的规定比较简单,美国和欧洲规范的规定较详细,均考虑了端部弯矩不同。
     (5)考虑材料非线性和几何非线性对钢筋混凝土框架进行了分析。几何非线性包括了框架的P-△效应和构件的P-δ效应,分析中考虑了钢筋混凝土的拉伸硬化效应。与试验结果对比表明:本文方法计算结果与试验结果吻合较好。
The analysis of second-order effect is the most important issue for reinforced concrete members in structural design. So far, lots of researches have been made progress, and even many achievements have been adopted in the standards, but because of the complexity of the issue, there remains a series of important problem needed to be studied.
     In this paper, a further research about the nonlinear stability of axial compression member, the second-order effect of eccentric compression member and frame is made based on the material and geometrical nonlinear characteristic. The detailed works listed as follows:
     (1) Based on numerical analysis, the formulas for effective length of member subjected to different constraint and bearing are established.
     (2) The bearing capacity of uniaxial compressive reinforced concrete members is studied from nonlinear theory's viewpoint, and longitudinal bending coefficient in concrete critical state is obtained. It is indicated that the concrete creep has a significant effect on the bearing capacity of uniaxial compressed members.
     (3) Based on the material and geometrical nonlinear analysis, and by considering the tension stiffening of concrete, the load-deflection characteristic of non-sway reinforced concrete columns is studied, and the expressions for the additional deflection of columns with symmetric eccentricity at ends and equivalent uniform moment diagram factor of columns with asymmetric eccentricities at ends are provided. Comparison with the test data from different source shows that it is better than that in the Code for design of concrete structures.
     (4) By taking second-order effects into account, the axial force and moment interaction diagrams are calculated according to Chinese code GB50010—2010, American code ACI318-08and European code EN1992-1-1:2004. Comparison shows that, without considering the second-order effect, the result for bearing capacity of member calculated from Chinese code is close to that of European code, but greater than that of American code, because in American code, the strength reduction factor is considered. While the second-order effect is considered in the analysis, the specification of Chinese code for bearing capacity is much simpler than that of American code and European code.
     (5) By considering the material and geometrical nonlinear characteristic, the reinforced concrete frames are analyzed. While in the geometrical analysis, the P-△effect and P-δ effect are taken into account. Comparison with test data shows that the calculated method derived from the paper has good precision and accuracy.
引文
[1]Timoshenko S P.材料力学史[M].上海:上海科学技术出版社,1961.
    [2]刘毅.钢筋混凝土结构二阶效应及设计方法的研究[D]:(博士学位论文).重庆:重庆大学,2007.
    [3]Defalco F, Marino F J. Column stability in type 2 construction [J]. Engineering Journal, AISC,1966, 3(2):67-71.
    [4]Driscoll G C. Effective length of columns with semi-rigid connections [J]. Engineering Journal, AISC, 1976,13(4):109-115.
    [5]Bjorhovde R. Effect of end restraint on column strength-practical applications [J]. Engineering Journal, AISC,1984,21(1):1-13.
    [6]LeMessurier W J. A practical method of second-order analysis, Part 2—Rigid frames [J]. Engineering Journal, AISC,1972,14(2):48-67.
    [7]Lim L C, McNamara R. Stability of novel building systems [C]. Structural Design of Tall Steel Building, ASCE-IABSE International Conference on the Planning and Design of Tall Building, Chap.16,1972.
    [8]Wood R H. Effective lengths of columns in multistory buildings [J]. Structural Engineering,1974,52(7): 235-244.
    [9]Wood R H. Effective lengths of columns in multistory buildings [J]. Structural Engineering,1974,52(8): 295-302.
    [10]Wood R H. Effective lengths of columns in multistory buildings [J]. Structural Engineering,1974, 52(9):341-346.
    [11]Aristizabal-Ochoa J D. K-factor for columns in any type of construction:non-paradoxical approach [J]. Journal of Structural Engineering,1994,120(4):1273-1290.
    [12]Aristizabal-Ochoa J D. Slenderness K-factor for leaning columns [J]. Journal of Structural Engineering,1994,120(10):2977-2991.
    [13]Cheong-Siat-Moy F. K-factor paradox [J]. Journal of Structural Engineering,1986,112(8): 1747-1760.
    [14]Cheong-Siat-Moy F. Column design in gravity-loaded frames [J]. Journal of Structural Engineering, 1991,117(5):1448-1461.
    [15]Cheong-Siat-Moy F. Multiple K-factors of a leaning column [J]. Engineering Structural,1997,19(1): 50-54.
    [16]Cheong-Siat-Moy F. K-factors for braced frames [J]. Engineering Structural,1997,19(9):760-763.
    [17]Cheong-Siat-Moy F. An improved K-factor formula [J]. Journal of Structural Engineering,1999, 125(2):169-174.
    [18]Aristizabal-Ochoa J D. K-factor for columns in any type of construction:Nonparadoxical approach [J]. Journal of Structural Engineering,1994,120(4):1272-1290.
    [19]Bendito A. Estudio numerico del pandeo inelastico de soportes de hormigon armado intraslacionales [D]:(Ph.D. Dissertation). Spain:Universitat Jaume I, Castellon,2006. (in Spanish)
    [20]Duan L, Chen W F. Effective length factors of compression members [M]. Florida:CRC Press, Structural Engineering Handbook, Boca Raton,1999.
    [21]Cranston W B. Analysis and design of reinforced concrete columns [R]. London:Research Rep. No.20, Cement and Concrete Association,1972.
    [22]Galambos V T. Influence of partial base fixity on frame stability [J]. Journal of Structural Division, ASCE,1960,86(ST5):85-108.
    [23]Gurafinkel G, Robinson R A. Buckling of elastically restrained columns [J]. Journal of Structural Division, ASCE,1965,91(ST6):159-183.
    [24]Sandhu S B. Effective length of columns with intermediate axial load [J]. Engineering Journal, AISC, 1965,2(1):6-7.
    [25]Hassan K. On the determination of buckling length of frame columns [J]. Publications, International Association for bridge and structural Engineering,1968,28-1:91-101.
    [26]Andrson P J, Woodward H J. Calculation of effective lengths and effective slenderness ratios of stepped columns [J]. Engineering Journal, AISC,1972,9(3):157-166.
    [27]Julian O G, Lawrence L S. Notes on J and L nomographs for determination of effective lengths [R]. Unpublished report,1959.
    [28]Chu K H, Chow H L. Effective column length in unsymmetrical frames [J]. Publications, International Association for Bridge and Structural Engineering,1969,29-I:1-15.
    [29]Yura A J. The effective length of columns in unbraced frames [J]. Engineering Journal, AISC,1971, 8(2):37-42.
    [30]Adams F P. Discussion of "The effective length of columns in unbraced frames" by Yura A J [J]. Engineering Journal, AISC,1972,9(1):40-41.
    [31]Johnston G B. Discussion of "The effective length of columns in unbraced frames" by Yura A J [J]. Engineering Journal, AISC,1972,9(1):46-46.
    [32]Disque O R. Inelastic K-factor for column design [J]. Engineering Journal, AISC,1973,10(2):33-35.
    [33]Smith V C. On inelastic column buckling [J]. Engineering Journal, AISC,1976,13(3):8-88.
    [34]Stockwell W F. Girder stiffness distribution for unbraced columns [J]. Engineering Journal, AISC, 1976,13(3):82-85.
    [35]Matz A C. Discussion of "On inelastic column buckling" by Smith [J]. Engineering Journal, AISC, 1977,14(1):47-48.
    [36]Hu X Y, Zhou R G, and King W S, et al. On effective length factor of framed columns in ACI code [J]. ACI Structural Journal,1993,90(2):135-143.
    [37]Traver J, Bonet J L. Calculo del factor de amplification de momentos en soportes esbeltos intraslacionales de hormigon armado en flexo-compresi6n esviada [D]:(Master thesis). Spain:Technical University of Valencia,2002. (in Spanish)
    [38]Bendito A, Romero M L, and Bonet J L, et al. Inelastic effective length factor of nonsway reinforced concrete columns [J]. Journal of Structural Engineering,2009,135(9):1034-1039.
    [39]American Institute of Steel Construction. Load and resistance factor design specification for structural steel buildings [S]. Chicago, III.,2005,292 pp.
    [40]Pierre D. Simple equations for effective length factor [J]. Engineering Journal, American Institute of steel Construction, Third quarter,1992, pp.111-115.
    [41]Ehab Hasan Ahmed Hasan Ali. Establishing a new simple formula for buckling length factor of rigid frames columns [J]. World Academy of Science, Engineering and Technology,2012:1290-1300.
    [42]CP110. Code of practice for the structural use of concrete, Part 1, design materials and workmanship [S]. London:British Standards Institution,1972,154pp.
    [43]DIN 1045. Beton-und Stahibetonbau [S]. Bemessung und Ausguehrung,1978.
    [44]白绍良.钢筋混凝土框架柱的二阶效应计算体系[J].重庆建筑工程学院学报,1989,11(2):1-12.
    [46]ISO/TC. Concrete structures-Rules for the design of normal reinforced concrete structure [S]. ISO/TC, 71/SC2,1985.
    [47]GB 50010—2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.[48]GB 50010—2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [49]ACI 318-08. Building code requirements for structural concrete and commentary [S]. American Concrete Institute, Farmington Hills, MI,2008.
    [50]ACl 318-05. Building code requirements for structural concrete and commentary [S]. American Concrete Institute, Farmington Hills, MI,2005.
    [51]AASHTO LRFD Bridge Design Specifications [S]. American Association of State Highway and Transportation Officials,2007.
    [52]EN 1992-1-1:2004. Design of Concrete Structures. General Rules and Rules for Building [S]. CEN, 2004.
    [53]DL/T 5057-2008.水工混凝土结构设计规范[S].北京:中国电力出版社,2008.
    [54]JTJ 267-98.港口工程混凝土结构设计规范[S].北京:人民交通出版社,1998.
    [55]JTG D62—2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004
    [56]TB 10002.3-2005.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[s].北京:中国铁道出版社,2005.
    [57]贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计[M].北京:中国建筑工业出版社,2007.
    [58]贡金鑫,魏巍巍,赵尚传.现代混凝土结构基本理论与应用[M].北京:中国建筑工业出版社,2009.
    [59JCSA A23.3-04. Design of Concrete Structures [S]. Canadian Standards Association,1994.
    [60]NZS 3101:1995. Design of Concrete Structures [S]. Wellington, New Zealand,1995.
    [61]徐有邻,周氐.混凝土结构设计规范理解与应用[M].北京:中国建筑工业出版社,2002.
    [62]黄达海,张开臣,杜彦凯.考虑混凝土徐变后轴心受压柱的最大配筋率[J].建筑科学,2006,22(1):6-9.
    [63]陈小根.钢筋混凝土轴心受压构件的徐变失稳[J].工业建筑,1990,(9):33-36.
    [64]饶欣频,曹国辉,方志.不同表面处理混凝土短柱的徐变试验[J].水利水电科技进展,2006,26(5):26-33.
    [65]符佳,杜修力,张建伟.大尺寸钢筋高强混凝土柱的轴心受压性能[J].建筑结构,2013,45(5):77-81.
    [66]Samra R M. New analysis for creep behavior in concrete columns [J]. Journal of Structural Engineering, 1995,121(3):399-407.
    [67]Michael K, Beasley llan J. Discussion:New analysis for creep behavior in concrete columns [J]. Journal of structural engineering,1996,122(11):1389.
    [68]占玉林,向天宇,赵人达.几何非线性结构的徐变效应分析[J].工程力学,2006,23(7):45-48.
    [69]滕智明,朱金铨.混凝土结构及砌体结构[M].北京:中国建筑工业出版社,2006.
    [70]MacGregor J G. Reinforced concrete:mechanics and design [M]. New York:Prentice-Hall, Upper Saddle River, N.J.,1997,939pp.
    [71]Euler L. Sur le forces des colonnes (Euler's classic paper 'On the strength of columns') [J]. Memoires de l'Academie Royale des Sciences et Belles Lettres, Berlin,1759,13. (English translation of the letter by Van J A, American Journal of Physics,1947,15:309-318).
    [72]MacGregor J G, Breen J E, Pfrang E O. Design of slender concrete columns [J]. ACI Journal,1970, 67(1):6-28.
    [73]McDonald B E. Second order effects in R.C. frames [D]:(Ph.D. Dissertation). Canada:University Of Waterloo, Ontario,1986.
    [74]Corres H. Slenderness limits for reinforced concrete slender columns [R]. Hormigon y Acero No.101, Madrid, Spain,1986:35-52 (in Spanish).
    [75]Bridge R Q, Seevaratnam K. The definition of a short column in reinforced concrete construction [C]. Australia:1st National Structural Engineering Conference,1987:495-499.
    [76]Rio O, Moran F. Slenderness limits for reinforced concrete columns:1. Lower limit [R]. Hormigon y Acero, No.160, Madrid, Spain,1987:31-38 (in Spanish).
    [77]Hellesland J. New NS 3473—When is a compression member slender? [S]. Betongprodukter, J. Norwegian Precasting Federation (NBIF),1990,22 (1), XXX-XXX (in Norwegian).
    [78]Hellesland J. Applicability of normal grade slenderness limits to HSC and LWA columns [C]. Norway: 3rd. Int. Symposium on Utilization of High Strength Concrete, Lillehammer,1993,1:209-216.
    [79]Hellesland J. On column slenderness limits [R]. Research Rep. in Mechanics, Mechanics Division, University of Oslo, Norway,1999.
    [80]MacGregor J G. Design of slender concrete columns—revisited [J]. ACI Structural Journal,1993, 90(3):302-309.
    [81]Mari A R. Nonlinear geometric, material and time dependent analysis of three dimensional reinforced and prestressed concrete frames [R]. California:Department of Civil Engineering, UCSM No.84-1, Berkeley,1984.
    [82]Cruz P J S, Mari A, Roca P. Nonlinear time-dependent analysis of segmentally constructed structures [J]. Journal Structural of Engineering,1998,124(3):278-287.
    [83]Mari A R. Numerical simulation of the segmental construction of three dimensional concrete frames [J]. Engineering Structural,2000a,22(6):585-596.
    [84]Mari A R, Valdes M. Long-term behavior of continuous precast concrete girder bridge model [J]. Journal of Bridge Engineering,2000b,5(1):22-30.
    [85]Bonet J L, Goberna E, and Fernandez M A, et al. Lower slenderness bound for reinforced concrete columns [R]. Hormigon y Acero No.219, Madrid, Spain,2001:79-89 (in Spanish).
    [86]Mari A R, Hellesland J. Lower slenderness limits for rectangular reinforced concrete columns [J]. Journal of Structural Engineering, ASCE,2005a,131(1):85-98.
    [87]Hellesland J. Nonslender column limits for braced and unbraced reinforced concrete members [J]. ACI Structural Journal,2005,102(1):12-21.
    [88]BS 5400-4:1990. Steel, concrete and composite bridges-Part 4:Code of practice for design of concrete bridges [S]. University of Bath,2003.
    [89]ACI 318-95. Building code requirements for structural concrete and commentary [S]. American Concrete Institute, Farmington Hills, MI,1995.
    [90]建研院结构所.钢筋混凝土偏心受压构件的纵向弯曲[M].钢筋混凝土结构研究报告选集,中国建筑工业出版社,1977.
    [91]偏心受力构件专题组.钢筋混凝土偏心受压长度的计算[J].建筑技术通讯,1982,3.
    [92]偏心受力构件专题组.钢筋混凝土构件偏心距增大系数η值计算[J].钢筋混凝土结构设计与构造—85年设计规范背景资料汇编,中国建筑科学研究院,1985.
    [93]刘毅,朱爱萍,魏巍等.考虑有侧移框架结构二阶效应的偏心距增大系数法的改进[J].建筑结构学报,2008,29(5):114-119.
    [94]Parme A L. Capacity of restrained eccentrically loaded Long columns [J]. Proceedings, ASCE,1958, 84(ST4):1694-1736.
    [95]Medland I C, Taylor D A. Flexural rigidity of concrete column sections [J]. Journal of Structural Division, ASCE,1971,97(ST2):573-586.
    [96]MacGregor J G, Oelhafen U H, Hage S E. A re-examination of the El value for slender columns [J]. ACI, Special Publication,1975,50:1-40.
    [97]Baker A L L. Limit-state design of reinforced concrete [M]. London:Cement and concrete association, 1970.
    [98]Mirza S A. Flexural Stiffness of Rectangular Reinforced Concrete Columns [J]. ACI Structural Journal, 1990,87(4):425-435.
    [99]Mirza S A, Tikka T K. Flexural Stiffness of Composite Columns subjected to Major Axis Bending [J]. ACI Structural Journal,1999,96(1):19-28.
    [100]Mirza S A, Tikka T K. Flexural Stiffness of Composite Columns subjected to Bending about the Minor Axis of Structural Steel Section Core [J]. ACI Structural Journal,1999,96(5):748-756.
    [101]Tikka T K, Mirza S A. Nonlinear El equation for slender reinforced concrete columns [J]. ACI Structural Journal,2005,102(6):839-848.
    [102]Tikka T K, Mirza S A. Nonlinear El Equation for Slender Composite Columns Bending about the Minor Axis [J]. Journal of Structural Engineering, ASCE,2006,132(10):1590-1602.
    [103]Hellesland J. On column slenderness limits [D]:(Ph.D. Dissertation). Norway:University of Oslo, 1999.
    [104]Rosenblueth E. Slenderness effect in building [J]. Journal of the Structural Division, ASCE,1965, 91(1):229-252.
    [105]Stevens L K. Elastic stability of practical multistory frame [J]. Proceeding of the Institution of Civil Engineering,1967,36(1):99-117.
    [106]Cheong-Siat-Moy F. Consideration of secondary effects in frame design [J]. Journal of Structural Division, ASCE,1977,103(ST10):2005-2019.
    [107]Cheong-Siat-Moy F, Down T. New interaction equation for steel column design [R]. Report No. C1, Department of Civil and Mineral Engineering, University of Minnesota, MN.1979a.
    [108]Cheong-Siat-Moy F, Styrlund K, Heppelmann P. Design formula for steel column [R]. Report No. C2, Department of Civil and Mineral Engineering, University of Minnesota, MN.1979b.
    [109]李战平.钢筋混凝土多、高层结构二阶效应实用设计方法探讨[D]:(硕士学位论文).重庆:重庆大学,2006.
    [110]Chen W F, Lui E M. Structural stability—theory and implementation [M]. New York:Elsevier Science Publishing Corporation, Inc,1987,490 pp.
    [111]Austin J W. Strength and design of metal beam-columns [J]. Journal of Structural Division, ASCE, 1961,87(ST4):1-32.
    [112]Massonnet C. Stability consideration in the design of steel columns [J]. Journal of Structural Division, ASCE,1959,85(7):75-111.
    [113]Robinson R J, Foure B, Bourghli L A. Le Flambement des poteaux en teton arme charges avec des excentricites diffnerentes a leurs extremites [R]. Institut Technique du Batiment et des Travaux Publics, Supplement au no.333,1975, pp.74.
    [114]Trahair S N. Design strength of steel beam-columns structural engineering report no.132 [R]. Canada: Department of Civil Engineering, the University of Alberta, Edmonton,1985.
    [115]Duan L, Sohal I S, Chen W F. On beam-column moment amplification factor [J]. Engineering Journal, AISC,1989,26(4):130-135.
    [116]Sarker P K, Rangan B V. Reinforced Concrete Columns under Unequal Load Eccentricities [J]. ACI Structural Journal,2003,100(4):519-528.
    [117]Tikka T K, Mirza S A. Equivalent Uniform Moment Diagram Factor for Reinforced Concrete Columns [J]. ACI Structural Journal,2004,101(4):521-531.
    [118]Tikka T K, Mirza S A. Equivalent Uniform Moment Diagram Factor for Composite Columns in Minor Axis Bending [J]. ACI Structural Journal,2005,102(1):120-130.
    [119]Chen W F, Zhou S P. Cm factor in load and resistance factor design [J]. Journal of Structural Engineering, ASCE,1987,113(8):1738-1754.
    [120]Cuk P E, Bradford M A, and Trahair N S. Inelastic lateral buckling of steel beam-columns [R]. Structural Engineering Report No.13, Department of Civil Engineering, The University of Alberta, Edmonton, Alberta,1985.
    [121]Pallares L, Bonet J L, and Fernandez M A, et al. Cm factor for non-uniform moment diagram in RC columns [J]. Engineering Structures,2009,31(7):1589-1599.
    [122]李新荣,秦文钺,白绍良.两端不等偏心距钢筋混凝士柱二阶效应试验研究[J].重庆建筑大学学报,2000,22(增刊):41-46.
    [123]梁兴文,叶艳霞.钢筋混凝土结构非线性分析[M].北京:中国建筑工业出版社,2007.
    [124]Lazaro A L, Richards R. Full-range analysis of concrete frames [J]. Journal of the Structural Division, ASCE,1973,99(8):1761-1783.
    [125]Darvall P L, Mendis P A. Elastic-plastic-softening analysis of plane frames [J]. Journal of Structural Engineering, ASCE,1985,111(4):871-888.
    [126]Bazant Z, Pan J, and Pijaudier-Cabot G. Softening in reinforced concrete beams or frames [J]. Journal of Structural Engineering, ASCE,1987a,113(12):2333-2347.
    [127]Bazant Z, Pijaudier-Cabot G, and Pan J. Ductility, snapback, size effect, and redistribution in softening beams or frames [J]. Journal of Structural Engineering, ASCE,1987b,113(12):2348-2364.
    [128]P6ttier R, Swoboda G A. Nonlinear beam element for r/c structures [J]. Communications in Applied Numerical Methods,1987,3(5):397-406.
    [129]Kim J K, Lee T G. Nonlinear analysis of reinforced concrete beams with softening [J]. Computers and Structures,1992,44(3):567-573.
    [130]Rasheed H A S, Dinno K S. An improved nonlinear analysis of reinforced concrete frames [J]. Computers and Structures,1994,53(3):625-636.
    [131]Gunnin B L, Rad F N, and Furlong R W. A general nonlinear analysis of concrete structures and comparison with frame tests [J]. Computers and Structures,1977,7(2):257-265.
    [132]Mendis P A, Darvall P L. Stability analysis of softening frames [J]. Journal of Structural Engineering, ASCE,1988,114(5):1057-1072.
    [133]Carol I, Murcia J. Nonlinear time-depending analysis of planar frames using an 'exact' formulation: II. computer implementation for r.c. structures and examples [J]. Computers and Structures,1989,33(2): 89-102.
    [134]E1-Metwally S E, El-Shahhat A M, and Chen W F.3D nonlinear analysis of R/C slender columns [J]. Computers and Structures,1990,37(5):863-872.
    [135]方志.钢筋混凝土偏压柱的非线性分析[J].湖南大学学报,1992,19(6):63-70.
    [136]Vali pour H R, Foster S J. An improved flexibility formulation for nonlinear analysis of reinforced concrete frames [C]. Australia:5th Australasian Congress on Applied Mechanics, ACAM 2007, Brisbane, 2007.
    [137]徐伟良,吴德伦.钢筋混凝土框架全过程分析的非线性简化单元及其应用[J].建筑结构学报,1995,16(3):59-65.
    [138]曾凡林.钢筋混凝土构件受力全过程非线性计算理论研究[D]:(硕士学位论文).武汉:华中科技大学,2007.
    [139]ACI 318-99. Building code requirements for structural concrete and commentary [S]. American Concrete Institute, Farmington Hills, MI,1999.
    [140]Dumonteil Pierre. Simple equation for effective length factor [J]. Engineering Journal, American Institute of Steel Construction,1992,3rd quarter:111-115.
    [141]仇一颗,易伟建,袁贤讯.钢筋混凝土框架柱计算长度设计方法研究[J].湖南农业大学学报(自然科学版),2002,28(1):67-70.
    [142]Duan L, Chen W F. Effective length factor for columns in braced frames [J]. Journal of Structural Engineering, ASCE,1988,114(10):2357-2370.
    [143]Duan L, Chen W F. Effective length factor for columns in unbraced frames [J]. Journal of Structural Engineering, ASCE,1989,115(1):149-165.
    [144]Chen W F. Stability design of steel frames [M]. Florida:CRC Press,1991.
    [145]蒋秀根,剧锦三,张丽莉.高强钢筋混凝土轴心受压构件稳定系数分析方法[c].北京:北京都市农业工程科技创新与发展国际学术研讨会,2005:326-336.
    [146]胡忠君CFRP约束混凝土轴心受压柱力学行为研究[D]:(博士学位论文).吉林:吉林大学,2010.
    [147]丁大钧.钢筋混凝土受压构件的纵向弯曲[J].南京工学院学报,1979,(2):49-62.
    [148]Campione G, Minafd G. Compressive behavior of short high-strength concrete columns [J]. Engineering Structures,2010,32(9):2755-2766.
    [149]姜峰,李博宁,丁丽娜.面向对象的钢筋混凝土有限元非线性分析程序设计[J].计算力学学报,2003,20(5):592-596.
    [150]Torkamani M A M, Sonmez M. Inelastic large deflection modeling of beam-columns [J]. Journal of Structural Engineering, ASCE,2001,127(8):876-887.
    [151]Maru S, Asfaw M, and Sharma R K et al. Effect of creep and shrinkage on RC frames with high beam stiffness [J]. Journal of Structural Engineering, ASCE,2003,129(4):536-543.
    [152]Rodriguez-Gutierrez J A, Aristizabal-Ochoa J D. Reinforced, partially, and fully prestressed slender concrete columns under biaxial bending and axial load [J]. Journal of Structural Engineering, ASCE,2001, 127(7):774-783.
    [153]魏巍,刘毅,白绍良.钢筋混凝土偏压杆件非弹性稳定的极限承载力分析[J].重庆建筑大学学报,2000,22(增刊):80-86.
    [154]Yalcin C, Saatcioglu M. Inelastic analysis of reinforced concrete columns [J]. Computers & Structures,2000,77(5):539-555.
    [155]Bazant Z P, Cedolin L, and Tabbara M R. New method of analysis for slender columns [J]. ACI Structural Journal,1991,88(4):391-401.
    [156]Sousa A C, Pereira M, and Barros R C. Stiffness reduction factors for geometric and material nonlinearity of reinforced concrete beams and columns subject to short term loading [C]. Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing,2009.
    [157]Pfrang E O. Behavior of reinforced concrete columns with side-sway [J]. Proceeding of ASCE,1966, 92(ST3):225-252.
    [158]Pfrang E O, Siess C P. Behavior of restrained reinforced concrete columns [J]. Proceeding of ASCE, 1964,90(ST5):113-135.
    [159]王志军,白绍良,高晓莉.对钢筋混凝土偏压杆件偏心距增大系数中截面曲率修正系数的讨论[J].重庆建筑大学学报,1999,21(5):1-9.
    [160]Claeson C, Gylltoft K. Slender high-strength concrete columns subjected to eccentric loading [J]. Journal of Structural Engineering,1998,124(3):233-240.
    [161]陈家夔,崔锦.关于修改我国钢筋混凝土结构设计规范(TJ10—74)中偏心距增大系数η值的建议[J].西南交通大学学报,1982,(3):13-28.
    [162]陈家夔,崔锦.钢筋混凝土偏心受压中长柱的纵向弯曲[J].西南交通大学学报,1980,(3):1-8.
    [163]张浩,邓海,齐永顺.钢筋混凝土长柱偏心距增大系数计算分析[J].建筑结构,2001,21(3):42-43.
    [164]李志渊,陈全红.钢筋混凝土长柱偏心距增大系数计算方法比较[J].兰州交通大学学报(自然科学版),2007,26(4):66-69.
    [165]金国生.钢筋混凝土偏心受压中长柱纵向弯曲效应[J].西南交通大学学报,1981,(3):121-130.
    [166]Helena B, Vitor D S, and Carla F. Second order effects in slender concrete columns-reformulation of the Eurocode 2 method based on nominal curveture [J]. Engineering Strucutres,2010,32(12):3989-3993.
    [167]Breen J E, Fergusson P M. The restrained long concrete columns as a part of a rectangular frame [J]. Proceeding of ACI,1964,61(5):563-587.
    [168]Furlong R W, Fergusson P M. Tests of frames with columns in single curvature [C]. Sympusium on Reinforced concrete Columns, ACI, Detroit,1966, SP-13:55-74.
    [169]Martin I, Plivieri E. Tests of slender reinforced concrete columns bent in double curvature [C]. Sympusium on Reinforced concrete Columns, ACI, Detroit,1966, SP-13:121-138.
    [170]Saenz L, Martin I. Test of reinforced concrete columns with high slenderness ratios [J]. Proceeding of ACI,1963,60(5):589-615.
    [171]Goto Y, Chen W F. Second-order elastic analysis for frame design [J]. Journal of Structural Engineering, ASCE,1987,113(7):1501-1519.
    [172]港工钢筋混凝土规范修订组、清华大学建工系.钢筋混凝土偏心受压长柱的试验研究[R].北京:清华大学,1979.
    [173]四川建筑研究所情报资料第7225号.钢筋混凝土柱的纵向弯曲与稳定性[R].成都:四川省建筑科研所,1979.
    [174]Kim J K, Yang J K. Buckling behavior of slender high-strength concrete columns [J]. Engineering Structures,1995,17(1):39-51.
    [175]Lloyd N A, Rangan B V. Studies on high-strength concrete columns under eccentric compression [J]. ACI Structural Journal,1996,93(6):631-638.
    [176]Tikka T K, Mirza S A. Nonlinear El equation for slender reinforced concrete columns [J]. ACI Structural Journal,2005,102(6):839-848.
    [177]Hellesland J. Mechanics and slenderness limits of sway-restricted reinforced concrete columns [J]. Journal of Structural Engineering, ASCE,2008,134(8):1300-1309.
    [178]Lim Y K, Bradford M A, and Gilbert R I. A method for determining the short-and long-term behavior of slender reinforced concrete columns in sway frames [J]. Magazine of Concrete Research,1994, 46(168):201-207.
    [179]魏巍,杜静,白绍良.细长偏心受压钢筋混凝土杆件的强度失效及稳定失效极限承载力分析[J]. 工程力学,2006,23(4):114-119.
    [180]韩丽婷,叶燕华.钢筋混凝土偏心受压构件正截面承载力计算的教学思考[J].东南大学学报(哲学社会科学版),2012,14(增刊):187-190.
    [181]Carpinteri A, Corrado M, and Goso G, et al. Size-scale effects on interaction diagrams for reinforced concrete columns [J]. Construction and Building Materials,2012,27(1):271-279.
    [182]焦俊婷,叶英华.钢筋混凝土框架结构的力学性能研究[J].四川建筑科学研究,2006,32(5):34-37.
    [183]Zweig A, Kahn A. Buckling analysis of one-story frames [J]. Journal of Structural Division, ASCE, 1968,94(ST9):2107-2134.
    [184]Galambos V T. Influence of partial base fixity on frame stability [J]. Journal of Structural Division, ASCE,1960,86(ST5):85-108.
    [185]Switsky H, Wang P C. Design and analysis of frames for stability [J]. Journal of Structural Division, ASCE,1969,95(ST4):695-713.
    [186]Wang C K. Stability of rigid frames with nonuniform members [J]. Journal of Structural Division, ASCE,1967,93(ST1):275-294.
    [187]Halldorsson P O, Wang C K. Stability analysis of frameworks by matrix methods [J]. Journal of Structural Division, ASCE,1968,94(ST7):1745-1760.
    [188]Ojalvo M, Levi V. Columns in planar continuous structures [J]. Journal of Structural Division, ASCE, 1963,89(ST1):1-23.
    [189]Levi V, Driscoll C G, and Lu L W. Structural subassemblages prevented from sway [J]. Journal of Structural Division, ASCE,1965,91(ST5):103-127.
    [190]Lu L W. Inelastic buckling of steel frames [J]. Journal of Structural Division, ASCE,1965,91(ST6): 185-214.
    [191]Levi V, Driscoll C G, and Lu L W. Analysis of restrained columns permitted to sway [J]. Journal of Structural Division, ASCE,1967,93(ST1):87-107.
    [192]Korn A, Galambos V T. Behavior of elastic-plastic frames [J]. Journal of Structural Division, ASCE, 1968,94(ST5):1119-1142.
    [193]Springfield J, Adams F P. Aspects of column design in tall steel buildings [J]. Journal of Structural Division, ASCE,1972,98(ST5):1069-1083.
    [194]Daniels H J, Lu L W. Plastic subassemblage analysis for unbraced frames [J]. Journal of Structural Division, ASCE,1972,98(ST8):1769-1788.
    [195]Liapunov S. Ultimate strength of multistory steel rigid frames [J]. Journal of Structural Division, ASCE,1974,100(ST8):1643-1655.
    [196]Cheong-Siat-Moy F. Inelastic sway buckling of multistory frames [J]. Journal of Structural Division, ASCE,1976,102(ST1):65-75.
    [197]Cheong-Siat-Moy F, Ozer E, and Lu L W. Strength of steel frames under gravity loads [J]. Journal of Structural Division, ASCE,1977,103(ST6):1223-1235.
    [198]Lu L W, Ozer E, and Daniels H J, et al. Strength and drift characteristics of steel frames [J]. Journal of Structural Division, ASCE,1977,103(ST11):2225-2241.
    [199]Tikka T K. Nonlinear analysis of reinforced concrete sway frames [C]. Proceedings, General Conference and International History Symposium,2005:GC-131-1-GC-131-9.
    [200]Ran B, Liu Y J, and Yan Y M, et al. Numerical analysis of fire behavior of reinforced concrete frame structure [J]. Applied Mechanics and Materials,2013,275-277:1024-1027.
    [201]Arnold P, Adams F P, and Lu L W. Strength and behavior of an inelastic hybrid frame [J]. Journal of Structural Division, ASCE,1968,94(ST1):243-266.
    [202]McVinnie W W, Gaylord H E. Inelastic buckling of unbraced space frames [J]. Journal of Structural Division, ASCE,1968,94(ST8):1863-1885.
    [203]Buyukozturk O. Nonlinear analysis of reinforced concrete structures [J]. Computers and Structures, 1977,7(1):149-156.
    [204]Corradi L, De Donato O, and Maier G. Inelastic analysis of reinforced concrete frames [J]. Journal of structural division, ASCE,1974,100(ST9):1925-1944.
    [205]Dundar C, Kara I F. Three-dimensional analysis of reinforced concrete frames with cracked beam and column elements [J]. Engineering Structures,2007,29(9):2262-2273.
    [206]刘南科.钢筋混凝土框架考虑变刚度的弹塑性计算[J].重庆建筑工程学院学报,1982,(1):1-22.
    [207]杨彦余,郑德芳.钢筋混凝土框架有限元非线性全过程分析[J].四川建筑科学研究,1982,(3):33-40.
    [208]徐诗童,黄音,陈明政等.“梁强于柱”、“等强梁柱”单层单跨框架试验研究[J].重庆建筑大学学报,2005,27(2):41-45.
    [209]赵博.两跨非对称载入预应力混凝土框架的试验研究[D]:(硕士学位论文).重庆:重庆大学,2003.
    [210]Chan C M, Mickleborough N C, and Ning F. Analysis of cracking effects on tall reinforced concrete building [J]. Journal of Structure Engineering,2000,126(9):955-1003.
    [211]Spiliopoulos K V, Lykidis G. An efficient three-dimensional solid finite element dynamic analysis of reinforced concrete structures [J]. Earthquake Engineering Structure Dynamic,2006,35(2):137-157.
    [212]Pourazarm B, Vahdani S, and Farjoodi J. Reduced stiffness method for nonlinear analysis of structural frames [J]. Transactions A:Civil Engineering,2011,18(2):181-189.
    [213]陈明政,黄音等.非强柱弱梁钢筋混凝土框架试验及有限元分析[J].重庆大学学报(自然科学版),2007,30(6):109-113.
    [214]Forde B W R, Stiemer S F. Improved arc-length orthogonality methods for nonlinear finite element analysis [J]. Computers and Structures,1987,27(5):625-630.
    [215]Ghosh S K, Cohn M Z. Ductility of RC sections in combined bending and axial load [J]. Symp. Inelasticity and Non-linearity in Structural Concrete,1972:147.
    [216]CRISFIELD M A. A fast incremental/interactive solution procedure that handles "snap-though" [J]. Computers and Structures,1981,13:55-62.
    [217]RIKS E. An incremental approach to the solution of snapping and buckling problems [J]. International Journal of Solids and Structures,1979,15(7):529-551.
    [218]王志军,刘南科.混凝土结构非线性全过程分析中的迭代控制法研究[J].重庆建筑大学学报,1998,20(4):14-20.
    [219]Sulata K. Finite element analysis of RC frames [J]. Journal of Structural Engineering,1984,110(2): 2891-2908.
    [220]Tanrikulu A K, Dundar C, and Cagatay I H. A computer program for the analysis of reinforced concrete frames with cracked beam elements [J]. Structure Engineering Mechanical,2000,10(5):463-478.
    [221]ACI Committee 435. Deflection of reinforced concrete flexural members [S]. ACI Journal,1966,63: 637-674.
    [222]Comite Euro-International du Beton. Manual on cracking and deformation [M]. Bull Inform,1985.
    [223]Vinagre J, Camara J. New method for 2nd order effects evaluation in reinforced concrete portal frames [J]. Engineering Structures,2000,22(9):1061-1069.
    [224]白绍良,魏巍,刘毅等.考虑钢筋混凝土框架整体二阶效应规律的改进η-l0法[J].重庆建筑大学学报,2000,22(S 1):1-9.
    [225]Esmaeily G A, Xiao Y. Seismic behavior of bridge columns subjected to various loading patterns[R]. California:Pacific Earthquake Engineering Research Center, University of California, Berkeley,2002.
    [226]刘南科,周基岳,肖允徽.钢筋混凝土框架非弹性分析及试验研究[J].重庆建筑工程学院学报,1984,(3):19-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700