用户名: 密码: 验证码:
型钢再生混凝土柱抗震性能及设计计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢再生混凝土组合结构融合了普通型钢混凝土结构承载能力高、抗震性能好的优点和再生混凝土节能环保、可再生利用的显著特点,不但可以提高建筑结构的抗震防灾能力,还符合国家绿色环保和可持续发展的战略,因此具有广阔的发展应用前景。本文通过试验和理论手段,系统研究了型钢再生混凝土柱在低周反复荷载下的力学性能,并提出了相关设计计算理论。
     根据再生混凝土特点和组合结构要求,设计配制了满足强度要求的再生混凝土材料。在此基础上,本文共设计制作了17个型钢再生混凝土柱试件,设计参数主要包括再生粗骨料取代率、剪跨比、轴压比以及体积配箍率;通过各柱构件的低周反复荷载试验,主要研究了柱构件的破坏过程及破坏形态特征;分析了柱构件在反复荷载作用下的滞回曲线与骨架曲线。在此基础上,对柱构件的抗震承载力、刚度退化、强度衰减、耗能能力、延性以及侧移角等进行了详细研究,并分析了设计参数对型钢再生混凝土柱抗震性能的影响。
     结合型钢再生混凝土柱构件的特征,并进行一定的简化处理,采用OpenSees软件对型钢再生混凝土柱在低周反复荷载下的滞回性能进行了模拟分析,主要获取了柱构件的滞回曲线及骨架曲线,并将模拟结果与试验结果进行了对比,验证了有限元分析结果的合理性。在此基础上,分析了再生混凝土强度、型钢强度、配钢率以及箍筋强度对柱构件抗震性能的影响。
     根据型钢再生混凝土柱滞回性能特点,建立了适合于型钢再生混凝土柱的恢复力模型,该模型采用刚度退化四折线模型,包括骨架曲线模型、刚度退化规律以及滞回规则。利用理论推导和统计回归的方法确定了骨架曲线模型中各个特征点,即开裂点、屈服点、峰值点以及极限点,且相应的给出了加载刚度和卸载刚度,并对计算骨架曲线与实测骨架曲线进行了对比,验证了恢复力模型的合理性。
     根据延性系数给出了保证型钢再生混凝土柱具有较好抗震性能的试验轴压比限值。依据偏心受压柱大小偏心受压界限破坏理论,推导了发生弯曲破坏的型钢再生混凝土柱轴压比限值的计算方法,并结合试验结果给出了相应的轴压比限值;根据试验轴压比与延性的关系,给出了发生剪切斜压破坏的型钢再生混凝土柱轴压比限值。在分析体积配箍率对柱构件抗震延性有利影响的基础上,给出了不同体积配箍率下型钢再生混凝土柱的轴压比限值。
     根据试验结果,研究了型钢再生混凝土柱的水平承载力,并分析了再生粗骨料取代率、剪跨比、轴压比以及体积配箍率对柱构件水平承载力的影响。根据型钢、箍筋以及纵筋的应变变化规律,研究了它们各自抵抗水平荷载作用的特点,并分析了型钢再生混凝土柱在水平荷载作用下的受力机理。依据发生不同破坏形态的柱构件受力机理特征,理论推导了柱构件相应的水平承载力计算公式;并提出了型钢再生混凝土柱水平承载力的实用计算公式。
     根据型钢截面受力特征,给出了型钢与再生混凝土之间粘结应力的计算公式。通过在型钢翼缘外侧粘贴电阻应变片以获得型钢翼缘应变分布情况,分析了型钢翼缘应变的分布规律,并对其进行多次回归分析,获得型钢翼缘在不同荷载数级作用下的各应变点组成的数学描述曲线,并对该曲线进行求导,最后利用所给公式计算得到型钢翼缘外侧的等效粘结力。分析了型钢再生混凝土柱粘结应力分析规律及特征;根据型钢再生混凝土柱在反复荷载作用下的粘结退化机理及特征,并结合试验结果,给出了柱构件的粘结应力退化计算表达式。
     结合试验研究,分析了型钢再生混凝土柱在低周反复荷载作用下的地震损伤特点,并对柱构件的地震损伤进行了量化处理。在分析归纳现有地震损伤模型的基础上,结合型钢再生混凝土柱的特点,建立了基于变形和累积滞回耗能非线性组合的型钢再生混凝土柱地震损伤模型。对计算损伤指数和试验损伤指数进行了比较,验证了柱构件地震损伤模型的合理性;分析了再生粗骨料取代率、剪跨比、轴压比以及体积配箍率对型钢再生混凝土柱地震损伤性能的影响。
The ordinary steel reinforced concrete composite structure has a high bearing capacity andgood seismic performance. At the same time, the recycled concrete can save energy andprotect environment, which has the characteristics of renewable utilization. Combined withthe above characteristics, the steel reinforced recycled concrete composite structure was putforward in this paper. The new structure not only can improve the earthquake resistanceability of building structure, but also accord with the strategies of national greenenvironmental protection and sustainable development. Therefore, the steel reinforcedrecycled concrete composite structure has a broad application prospects. In this paper, throughthe test and theoretical methods, the mechanical properties of steel reinforced recycledconcrete columns under low cyclic loading were researched in detail. The design calculationmethods of column were also put forward in this paper.
     According to the characteristics of recycled concrete and composite structure, the recycledconcrete materials which met strength requirements were designed and prepared. On theabove basis,17steel reinforced recycled concrete columns were designed and produced inthis paper. The design parameters mainly include recycled coarse aggregate replacement ratio,shear span ratio, axial compression ratio and stirrup ratio. Through the low cyclic loading test,the failure processes and modes of the columns were studied and the hysteresis curves andskeleton curves were also analysed in major. On that basis, the seismic capacity, stiffnessdegradation, strength attenuation, energy dissipation capacity, ductility and lateral angles ofcolumns were researched in detail. In addition, the impacts of design parameters on seismicperformance of steel reinforced recycled concrete columns were also researched.
     Combined with the characteristics of steel reinforced recycled concrete columns andsimplified processes, the OpenSees software was used for simulating the hysteretic behaviors of steel reinforced recycled concrete columns under low cyclic loading. The hysteresis curvesand skeleton curves of columns were obtained. The simulation results and test results werecompared, which verified the rationality of finite element analysis results. On the basis, theinfluences of recycled concrete strength grade, steel strength, steel ratio and stirrup strengthon seismic performance of the columns were analysed in detail.
     According to the hysteresis characteristics of steel reinforced recycled concrete columns,the restoring force model which is suitable for the columns was established in this paper. Themodel used the four line of stiffness degradation model which includes the skeleton curvemodel, stiffness degradation and hysteresis rules. Using the theories and statistical regressionmethods, the feature points including cracking point, yield point, peak point and limit point ofskeleton curve model were determined. Besides, the load stiffness and unloading stiffness ofrestoring force model were also given in this paper. The calculation skeleton curves and testskeleton curves were compared, which verifies the rationality of the restoring force model.
     On the basis of ductility coefficient, the test value of axial compression ratio which canguarantee the steel reinforced recycled concrete columns having a good seismic performancewere given in this paper. According to the limit compression damage theory of eccentriccompression columns, the calculation methods of limit value of axial compression ratio forthe bending failure columns were given and the limit values of axial compression ratio alsowere obtained combined with the test results. According to the relationship between the axialcompression ratio and ductility coefficient, the limit values of axial compression ratio for theshear failure columns were given. On the beneficial effect of stirrup ratio for the ductility ofcolumns, the limit values of axial compression ratio of steel reinforced recycled concretecolumns were provided under the different stirrup ratio in this paper.
     According to the test results, the horizontal bearing capacity of steel reinforced recycledconcrete columns was studied and analyzed the influence of design parameters such as therecycled coarse aggregate replacement ratio, shear span ratio, axial compression ratio andstirrup ratio on the horizontal bearing capacity of columns. On the basis of strain change ruleof steel, stirrup and longitudinal reinforcement in columns, the characteristics and mechanismof horizontal bearing capacity of columns were researched in detail. According to the stressmechanism characteristics of different failure modes of columns, the calculation formulas oftheir corresponding horizontal bearing capacity were given through the theoretical method. And the practical calculation formulas of horizontal bearing capacity for steel reinforcedrecycled concrete columns was also given in this paper.
     In accordance with the stress characteristics of steel, the calculation formulas of bondstress between steel and recycled concrete were given. The strain distribution of steel flangeswere obtained through the resistance strain gauges. Analysing the strain distribution laws ofsteel flanges and carrying out the multiple regression analysis for the strain distribution laws,the mathematical description curves of strain distribution of steel flanges were obtained.Through the derivation of the curves, the equivalent bond stress of steel flanges can becalculated by the above calculation formulas. The distribution rules and characteristics ofbond stress of steel reinforced recycled concrete columns were analysed in detail. Accordingto the degradation mechanism and characteristics of bonding in columns under low cyclicloading and combined with test results, the calculation formulas of bond stress degradation ofcolumns were given in this paper.
     Combined with test research, the earthquake damage characteristics of steel reinforcedrecycled concrete columns under low cyclic loading were analysed and the earthquakedamage of columns were quantitative processing through the test results. Based on theexisting seismic damage models and combined with the characteristics of columns, theearthquake damage model based on the nonlinear combination of deformation and cumulativeenergy dissipation for steel reinforced recycled concrete columns was established. Thecalculation damage indexes and test damage indexes were compared, which verifies therationality of the earthquake damage model for the columns. Finally, the influences ofrecycled coarse aggregate replacement ratio, shear span ratio, axial compression ratio andstirrup ratio on the earthquake damage performance of the columns were analysed detailedly.
引文
[1-1]刘数华,冷发光.再生混凝土技术[M].北京:中国建材工业出版社,2006.
    [1-2] Buck A. D. Recycled concrete as a source of aggregate [J]. Journal of ACI,1977,74(5):212-219.
    [1-3] Malhtra V. M. Use of recycled concrete as a new aggregate [R]. Report No,76-18, Canada Centerfor Mineral and Energy Technology, Ottawn, Canada,1976.
    [1-4]李秋义,全洪珠.再生混凝土性能与应用技术[M].北京:中国建材工业出版社,2010.
    [1-5]李云霞,李秋义,赵铁军.再生骨料与再生混凝土的研究进展[J].青岛理工大学学报,2005,26(5):16-19.
    [1-6] Guntram Zanker, et al. Use of recycled building materials in concrete constructions [J]. BetonwerkFertigteil-Technik,1996,(4):59-63.
    [1-7] L.B. Topcu, N.F. Gunean. Using waste concrete as aggregate [J]. Cement and concrete research,1995,25(5):1385-1390.
    [1-8] K. Ramamurthy, et al. Properties of recycled aggregate concrete [J]. The Indian Concrete Journal.January,1998.
    [1-9] Kawano H. The state of using by-products in concrete in Japan and outline of jis/tr on “recycledconcrete using recycled aggregate”[C]. Proceedings of the1st fib Congress. Tokyo, Japan,2003,l-10.
    [1-10]沈得县,张静忠,杜嘉崇,等.台湾工业生态调查与研究(子计划二:废弃混凝土之流向调查与研究)[R].国立台湾科技大学营建工程系,2002,2-3.
    [1-11] Topcu L.B. Physical and mechanical properties of concrete produced with waste concrete[J].Cement and Concrete Research,1997,27(12):1817-1823.
    [1-12]王罗春,赵由才.建筑垃圾处理与资源化[M].北京:化学工业出版社,2004.
    [1-13]胡其高.建筑的可持续发展与对策[J].工业建筑,2002,32(1):51-54.
    [1-14]杜婷,李惠强,吴贤国.再生混凝土的研究现状及存在问题[J].建筑技术,2003,34(2):133-134.
    [1-15]朱平华,王欣,周军,等.绿色高性能再生混凝土研究主要进展与发展趋势[M].首届全国再生混凝土研究与应用学术交流会论文集,2008.
    [1-16]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008.
    [1-17]肖建庄,雷斌,王长青.汶川地震灾区建筑垃圾资源化利用[M].首届全国再生混凝土研究与应用学术交流会论文集,2008.
    [1-18]陆沈磊,杨德志.汶川地震灾后建筑垃圾消毒处理研究[M].首届全国再生混凝土研究与应用学术交流会论文集,2008.
    [1-19]张金兰.地震灾区废弃混凝土用于建筑和道路重建的探讨[J].施工技术,2008,37(Suppl.):55-57.
    [1-20] Gluzhge P. J. The work of scientific research institute[M]. Gidrotekhnicheskoye Stroitel'srio.1946,4:27-28.
    [1-21] Buck A.D. Recycled concrete as a spruce of aggregate[C]. Proceeding of Symposium,Energy andResource Conservation in the Cement and Concrete Industry, Canada, Ottawa,1976.
    [1-22]赵俊,钟世云,王小冬.建筑垃圾的减量化与资源化[J].粉煤灰,2001,(2):3-6.
    [1-23]张传增,肖建庄,雷斌.德国再生混凝土应用概述[C].首届全国再生混凝土研究与应用学术交流会论文集,2008.
    [1-24]冯乃谦.实用混凝土大全[M].北京:科学出版社,2001.
    [1-25]姚谦峰,余晓峰,张荫.基于均匀试验和逐步回归法的再生混凝土强度研究[J].混凝土,2009,(5):29-34.
    [1-26]陈刚,苏磊,陈扬.国外建筑垃圾再生骨料的应用情况及在国内市场的应用前景分析[J].中国环保产业,2005,(7):39-41.
    [1-27] Nagaolca. Equipments for recycled aggregate manufacturing [J]. Concrete journal,1997,35(7).
    [1-28] Nixon P. J. Recycled concrete as an aggregate for concrete-a review [J]. Materials and structures,1978,11(6):371-378.
    [1-29] Hansen, T. C. Recycled aggregate and recycled aggregate concrete [J]. Second state of art report,development from1945-1985. RILEM Technical Committee37DRC. Material and Structures,1986,19(5):201-246.
    [1-30]邢振贤,周曰农.再生混凝土基本性能研究[J].华北水利水电学院学报,1998,19(2):30-32.
    [1-31]王武样,刘立,尚礼忠,等.再生混凝土集料的研究[J].混凝土与水泥制品,2001,(4):9-12.
    [1-32] Yoda K., Yoshikane, T. Recycled cement and recycled concrete in Japan[C]. Proceedings of thesecond international RILEM symposium on demolition and reuse of concrete and masonry. Tokyo,Japan,1988,527-536.
    [1-33] Ritual, et al. The influence of recycled concrete on the early compressive strength and dryingshrinkage of concrete[C]. Proceedings of the international conference on structural engineering,Mechanics and Computation. Cape Town, South Africa,2001,1415-1421.
    [1-34]柯国军,张育霖,贺涛,等.再生混凝土的实用性研究[J].混凝土,2002,(4):47-55.
    [1-35]黄显智.再生粗骨料混凝土的研究[R].北京:北京建材工业学校研究报告,2003.
    [1-36]张亚梅,秦鸿根.再生混凝土配合比设计初探[J].混凝土与水泥制品,2002,(1):7-9.
    [1-37] Limbachiya, M. C., Leelawat, T., Dhir, R. K. Use of recycled concrete aggregate in high-strengthconcrete [J]. Materials and Structures,2000,33(233):574-580.
    [1-38] Ikeda T., Yamane S. Strengths of concrete containing recycled aggregate [C]. Proceedings of theSecond International RILEM Symposium on Demolition and Reuse of Concrete and Masonry.Tokyo, Japan,1988,585-594.
    [1-39] Bairagi N.K., et al. Behavior of concrete with different proportions of natural and recycledaggregates [J]. Resources Conservation and Recycling,1993,(9):109-126.
    [1-40] Kakizaki M., Harada M. Strength and elastic modulus of recycled aggregate concrete [C].Proceedings of the Second International RILEM Symposium on Demolition and Reuse of Concreteand Masonry. Tokyo, Japan,1988,565-574.
    [1-41] Caims R., et al. The use of recycled aggregate concrete in prefabrication [C]. Proceedings ofconference on use of recycled concrete aggregate, Thomas Thlford,1998.
    [1-42] Yamato T., Emoto Y. Mechanical properties, drying shrinkage and resistance to freezing andthawing of concrete using recycled aggregate [C]. Proceedings of the4th Canada Center forMineral and Enerav Technology. Tokushima, Japan,1998,105-121.
    [1-43] Ravindrarajah R.,Tam C. T. Properties of concrete made with crushed concrete as manse aggregate[J]. Magazine of Concrete Research,1985,37(130):29-37.
    [1-44] Mesbah H. A., Buyle-Bodin F. Efficiency of polypropylene and metallic fibers on control ofshrinkage and cracking of recycled aggregate mortars [J]. Constructions and Building Materials,1999,27(8):439-447.
    [1-45] Gerardu, HendriksC. F. Recycling of road pavement materials in the Netherlands. Rijkswaterstaatcommunication, Hague, Holland,1985.
    [1-46] Nobuaki O. M., et al. Influence of recycled aggregate on interfacial transition zone, strength,chloride penetration and carbonation of concrete[J]. Journal of Materials in Civil Engineering,2003,(9-10):443-451.
    [1-47] Saroj. Strength and durability of recycled aggregate concrete [M]. IABSE Symposium Melbourne,Australia,2002.
    [1-48] Mukai, Kikuchi M. Fundamental study on bond properties between recycled aggregate and steelbars[R]. Cement Association of Japan,1978.
    [1-49] Roos F A. Contribution for the calculation of concrete with recycled aggregate according to DIN1045-1[D]. Munich University,2002.
    [1-50] Wen-Chen Jau, et al. Study of feasibility and mechanical properties for producing high-flowingconcrete with recycled coarse aggregate [C]. Proceedings of the International Workshop onDevelopment and Concrete Technology. Beijing, China, April,2004:89-102.
    [1-51]李丕胜.再生混凝土与钢筋间的粘结性能研究[D].上海:同济大学,2006.
    [1-52]郑华海.型钢再生混凝土粘结滑移性能研究[D].南宁:广西大学,2011.
    [1-53] K.Ishill, et al. Flexible characteristic of RC beam with recycled coarse aggregate [C]. Proceedingsof the25th JSCE Annual Meeting, Kanto Branch.1998:886-887.
    [1-54] Sonobe M., et al. Shear characteristic of RC beam with recycled coarse aggregate [C]. Proceedingsof the25th JSCE Annual Meeting, Kanto Branch.1998:912-913.
    [1-55] O' Mahony, Margaret M. Analysis of the shear strength of recycled aggregates [J]. Materials andStructures/Materiaux et Constructions,1997,30(204):599-606.
    [1-56] Nishiura, Noriaki. Experimental study of recycled aggregate concrete half-precast beams with lapjoints [J]. Transactions of the Japan Concrete Institute,2001,(23):295-302.
    [1-57] B.C.Han, et al. Shear capacity of reinforced concrete beams made with recycled aggregate [J]. ACISpecial Publication,2001,(200):503-516.
    [1-58] Caims R., et al. Recycled aggregate concrete prestressed beams [C]. Proceedings of Conference onUse of Recycled Concrete Aggregate, Thomas Thlford,1998.
    [1-59] Papayianni P. Recycled aggregate concrete under cyclic loading [C]. Proceedings of theInternational Symposium on Role of Concrete in Sustainable Development. University of Dundee,Scotland,2003:509-518.
    [1-60]兰阳.再生混凝土梁受力性能研究[D].上海:同济大学,2005.
    [1-61]白文辉.再生粗骨料混凝土梁的受弯性能试验研究[D].杭州:浙江大学,2009.
    [1-62]张闻.再生粗骨料钢筋混凝土梁抗剪性能试验研究[D].南京:南京航空航天大学,2008.
    [1-63]沈宏波.再生混凝土柱受力性能试验研究[D].上海:同济大学,2005.
    [1-64]张静.再生混凝土框架柱抗震性能试验研究[D].合肥:合肥工业大学,2010.
    [1-65]尹海鹏.再生混凝土框架-剪力墙抗震性能试验及理论研究[D].北京:北京工业大学,2010.
    [1-66]朱晓辉.再生混凝土框架节点抗震性能研究[D].上海:同济大学,2005.
    [1-67]孙跃东.再生混凝土框架抗震性能试验研究[D].上海:同济大学,2006.
    [1-68]于晓峰.再生混凝土损失本构与不同取代率下密肋复合墙抗震安全性研究[D].西安:西安建筑科技大学,2009.
    [1-69] konnok, SatoY., et al. Property of recycled concrete column encased steel tube subjected to axialcompression [J]. Transactions of Japan Concrete Institute,1997,19(2):231-238.
    [1-70] konnok, SatoY., et al. Mechanical property of recycled concrete under lateral confinement [J].Transactions of Japan Concrete Institute,1998,20(3):287-294.
    [1-71]吴凤英,杨有福.钢管再生混凝土轴压短柱力学性能初探[J].福州大学学报(自然科学版),2005,33(增刊):305-308.
    [1-72]肖建庄,杨洁,黄一杰,等.钢管约束再生混凝土轴压试验研究[J].建筑结构学报,2011,32(6):92-98.
    [1-73]王玉银,陈杰,纵斌,等.钢管再生混凝土与钢筋再生混凝土轴压短柱力学性能对比试验研究[J].建筑结构学报,2011,32(12):170-177.
    [1-74]吴波,刘伟,刘琼祥,等.钢管再生混合短柱的轴压性能试验[J].土木工程学报,2010,43(2):32-38.
    [1-75]吴波,刘伟,刘琼祥,等.薄壁钢管再生混合短柱轴压性能试验研究[J].建筑结构学报,2010,31(8):22-28.
    [1-76]吴波,许喆,刘琼祥,等.薄壁钢管再生混合柱的抗剪性能试验[J].土木工程学报,2010,43(9):12-21.
    [1-77]吴波,张金锁,赵新宇.薄壁方钢管再生混合柱抗震性能试验研究[J].建筑结构学报,2012,33(9):38-48.
    [1-78]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [1-79] British Standard institution. Steel, Concrete and Composite Bridges, Part5[S]. Code of Practice forDesign of Composite Bridges,1979.
    [1-80] Johnson R.P. Composite Structures of Steel and Concrete.Vol.1-Beams, Columns, Frames andApplications in Building [M]. New York: Halsted Press,1975.
    [1-81] Johnson R. P. Eurocode No.4, Composite Steel and Concrete Structures, International Symposiumon Composite Steel Concrete Structures,1987.
    [1-82]苏联国家建设委员会编制,苏联劲性钢筋混凝土结构设计指南CИ3-78.柳春圃译.冶金部建筑研究总院技术情报室汇编(冶金建筑参考资料8302),1983.
    [1-83]日本建築学会,鉄骨鉄筋コンクリート構造計算規準,同解説(第4版)[S],日本建築学会,1987.
    [1-84]赵鸿铁.型钢混凝土构件的强度计算[J].建筑结构学报,1991,12(5):12-25.
    [1-85] R.W. Furlong, Steel-concrete composite columns, Proc. Iinstn.Civ. Engrs,1972.
    [1-86] R. P. Johnson, Composite construction of steel and concrete columns, Bridges Second Edition.
    [1-87] H.Sharki, et al. Composite columns in multi-storey Building composite construction in steel andconcrete, New York: Noy Hamphire,1987.
    [1-88] Q.Russell. Australian standard for composite construction, New York: Noy Hamphire,1987.
    [1-89] BS449, British Standard Institute,1959.
    [1-90] ACI Committee318, Building code requirement for reinforced concrete, American ConcreteInstitute,1963.
    [1-91] ACI Committee318, Building code requirement for reinforced concrete, American ConcreteInstitute,1971.
    [1-92] AISC(1999)“Load and Resistance Factor Design Specification for Structural Steel Buildings.”AISC-LRFD-99, American Institute of Steel Construction, Chicago, IL.
    [1-93] ACI (2002)“Building Code Requirements for Structural Concrete.” ACI-318-02, AmericanConcrete Institute, Farmington Hills, MI.
    [1-94]周起敬,姜维山,潘泰华主编.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1991.
    [1-95]程懋堃,陈琢如,毛增达,等.劲性钢筋混凝土结构工程设计简介[J].建筑结构学报,1989,10(3):6-11.
    [1-96]蛭田抢太郎,若林実.鉄骨鉄筋コンクリート構造,工作物の構造[M].彰国社,1963.
    [1-97]若林実,高田周三.鉄骨鉄筋コンクリート構造[M].彰国社,1967.
    [1-98]高田周三.鉄骨鉄筋コンクリート構造に関する研究[R].日本建築学会論文報告集,NO.56,1957.
    [1-99]梅村魁,丰福武彦.鉄骨鉄筋コンクリート柱の崩壊試験[R].日本建築学会論文報告集,NO.17,1952.
    [1-100]横尾義贯,若林実. H型鋼を用いた鋼骨コンクリートに関する試験的研究[R].日本建築学会論文報告集, No.69,1961.
    [1-101]日本建築学会编,鉄骨鉄筋コンクリート構造計算規準,同解説(第2版)[S].日本建築学会编,1963.
    [1-102]若林実.耐震構造[M].森北出版株式会社,1981.
    [1-103]日本建築学会.鉄骨鉄筋コンクリート構造計算規準,同解說(第3版)[S].日本建築学会编,1975.
    [1-104]日本建築学会.鉄骨鉄筋コンクリート構造計算規準,同解說(第5版)[S].日本建築学会编,2001.
    [1-105]潘泰华,席云平.劲性偏压短柱正截面强度的试验研究和计算方法[R].冶金工业部建筑研究总院研究报告,1985.
    [1-106]潘泰华,岳清瑞.劲性钢筋混凝土梁的试验研究[R].冶金工业部建筑研究总院研究报告,1988.
    [1-107]娄彦刚.劲性钢筋混凝土偏心受压长柱的试验研究[R].冶金工业部建筑研究总院研究报告,1988.
    [1-108]牟星之.劲性钢筋混凝土短柱抗震性能的试验研究[D].西安:西安建筑科技大学,1987.
    [1-109]刘玉擎.劲性钢筋混凝土框架节点抗震性能的研究[D].西安:西安建筑科技大学,1988.
    [1-110]薛建阳.配角钢骨架的型钢混凝土梁施工及使用阶段受力性能研究[D].西安:西安建筑科技大学,1994.
    [1-111]白国良.型钢钢筋混凝土结构的基本受力行为与设计方法[D].西安:西安建筑科技大学,1997.
    [1-112]薛建阳.地震作用下型钢混凝土框架振动台试验及弹塑性动力分析[D].西安:西安建筑科技大学,1997.
    [1-113]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学,2003.
    [1-114]王彦宏.型钢混凝土偏压柱粘结滑移性能及应用研究[D].西安:西安建筑科技大学,2004.
    [1-115]郑山锁,杨勇,薛建阳,等.型钢混凝土粘结滑移性能研究[J].土木工程学报,2002,35(4):47-51.
    [1-116]李俊华.低周反复荷载下型钢高强混凝土柱受力性能研究[D].西安:西安建筑科技大学,2005.
    [1-117]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [1-118]周正海.高强钢骨混凝土柱抗震性能的试验研究[D].北京:清华大学,1997.
    [1-119]贾金青.钢骨高强混凝土短柱及高强混凝土短柱力学性能的研究[D].大连:大连理工大学,2000.
    [1-120]蒋东红.钢骨高强混凝土框架柱的受力与抗震性能研究[D].沈阳:东北大学,2001.
    [1-121]李惠著.高强混凝土及其组合结构[M].北京:科学出版社,2004.
    [1-122] YB9082-97.钢骨混凝土结构设计规程[S].北京:冶金工业出版社,1998.
    [1-123] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002.
    [1-124] JGJ138-2010.组合结构设计规范[S].
    [1-125]池田尚治,等著.李先瑞,耿花荣,等译.钢-混凝土组合结构设计手册[M].北京:地震出版社,1992.
    [1-126]王秀振.型钢再生混凝土梁受剪性能试验研究[D].西安:西安建筑科技大学,2011.
    [1-127]崔卫光.型钢再生混凝土组合柱正截面受力性能试验研究[D].西安:西安建筑科技大学,2011.
    [2-1]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2007.
    [2-2] Buck A.D. Recycled concrete as a source of aggregate [J]. Journal of ACI,1977,74(5):212-219.
    [2-3] M.Chakradhara Rao, S.k. Bhattacharyya, S.V. Barai. Behaviour of recycled aggregate concreteunder drop weight impact load [J]. Construction and Building Materials,2011,25:69-80.
    [2-4] Valeria Corinaldesi, Viviana Letelier, Giacomo Moriconi. Behaviour of beam-column joints made ofrecycled concrete under cyclic loading [J]. Construction and Building Materials,2011,25:1877-1882.
    [2-5] M.Casuccio, M.C.Torrijos, G.Giaccio, R.Zerbino. Failure mechanism of recycled aggregateconcrete [J]. Construction and Building Materials,2008,21:1500-1506.
    [2-6]崔卫光.型钢再生混凝土组合柱正截面受力性能试验研[D].西安:西安建筑科技大学,2011.
    [2-7]王秀振.型钢再生混凝土梁受剪性能试验研究[D].西安:西安建筑科技大学,2011.
    [2-8]张静.再生混凝土框架柱抗震性能试验研究[D].合肥:合肥工业大学,2010.
    [2-9]尹海鹏.再生混凝土框架-剪力墙抗震性能试验及理论研究[D].北京:北京工业大学,2010.
    [2-10]薛建阳,马辉,陈宗平,等.型钢再生混凝土柱保护层厚度力学分析[J].工程力学,2013,30(5).
    [2-11] GB/T228-2002.金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002.
    [2-12]余晓峰.再生混凝土损伤本构与不同取代率密肋复合墙抗震性能研究[D].西安:西安建筑科技大学,2009.
    [2-13] GB50152-92.混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [2-14] GB/T50081-2002.普通混凝土力学性能试验方法[S].北京:中国建筑工业出版社,2002.
    [2-15] JGJ101-96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [2-16]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [3-1]沈聚敏,周锡元.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [3-2] JGJ101-96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [3-3]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [3-4]刘祖强.型钢混凝土异形柱框架抗震性能及设计方法研究[D].西安:西安建筑科技大学,2012.
    [3-5]李俊华,王新堂,薛建阳,等.低周反复荷载下型钢高强混凝上柱受力性能试验研究[J].土木工程学报,2007,40(7):11-18.
    [3-6]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2011.
    [3-7]王斌,郑山锁,国贤发,等.循环荷载作用下型钢高强高性能混凝土框架柱受力性能试验研究[J].建筑结构学报,2011,32(3):117-126.
    [3-8]余晓峰.再生混凝土损伤本构与不同取代率密肋复合墙抗震性能研究[D].西安:西安建筑科技大学,2009.
    [3-9]叶列平,丁大钧,程文瀼.高强混凝土框架柱抗震性能的试验研究[J].建筑结构学报,1992(4):41-48.
    [3-10]抗震性能专题组.钢筋混凝土压弯剪构件抗震性能试验研究[J].建筑结构学报,1992(2):2-10.
    [3-11]姜维山,白国良.配复合箍、螺旋箍、X形筋钢筋混凝土短柱的抗震性能及抗震设计[J].建筑结构学报,1994(1):2-15.
    [3-12]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [3-13] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [3-14]沈宏波.再生混凝土柱受力性能试验研究[D].上海:同济大学,2005.
    [3-15]张静.再生混凝土框架柱抗震性能试验研究[D].合肥:合肥工业大学,2010.
    [3-16]尹海鹏.再生混凝土框架-剪力墙抗震性能试验及理论研究[D].北京:北京工业大学,2010.
    [4-1]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [4-2]李杰,等.钢筋混凝土短肢剪力墙结构非线性分析研究[J].建筑结构学报,2009,30(1):23-30.
    [4-3]张磊,黄卫,王斌,等.考虑温度与荷载耦合作用的连续配筋混凝土复合式路面损伤分析[J].土木工程学报,2011,44(1):108-114.
    [4-4]李正,李忠献.基于修正弹塑性损伤模型的钢筋混凝土高桥墩地震损伤分析[J].土木工程学报,2011,44(7):71-76.
    [4-5]郑永乾,韩林海,经建生.火灾下型钢混凝土梁力学性能的研究[J].工程力学,2008,25(9):118-125.
    [4-6]王萌,石永久,王元清.高强强螺栓连接抗剪性能研究[J].建筑结构学报,2011,32(3):27-34.
    [4-7]刘祖强.型钢混凝土异形柱框架抗震性能及设计方法研究[D].西安:西安建筑科技大学,2012.
    [4-8]杨勇.型钢混凝土粘结滑移基本理论及其应用研究[D].西安:西安建筑科技大学,2003.
    [4-9]王彦宏.型钢混凝土偏压柱粘结滑移性能及其应用研究[D].西安:西安建筑科技大学,2004.
    [4-10]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2011.
    [4-11]邹挺.基于OpenSees的钢筋混凝土框架结构二维与三维地震损伤分析[D].哈尔滨:哈尔滨工业大学,2010.
    [4-12]朱雁茹,郭子雄.基于OpenSees的SRC柱低周往复加载数值模拟[J].广西大学学报(自然科学版),2010,35(4):555-559.
    [4-13]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008.
    [4-14] Scott B D, Park R, Piestley M J N. Stress-strain behavior of concrete confined by overlappinghoops at low and high strain rates [J]. ACI Journal,1982,79(2):13-27.
    [4-15] Menegotto M., Pinto P. E. Method of analysis for cyclically loaded reinforced concrete planeframes including changes in geometry and non-elastic behavior of elements under combined norma force and bending [C]. Proceedings of the Conference on Resistance and Ultimate Deformabilityof Structures Acted on by Well Defined Repeated Loads. Lisbon: International Association forBridge and Structural Engineering,1973:15-22.
    [4-16] Silvia Mazzoni, Frank Mckenna, Michael H. Scott, et al. OpenSees Command Language Manual[M]. http://opensees.berkeley.edu/wiki/index.php/Command_Manual.
    [4-17]张强,周德源,伍永飞,等.钢筋混凝土框架结构非线性分析纤维模型研究[J].结构工程师,2008,24(1):15-25.
    [4-18]聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析[J].工程力学,2004,21(6):15-20.
    [5-1]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [5-2]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社,2000.
    [5-3] Ramberg W., Osgood W. R. Description of steel stain curves by three parameters [R]. Tech. Note902, National Advisory Committee for Aeronautics, July,1943.
    [5-4] Penizen J. Dynamic response of elasto-plastic frames [J]. Journal of Structural Division, ASCE,1962,88(ST7):1322-1340.
    [5-5] Singh A, Gerstle K H, et al. The behavior of reinforcing steel under reversal loading [J]. Journal ofASTM Materials Research and Standards,1965,5(1):12-17.
    [5-6] Agrawl G L, Tulin L q, et al. Response of doubly reinforced concrete beams to cyclic loading [J].Journal of ACI,1965,62(7):823-836.
    [5-7] Brown RH and Jirsa J O. RC beams under load reversals [J]. Journal of ACI,1971,68(5):380-390.
    [5-8] Kent D C and Park R. Cyclic load behavior of reinforcing steel [J]. Strain,1973,9(3):256-264.
    [5-9]朱伯龙,吴明舜,张琨联.在周期荷载作用下钢筋混凝土构件滞回曲线考虑裂面接触效应的研究[J].同济大学学报,1980,8(1):63-74.
    [5-10]王娴明,徐波,沈聚敏.反复荷载作用下钢筋的本构关系[J].建筑结构学报,1992,13(6):41-47.
    [5-11] Sinha B P, Gerstle H K, et al. Stress-Strain relationships for concrete under cyclic loading [J].Journal of ACI,1964,61(2):195-211.
    [5-12] Soliman M T M and Yu C W. The flexural stress-strain relationship of concrete confined byrectangular transverse reinforcement [J]. Magazine of Concrete Research,1967,19(61):253-262.
    [5-13] Iyengar K T R J, Desayi P, et al. Stress-strain characteristics of concrete confined by steel binders[J]. Magazine of Concrete Research,1970,22(2):173-184.
    [5-14] Kent D C and Park R. Flexural members with confined concrete [J]. Journal of Structural Division,ASCE,1971,97(ST7):1969-1990.
    [5-15] Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlappinghoops at low and high strain rates [J]. ACJ Journal,1982,79(1):13-27.
    [5-16] Mander J B, Priestley M J N and Park R. Theoretical stress-strain behavior of concrete [J]. Journalof Structural Engineering, ASCE,1988,14(8):1804-1826.
    [5-17]过镇海,张秀琴.反复荷载下混凝土的应力应变全曲线的试验研究[R].清华大学抗震抗爆工程研究室科学研究报告集(第三集).北京:清华大学出版社,1981.38-53.
    [5-18] Jennings P C. Periodic response of a general yielding structure [J]. Journal of EngineeringMechanical Division, ASCE,1964,90(EM2):131-165.
    [5-19] Clough R W and Johnston S B. Effect of stiffness degradation on earthquake ductility requirements[C]. Proceedings of the Second Japan National Conference on Earthquake Engineering. Kyoto,Japan.1966:227-232.
    [5-20] Takeda T, Sozen M A and Nielson N N. Reinforced concrete response to simulated earthquakes [J].Journal of Structural Division, ASCE,1970,96(ST12):2557-2572.
    [5-21] Saiidi M. Hysteresis models for reinforced concrete [J]. Journal of Structural Division, ASCE,1982,108(STS):1077-1087.
    [5-22] Mander J B, Priestley M J N, Park R. Seismic design bridge piers [J]. Journal of structuralEngineering, ASCE.1984, I10(4):987-1012.
    [5-23] Park Y J and Ang A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal ofStructural Division, ASCE,1985,111(4):722-739.
    [5-24]朱伯龙.钢筋混凝土构件恢复力特性的试验研究-国外建筑抗震评述之十一[R].中国建筑科研究院情报所,1978.
    [5-25]卫云亭,李德成.钢筋混凝土压弯构件恢复力特性的试验研究[J].西安冶金建筑学院学报,1980,22(4):1-18.
    [5-26]朱伯龙,张馄联.矩形及环形截面压弯构件恢复力特性的研究[[J].同济大学学报,1981,9(2):1-10.
    [5-27]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报,1982,15(2):53-64.
    [5-28]成文山,邹银生,程翔云.钢筋混凝土压弯构件恢复力特性的研究[J].湖南大学学报,1983,10(4):13-22.
    [5-29]薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析[J].建筑结构学报,2000,21(4):28-33.
    [5-30]潘育耕,孙兆英,苟树东,等.高层组合结构的型钢混凝土柱恢复力特性研究[J].西北建筑工程学院学报,2000,17(3):21-23.
    [5-31]白国良,石启印.空腹式型钢混凝土框架柱的恢复力性能[J].西安建筑科技大学学报(自然科学版),1999,31(1):32-34.
    [5-32]张志伟. SRC柱变形性能及恢复力特性试验研究[D].泉州:华侨大学,2007.
    [5-33]刘义,赵鸿铁,薛建阳,等.型钢混凝土异形柱恢复力特性试验研究[J].地震工程与工程振动,2009,29(2):86-91.
    [5-34]刘义.型钢混凝土异形柱框架节点抗震性能及设计方法研究[D].西安:西安建筑科技大学,2009.
    [5-35]国贤发.型钢高强高性能混凝土框架柱恢复力特性试验与理论研究[D].西安:西安建筑科技大学,2010.
    [5-36] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2001.
    [5-37]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008.
    [5-38]马恺泽,梁兴文,李响,等.型钢混凝土剪力墙恢复力模型研究[J].工程力学,2011,28(8):119-125..
    [5-39]刘祖强.型钢混凝土异形柱框架抗震性能及设计方法研究[D].西安:西安建筑科技大学,2012.
    [6-1] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [6-2] JGJ3-2010.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [6-3] GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [6-4] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2001.
    [6-5]叶列平,方鄂华,周正海,等.钢骨混凝土柱的轴压力限值[J].建筑结构学报,1997,18(5):43-50.
    [6-6]程文瀼,陈忠范,江东,等.钢骨混凝土柱轴压比限值的试验研究[J].建筑结构学报,1999,20(2):51-59.
    [6-7]赵鸿铁著.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [6-8]日本建築学会.鉄骨鉄筋コンクリート構造計算規準.同解說(5版)[S].日本建築学会编,2001.
    [6-9]李俊华.低周反复荷载下型钢高强混凝土柱受力性能研究[D].西安:西安建筑科技大学,2005.
    [6-10]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [6-11]贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究[J].土木工程学报,2006,39(8):14-18.
    [6-12]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2011.
    [6-13]赵玉慧.型钢混凝土柱轴压比限值研究[D].西安:西安建筑科技大学,2008.
    [6-14]彭春华.型钢高强高性能混凝土柱轴压比限值试验研究与理论分析[D].西安:西安建筑科技大学,2008.
    [6-15]崔卫光.型钢再生混凝土组合柱正截面受力性能试验研究[D].西安:西安建筑科技大学,2011.
    [6-16]刘伟.型钢高强混凝土柱轴压比限值的试验研究[D].重庆:重庆大学,2007.
    [6-17]肖建庄,张建荣,秦灿灿.混凝土框架柱轴压比限值分析[J].建筑结构,2000(2):33-35.
    [6-18]陈道政.高层建筑结构柱轴压比控制讨论[J].建筑科学,2001(4):32-34.
    [6-19]朱幼麟.钢筋混凝土柱轴压比限值的研究[J].建筑结构,2000(10):23-27.
    [6-20]肖建庄,李杰.钢筋混凝土框架柱轴压比限值问题研究[J].世界地震工程,1998,14(4):17-22.
    [6-21]苏毅,程文瀼.配置工字、十字形钢骨的钢骨混凝土柱轴压比限值[J].工业建筑,2006,36(2):85-87.
    [7-1]刘恢先.唐山大地震震害[M].北京:地震出版社,1986.
    [7-2]陈肇元,钱稼茹.汶川地震建筑震害调查与灾后重建分析报告[M].北京:中国建筑工业出版社,2008.
    [7-3]南宏一,根口百世.東北地方太平洋沖地震による構造物の被害概要[R].西安:西安建筑科技大学,2012.
    [7-4]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [7-5]李俊华.低周反复荷载下型钢高强混凝土柱受力性能研究[D].西安:西安建筑科技大学,2005.
    [7-6]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2011.
    [7-7]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [7-8] YB9082-2006.钢骨混凝土结构设计规程[S].北京:冶金工业出版社,2007.
    [7-9]日本建筑学会著,冯乃谦,叶列平,陈延年,等译.钢骨钢筋混凝土结构计算标准及解说[M].北京:能源出版社,1998.
    [7-10] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002.
    [7-11]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2004.
    [7-12]赵世春.型钢混凝土组合结构计算原理[M].成都:西南交通大学出版社,2004.
    [7-13] Maruyama K. Ramirez H. Jirsa J. O.. Short RC columns under bilateral load histories [J]. Journal ofstructural engineering,1984,110(2):120-137.
    [7-14]赵世春,陈家夔.劲性钢筋混凝土框架短柱受剪承载力计算[J].建筑结构学报,1994,15(3):342-347.
    [7-15]童岳生,钱国芳,史庆轩,等.钢筋混凝土短柱受剪承载力分析及箍筋拉条的作用[J].建筑结构学报,2000,21(5):268-274.
    [7-16] DG/TJ08-2018-2007.再生混凝土应用技术规程[S].上海,2007.
    [7-17] DB11/T803-2011.再生混凝土结构设计规程[S].北京,2011.
    [7-18]崔卫光.型钢再生混凝土组合柱正截面受力性能试验研究[D].西安:西安建筑科技大学,2011.
    [7-19] JGJ138-2010.组合结构设计规范(意见稿)[S].北京:中国建筑工业出版社,2010.
    [8-1] Mukai, Kikuchi M. Fundamental study on bond properties between recycled aggregate and steelbars[R]. Cement Association of Japan.1978.
    [8-2] Kakizaki M., Harada M. Strength and elastic modulus of recycled aggregate concrete[R].Proceedings of the Second International RILEM Symposium on Demolition and Reuse of Concreteand Masonry. Tokyo, Japan,1998:565-574.
    [8-3] Roos F A. Contribution for the calculation of concrete with recycled aggregate according to DIN1045-1[D]. Munich University,2002.
    [8-4] Wen-Chen Jau, Che-Wu Fu, Chig-Ting Yang. Study of feasibility and mechanical properties forproducing high-flowing concrete with recycled coarse aggregate [C]. Proceedings of theInternational Workshop on Development and Concrete Technology. Beijing, China, April,2004:89-102.
    [8-5]李丕胜.再生混凝土与钢筋间的粘结性能研究[D].上海:同济大学,2006.
    [8-6]胡琼,陈伟伟,皱超英.再生混凝土粘结性能试验研究[J].哈尔滨工业大学学报,2010,42(12):1849-1854.
    [8-7]郑华海.型钢再生混凝土粘结滑移性能研究[D].广西:广西大学,2011.
    [8-8]赵鸿铁著.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [8-9]坪井善勝,若林実.鉄骨鉄筋コソクリ—トに関する実驗的研究[C].日本建築學會論文報告集第57号,1956,(7):549-552.
    [8-10]李红.型钢与混凝土粘结性能的试验研究[D].西安:西安建筑科技大学,1995.
    [8-11] Bryson J. O., Mathey R.G.. Surface condition effect on bond strength of steel beams in concrete[J].Journal of ACI,1962,59(3):397-406.
    [8-12] Hawkins N. M. Strength of concrete encased steel beams[J]. Civil Engineering Transaction of theInstitution of Australia Engineer,1973, CE15(1),39-46.
    [8-13] Roeder C. W. Bond Stress of Embedded Steel. Composite and Mixed Construction [C]. Publishedby ASCE,1984.227-253,330-336.
    [8-14] Hamdan M, Hunaiti Y. Factors effecting bond strength in composite columns[C]. Proceedings ofthe Third Steel-Concrete Composite Structures,213-218,1991.
    [8-15] Wium J.A., Lebet J.P. Simplified calculation method for force transfer in composite columns [J].Journal of Structural Division,1992,120(3):728-745.
    [8-16]孙国良,王英杰.劲性砼柱端部轴力传递性能的试验研究与计算[J].建筑结构学报,1989,(6):40-49.
    [8-17]张仲先,陆双武,阮成堂.型钢混凝土粘结性能试验研究[J].特种结构,2001,18(2):33-37.
    [8-18]刘灿,何益斌.劲性混凝土粘结性能的试验研究[J].湖南大学学报,2002,29(3):168-173.
    [8-19]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学,2003.
    [8-20]赵根田,李永和,杨丽梅.型钢与混凝土的粘结性能研究[J].包头钢铁学院学报,2004,23(4):361-363.
    [8-21]邓国专.型钢混凝土结构粘结滑移性能试验研究与基本理论分析[D].西安:西安建筑科技大学,2005.
    [8-22]董宇光.型钢与混凝土粘结-滑移关系及型钢混凝土剪力墙抗震性能研究[D].上海:同济大学,2006.
    [8-23]王彦宏.型钢混凝土偏压柱粘结滑移性能及应用研究[D].西安:西安建筑科技大学,2004.
    [8-24]隋选勋.基于粘结滑移理论的型钢混凝土组合梁界面状态的模拟分析和设计构造[D].西安:西安建筑科技大学,2008.
    [8-25]李俊华.低周反复荷载下型钢高强混凝土柱受力性能研究[D].西安:西安建筑科技大学,2005.
    [8-26]李新.圆钢管混凝土粘结滑移性能的试验研究及有限元分析[D].西安:西安建筑科技大学,2008.
    [8-27]仵建斌.方钢管混凝土结构粘结滑移基本性能研究[D].西安:西安建筑科技大学,2011.
    [8-28]陈宗平.型钢混凝土异形柱的基本力学行为及抗震性能研究[D].西安:西安建筑科技大学,2007.
    [8-29]李辉.劲性钢骨高强混凝土结构粘结性能及梁柱中节点抗剪性能的试验研究[D].上海:同济大学,1998.
    [8-30]崔卫光.型钢再生混凝土组合柱正截面受力性能试验研究[D].西安:西安建筑科技大学,2011.
    [9-1]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [9-2]王振宇,刘晶波.建筑结构损伤研究的进展[J].世界地震工程,2001,17(3):43-48.
    [9-3] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [9-4]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008.
    [9-5]刘丰,白国良,柴园园,等.再生混凝土凝土受压循环试验研究[J].世界地震工程,2010,26(3):43-47.
    [9-6]肖建清,丁德馨,骆行文,等.再生混凝土疲劳损伤演化的定量描述[J].中南大学学报(自然科学版),2011,42(1):170-176.
    [9-7]余晓峰.再生混凝土损伤本构与不同取代率下密肋复合墙抗震安全性研究[D].西安:西安建筑科技大学,2009.
    [9-8]于海祥.钢筋混凝土结构地震损伤模型研究[D].重庆:重庆大学,2004.
    [9-9] J. Mazars, G. Pijaudier Cabot. Continuum damage theory-application to concrete [J]. ASCE,1989,115(2):345-365.
    [9-10] Cipollina A, Lopez-inojosa A. A simplified damage mechanics approach to nonlinear analysis offrame [J]. Computers&Structures,1995,54(6):1113-1126.
    [9-11] Perdomo M. E., Rami A. Simulation of damage in RC frames with variable axial force [J].Earthquake Engineering and Structural Dynamics,1999, Vo1.29:311-328.
    [9-12] Florez-lopez J. Frames analysis and continuum damage mechanics [J]. European Journal ofMechanics, A/Solid,1998,17(2):269-283.
    [9-13]董毓利,谢和平,赵鹏.循环受压混凝土全过程声发射实验及其本构关系[J].实验力学,1996,11(2):216-221.
    [9-14]董毓利,谢和平,李世平.不同围压下混凝土受压弹塑性损伤本构模型的研究[J].煤炭学报,1996,21(3):265-270.
    [9-15]李杰,吴建营.混凝土弹塑性损伤本构模型研究[J].土木工程学报,2005,38(9):14-27.
    [9-16]李杰,张其云.混凝土随机损伤本构关系[J].同济大学学报,2001,29(10):1135-1141.
    [9-17]宋玉普.受侧向约束混凝土的内时损伤本构模型[J].工程力学,2007,24(12):120-127.
    [9-18] Newmark, Rosenblueth. Fundamentals of earthquake engineering [M].1974.
    [9-19] Darwin D., Nmai C. K. Energy dissipation in RC beams under cyclic load [J]. J. Struc. Engrg.,ASCE.1986,112(8):1826-1846.
    [9-20] Banon H, Biggs J M, Irvine H M. Seismic damage in reinforced concrete frames [J]. Journal ofStructural Engineering, ASCE,1981,107(9):1713-1729.
    [9-21] Banon H., Veneziano D. Seismic safety of reinforced concrete members and structures [J].Earthquake Engineering and Structural Dynamics.1982,10:179-193.
    [9-22] Y. J. Park, A. H. S. Ang. Mechanistic seismic damage model for reinforced concrete [J]. Journal ofStructural Engineering, ASCE,1985,111(4):722-739.
    [9-23] Y. J. Park, A. H. S. Ang. Seismic damage analysis of reinforced concrete buildings [J]. Journal ofStructural Engineering, ASCE,1985,111(4):740-757.
    [9-24]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地震工程与工程震动,1990,10(4):27-37.
    [9-25]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):52-58.
    [9-26]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):46-54.
    [9-27]刘伯权.抗震结构的破坏准则及可靠性分析[M].北京:中国建材工业出版社,1996.
    [9-28]王光远.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,2000.
    [9-29]吴波,李惠,李玉华.结构损伤分析的力学方法[J].地震工程与工程振动,1997,13(1):14-22.
    [9-30] Mahin, Bertero V. An evaluation of inelastic seismic design spectra[J]. J. Struc. Engrg., ASCE.1981,107(ST9):1777-1795.
    [9-31] Krawinkler H., Zohrei M. Cumulative damage in steel structures subjected to earthquake groundmotions[J]. Computers&Structures,1983,16:531-541.
    [9-32] Gosain N K, Brown R H, Jirsa J O. Shear requirements for load reversals on RC members[J]. J.Struc. Engrg., ASCE.1977,103(ST7):1461-1476.
    [9-33] Hwang T. H., Scribner C. F. RC member cyclic response during various loading[J]. J. Struc. Engrg.,ASCE.1984,110(3):477-489.
    [9-34]江近仁,孙景江.砖结构地震破坏模型[J].地震工程与工程振动,1987,7(1):21-34.
    [9-35] Kumar S., Usami T.. Damge evaluation of damage in steel box cloumns by cyclic loadin tests [J].ASCE, Journal of Structural Engineering,1996,122(6):626-634.
    [9-36] Kumar S., Usami T.. A note on evaluation of damage in steel structures under cyclic loading [J].JSCE, J. Stru. Eng.,1999,40(2):177-188.
    [9-37]李军旗,赵世春.钢筋混凝土构件损伤模型[J].兰州铁道学院学报(自然科学版),2000,19(3):25-27.
    [9-38]王东升,赵林,冯启民.基于剩余寿命等效的钢筋混凝土构件地震损伤模型[J].地震工程与工程振动,2003,23(2):89-95.
    [9-39]王东升,冯启民.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [9-40] Applied Technology Council (ATC). Earthquake damage evaluation data for California. Rep. No.ATC-13[R]. Applied Technology Council, Redwood City, Calif.,1985.
    [9-41]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2011.
    [9-42]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [9-43]候丕吉.型钢高强高性能混凝土框架柱地震损伤模型研究[D].西安:西安建筑科技大学,2009.
    [9-44]刘祖强.型钢混凝土异形柱框架抗震性能及设计方法研究[D].西安:西安建筑科技大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700