用户名: 密码: 验证码:
型钢高强混凝土框架结构多尺度力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢混凝土组合结构以其刚度大、承载能力高、抗震性能优越等优点,成为高烈度设防地区高层、大跨、重载及高耸结构的首选结构形式。将高强混凝土用于型钢混凝土组合结构中,可实现两种材料间更好的协同工作,迎合了结构在垂直方向和水平方向的发展趋势,促成了优异的结构性能和良好的经济效益,但随之而来的是原有理论的局限性和不适用性,加之全球大震、巨震频发期的到来,对型钢高强混凝土(SRHSC)框架结构多尺度力学性能评价与震害损失期望分析迫在眉睫。
     论文以SRHSC框架结构为研究对象,采用物理模型试验、理论分析及数值模拟相结合的研究手段,探究了构件尺度的关键力学问题,揭示了地震损伤在诸尺度间的迁移规律,并建立了宏观尺度的地震损伤模型,实现了单体建筑震害损失期望分析。主要研究工作和研究结论有:
     (1)基于19榀SRHSC简支梁的力学性能试验,观察了诸试件的裂缝开展模式及破坏形态,揭示了影响梁力学性能的主要因素,探讨了混凝土强度、含钢率、剪跨比、荷载类型、剪切连接方式及翼缘宽度比对梁力学性能的影响规律,给出了不同连接方式下型钢与混凝土界面间的剪切计算方法,提出了短期荷载效应下梁构件抗弯刚度的建议公式,最终建立了适用于SRHSC梁的正截面抗弯、斜截面抗剪承载能力计算模型与计算公式。
     (2)基于16榀SRHSC框架柱的抗震性能试验,观察了诸试件的裂缝开展模式及破坏形态,对典型破坏形态进行了机理分析,得到了评价框架柱抗震性能的诸项指标,探讨了影响柱抗震性能的主要因素,揭示了混凝土强度、剪跨比、轴压比及体积配箍率对SRHSC柱抗震性能(材料应变分布、恢复力特性、变形能力及滞回耗能能力)的影响规律。
     (3)权衡计算精度与计算成本后,论文分别提出了基于ABAQUS软件平台的构件尺度数值建模理论和基于OpenSees软件平台的结构尺度数值建模理论,内容涉及材料本构模型及单元的选取、内嵌型钢与混凝土间粘结滑移在数值建模中的实现、添加新材料和新单元子类的技术手段、建模理论的可靠性验证,等。
     (4)基于梁、柱及楼层典型力学性能指标建立各自震害指数计算模型,分别利用试验方法和数值方法对构件、楼层尺度主要设计参数进行损伤敏感性分析,揭示了损伤在梁、柱构件与楼层间的迁移规律,并探究了框架梁等效翼缘宽度、框架柱轴压比等性能参数对楼层损伤的影响,最终建立了循环荷载作用下SRHSC框架结构楼层损伤模型。
     (5)根据给出的框架梁和框架柱端部屈服转角及极限转角和楼层尺度层间最大位移角的计算公式,明确了SRHSC框架结构损伤模式的判定准则,并基于结构第一自振周期和结构顶点最大位移的变化以量化建筑结构损伤,揭示了地震动强度、地震波属性及结构高宽比对整体结构抗震性能的影响规律,在充分考虑损伤楼层位置、数量及损伤程度对整体结构力学性能的影响后,提出楼层“损伤权值系数”的确定方法,最终建立适用于SRHSC框架结构整体结构的地震损伤模型。
     (6)基于提出的不同设防烈度下场地指定烈度超越概率计算公式,给出了不同设防烈度下建设场地的地震危险性曲线,建立了最大层间位移角与结构输入地震动强度间的回归公式,揭示了输入地震动强度对不同设防烈度下SRHSC框架结构最大层间位移角的影响规律,得到了不同设防烈度下建筑结构遭受各级破坏的失效概率,分别从直接经济损失、间接经济损失和人员伤亡损失等方面完成单体建筑地震灾害损失评估,最终实现了型钢高强混凝土框架结构单体建筑震害损失期望分析。
Taking the advantages of high rigidity, high bearing capacity and superior seismicperformance into consideration, SRC composite structures would be the first choice to beapplied to the high-rise, long-span, heavy-load and towering structures in high intensitysecurity areas. Using of high-strength concrete in SRC composite structures which makestwo materials a better team work meets the development trend of structures in the verticaldirection and the horizontal direction, and then the excellent structural performance andgood economic benefits will be facilitated. However, with the limitation andnon-applicability of original theories and the fact that the global giant earthquakes occurfrequently, it is necessary to evaluate the multi-scale mechanical properties and analyzethe loss expectation of earthquake damage of SRHSC frame structure.
     Numerical simulation combines with physical model test and theoretical analysisare adopted to study the multi-scale mechanical performances and earthquake damageloss expectation of SRHSC frame structure. The key mechanical problems in thecomponent scale and seismic damage evolution laws in various scales are discussed inthis paper, then the damage model in macroscopic scale are established and earthquakedamage loss expectation of individual buildings are achieved finally. The main researchworks and conclusions are shown as follows:
     1. Based on mechanical behavior experiment of19steel reinforced high-strengthconcrete (SRHSC) beams, the crack development mode and failure mode are observed,and main factors which affect the mechanical behavior of SRHSC beam are revealed,then the relationships between concrete strength, steel ratio, shear span ratio, loadingmode, shear connection mode and flange width ratio (ratio of steel flange width andbeam width) are obtained. Methods for calculating the shear force of interface betweensteel and concrete under different shear connection modes are proposed, and theformulas for calculating beams bending stiffness in the short-term load effect are putforward. The calculting model and formulas applied for SRHSC beam bearing capacityof the flexural strength and the shear strength are established finally.
     2. Based on seismic performance experiment of16SRHSC columns, the crack development mode and failure mode are observed, and mechanism of the typical failuremodes is analyzed in this paper. Main factors which affect the seismic performance ofSRHSC column are studied, and then the influence laws of concrete strength, shear spanratio, axial compression ratio and the volumetric stirrup ratio on column seismicperformance (such as material strain distribution, the restoring force characteristics, thedeformation capacity and the hysteretic energy capacity) are revealed.
     3. Taking the calculation accuracy and the calculation cost into consideration, thenumerical modeling theorys for component scale with ABAQUS program and forstructure scale with OpenSees program are put forward respectively. The ralatedresearch works contain the selection of the material constitutive model and units, therealization of the bond-slip between the embedded steel and concrete in the numericalmodeling, the technical means of adding new materials and new unit types, thereliability verification of the modeling theory and so on.
     4. Seismic damage calculating models for component and storey are established byusing the typical mechanical performance indexs, and the damage sensitivity analysesfor main factors of component and storey are conducted by numerical simulation andexperimental research, then the damage evolution laws between closely scales arerevealed and the influence of beam equivalent flange width, column axial compressionratio and other performance parameters on storey damage are explored. The storeydamage model of SRHSC frame structure under cyclic loads is established ultimately.
     5. According to calculating formulas for column yield rotation and ultimate rotation,and taking the calculating method for interlayer maximum displacement angle intoaccount, the judging criterion for SRHSC frame structure damage model is built. Thedamage evaluation function which regards natural period frequency rate and maximumdisplacement on the top of the structure as characteristic variable is establishedrespectively, and the prescribed damage method is adopted to reveal the influence lawsof ground motion intensity, seismic wave attributes and structure height width ratio onwhole structure damage. Taking full consideration of influence of location, quantity andinjury degree of the damage storey on structure mechanical properties, method fordetermining the floor damage weights coefficient is proposed, and the seismic damagemodel for SRHSC structure is finally established.
     6. The recommended formulas for calculating the exceeding probability ofspecified intensity under different fortification intensities are proposed and the seismichazard curves of construction sites under different fortification intensities are presented,then the regression formula reflecting the relationship between interlayer maximumdisplacement angle and inputting ground motion intensity is established. Influence lawsof inputting ground motion intensity on the maximum interlayer displacement angle of SRHSC frame structure under different fortification intensities is revealed, and thefailure probabilities of structures with specified fortification intensities which subjectedto different damage degree is obtained. Taking the direct economic loss, indirecteconomic loss and the casualty loss into consideration, the earthquake damage loss ofthe individual buildings is fulfilled. The earthquake damage loss expectation of theindividual SRHSC frame structure achieved finally.
引文
[1.1]钟善桐.钢-混凝土组合结构在我国的研究与应用[J].钢结构,2000,15(4):41-46.
    [1.2]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [1.3] Enrico Spacone, Sherif EI-Tawil. Nonlinear Analysis of Steel-Concrete Composite Structures:State of the Art [J]. Journal of Structural Engineering,2004(2):159-168.
    [1.4]刘维亚.型钢混凝土结构在我国高层建筑的应用[J].哈尔滨工业大学学报,2005,37(sup2):18-21.
    [1.5]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社,2007.
    [1.6]王连广,刘之洋.型钢混凝土结构在国内外应用和研究的进展[J].东北大学学报(自然科学版),1995,16(3):238-241.
    [1.7]日本建筑学会.铁骨铁筋コンクリト计算规准及解说.日本建筑学会,2001.
    [1.8]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):3-11.
    [1.9]郑山锁,邓国专,杨勇,等.型钢混凝土结构粘结滑移性能试验研究[J].工程力学,2003,20(5):63-69.
    [1.10] Cladera, Marí. Experimental study on high-strength concrete beams failing in shear [J].Engineering Structures,2005,27:1519-1527.
    [1.11]蒋永生,王群依,梁书亭,等.新型钢-混凝土组合结构构件的研究与应用[J].东南大学学报,2003,33(5):534-543.
    [1.12]李俊华,赵鸿铁,薛建阳,等.型钢高强混凝土柱若干问题的探讨[J].西安建筑科技大学学报,2004,3(1):43-47.
    [1.13]郑山锁,胡义,陶清林,等.型钢高强高性能混凝土梁抗剪承载力试验研究[J].工程力学,2011,28(3):129-135.
    [1.14] Shi B.P, Brune J.N, Zeng Y. H and Anooshehpoor A..Dynamics of earthquake normal faulting:two-dimensional lattice particle model [J]. Bull Seism Soc Amer,2003,93(3):1179-1197.
    [1.15] Okada Norio, Tao Ye, Yoshio Kajitani, Peijun Shi and Hirokazu Tatano. The2011easternJapan great earthquake disaster: overview and comments [J]. International Journal of DisasterRisk Science,2011,2(1):34-42.
    [1.16]王栋.近断层地震动的上/下盘效应研究[D].哈尔滨:中国地震局工程力学研究所,2011.
    [1.17]徐强.世界历史上大地震[J].中国金融家,2008,(06):222-225.
    [1.18]柳洪杰,梁杉.全球近百年大地震一览[N].中国日报网,2011.
    [1.19]中国地震局.网址: http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/zqgz/index.html.
    [1.20]张晁军,侯燕燕,胡彬,等.新西兰2010年M7.1地震与2011年M6.3地震活动和灾害分析[J].国际地震动态,2011,(04):44-51.
    [1.21]姬丁义,范增节,张芝霞,等.新西兰地震对防震减灾工作的启示[J].中国应急救援,2012,(01):46-47.
    [1.22]刘恢先.唐山大地震震害(二)[M].北京:地震出版社,1986.
    [1.23]苏幼坡.唐山震后恢复重建过程及启示[R].汶川地震建筑震害调查与灾后重建分析报告.北京:中国建筑工业出版社,2008:432-441.
    [1.24] TJ11-78,工业与民用建筑抗震设计规范[S].北京:中国建筑工业出版社,1979.
    [1.25] GBJ11-89,建筑抗震设计规范[S].北京:中国建筑工业出版社,1989.
    [1.26] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [1.27]王亚勇.汶川地震建筑震害启示—三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):26-33.
    [1.28]张敏政.汶川地震中都江堰市的房屋震害[J].地震工程与工程振动,2008,28(3):1-6.
    [1.29] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [1.30]台湾内政部建筑研究所.建筑物震害调查初步报告[R],1999(11):1-13.
    [1.31]于红梅,许建东,张素灵,等.基于集集地震的建筑物易损性统计分析[J].防灾科技学院学报,2006,8(4):17-20.
    [1.32]楼宝堂.中国古今地震灾情总汇[M].北京:地震出版社,1996.
    [1.33]苏幼坡,张玉敏,王绍杰,等.从汶川地震看提高建筑结构抗倒塌能力的必要性和可行性[J].土木工程学报,2009,42(5):25-32.
    [1.34]韩博,陆新征,许镇,等.基于高性能GPU计算的城市建筑群震害模拟[J].自然灾害学报,2012,21(05):16-22.
    [1.35] Chneider P J, Schauer BA. HAZUS-Its Development and Its Future[J]. Natural Hazards Rev.,2006,7(2):40-44.
    [1.36] USGS. PAGER-Prompt Assessment of Global Earthquakes for Response.http://earthquake.usgs.gov/earthquakes/pager/
    [1.37]王连广,刘之洋.型钢混凝土结构在国内外应用和研究的进展[J].东北大学学报(自然科学版),1995,16(3):238-241.
    [1.38]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [1.39] Enrico Spacone, Sherif EI-Tawil. Nonlinear Analysis of Steel-Concrete Composite Structures:State of the Art [J]. Journal of Structural Engineering,2004(2):159-168.
    [1.40]赵世春.型钢混凝土组合结构设计原理[M].成都:西南交通大学出版社,2004.
    [1.41]朱清江.高强高性能混凝土研制及应用[M].北京:中国建材工业出版社,1999.
    [1.42]陈肇元.高强混凝土在建筑工程中的应用[J].建筑结构,1994,18(9):23-29.
    [1.43]李惠.高强混凝土及其组合结构[M].北京:科学出版社,2005.
    [1.44] AISC. Load and Resistance Factor Design (LRFD) Specification for Structural SteelBuildings [S]. Chicago,1999.
    [1.45] Commission of European Communities. EUROCODE4, Common Unified Rules forComposite Steel and Concrete Structures [S]. Brussels: European Committee forStandardization,1985.
    [1.46] YB9082-97,钢骨混凝土结构设计规程[S].北京:冶金工业出版社,1998.
    [1.47] JGJ138-2001,型钢混凝土组合结构设计规程[S].北京:中国建筑工业出版社,2002.
    [1.48]邵永健,赵鸿铁.型钢混凝土梁正截面受弯承载力计算理论的对比分析[J].西安建筑科技大学学报(自然科学版),2006,03(38):374-378.
    [1.49]白国良,赵鸿铁.实腹式型钢混凝土梁抗弯承载力计算方法[J].西安建筑科技大学学报,1999,31(3):211-214.
    [1.50]赵树红,叶列平.钢骨混凝土梁的受剪承载力计算方法分析[J].工程力学,1998(Sup.):136-142.
    [1.51]王庆利,康清梁,曹平周.矩形截面型钢混凝土梁抗弯承载力计算方法探讨[J].河海大学学报,2002,30(3):103-105.
    [1.52]李少泉,沙镇平.型钢混凝土梁正截面承载力计算的叠加方法[J].土木工程学报,2004,37(7):1-5.
    [1.53]郑山锁,李磊.型钢高强高性能混凝土结构基本性能与设计[M].北京:科学出版社,2012.
    [1.54] C. C. Weng, S. I. Yen and M. H. Jiang. Experimental study on shear splitting failure offull-scale composite concrete encased steel beams [J]. Journal of Structural Engineering,2002,128(9):1186-1194.
    [1.55]郑山锁,陶清林,胡义,等.型钢高强高性能混凝土梁抗弯性能试验研究[J],工程力学,2013,30(3):140-145.
    [1.56]赵世春,施建平.型钢混凝土梁受弯刚度计算[J].西南交通大学学报,2004,39(6):730-733.
    [1.57]王元清,石永久,陈全,等.钢-混凝土组合扁梁承载力性能的试验研究[J].土木工程学报,2005,38(4):12-17.
    [1.58]王连广,王澈.钢骨轻骨料混凝土梁抗剪性能试验研究[J].工业建筑,2005,35(1):65-66.
    [1.59]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [1.60]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报.2000,33(5):1-12.
    [1.61]邓国专.型钢高强高性能混凝土结构力学性能及抗震设计的研究[D].西安:西安建筑科技大学,2008.
    [1.62]程文瀼,陈忠,范江东,等.钢骨混凝土柱轴压比限值的试验研究[J].建筑结构学报,1999,20(2):51-59.
    [1.63] James M. Ricles, and Shannon D. Paboojian. Seismic performance of steel-encased compositecolumns [J]. Journal of Structural Engineering,1994,120(8):2474-2494.
    [1.64]薛建阳.地震作用下型钢混凝土框架振动台试验及弹塑性动力分析[D].西安:西安建筑科技大学,1997.
    [1.65] C.C. Weng, S.I. Yen. Comparisons of concrete-encased composite column strength provisionsof ACI code and AISC specification [J]. Engineering Structures,2002,24:59-72.
    [1.66] El-Tawil Sherif and Deierlein Gregory G.. Strength and ductility of concrete encasedcomposite columns [J]. Journal of Structural Engineering,1999,125(9):1009-1019.
    [1.67]李少泉,沙镇平.钢骨混凝土柱正截面承载力计算的叠加方法[J].建筑结构学报,2002,23(3):51-59.
    [1.68] Cheng-Chih Chen, Nan-Jiao Lin. Analytical model for predicting axial capacity and behaviorof concrete encased steel composite stub columns [J]. Journal of Constructional SteelResearch,2006,62:424-433.
    [1.69] Zhan-Fei Huang, Kang-Hai Tan, Guan-Hwee Phng. Axial restraint effects on the fireresistance of composite columns encasing I-section steel [J]. Journal of Constructional SteelResearch,2007,63:437-447.
    [1.70] Cladera, Marí. Experimental study on high-strength concrete beams failing in shear [J].Engineering Structures,2005,27:1519-1527.
    [1.71]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):3-11.
    [1.72]蒋东红,王连广,孙逸增,等.高强钢骨混凝土柱的抗剪承载力计算[J].东北大学学报,2001,22(5):63-69.
    [1.73]李惠,刘克敏,吴波.钢骨高强混凝土叠合柱抗震性能试验研究[J].土木工程学报,2001,34(4):56-60.
    [1.74] Jerome F. Hajjar. Composite steel and concrete structural systems for seismic engineering [J].Journal of constructional steel research,2002,58:703-723.
    [1.75]贾金青,徐世烺.钢骨高强混凝土短柱轴压力系数限值的试验研究[J].建筑结构学报,2003,24(1):14-18.
    [1.76]徐世烺,江睿,贾金青,等.钢骨超高强混凝土短柱抗震性能试验研究[J].大连理工大学学报,2007,47(5):699-706.
    [1.77]李俊华,王新堂,薛建阳,等.低周反复荷载下型钢高强混凝土柱受力性能试验研究[J].土木工程学报,2007,40(7):11-18.
    [1.78]陈宗梁,张誉,李向民.钢骨高强混凝土柱合理用钢量的研究[J].建筑结构,1999,29(7):14-16.
    [1.79]支运芳,邱阳,陈子静.型钢高强混凝土柱合理含钢量试验[J].重庆工学院学报(自然科学),2008,22(5):28-31.
    [1.80]闻洋.钢骨高强混凝土柱受力性能的试验研究[J].混凝土,2006,9:25-26.
    [1.81]王斌.型钢高强高性能混凝土构件及其框架结构的地震损伤研究[D].西安:西安建筑科技大学,2010.
    [1.82] Newmark Nathan Mortimore. Fundamentals of earthquake engineering [M]. Prentice-Hall,1971.
    [1.83] Magdy S. L. Roufaiel, Christian Meyer. Analytical Modeling of Hysteretic Behavior of R/CFrames [J]. Journal of Structural Division, ASCE,1987(113):429-444.
    [1.84] Kratzig W B, Meyer I F, Meskouris K. Damage evolution in reinforced concrete membersunder cyclic loading [C]. Proceedings of5th International Conference on Structural Safetyand Reliability, San Francisco,1989, II:795-802.
    [1.85]张国军,吕西林.高强混凝土框架柱的地震损伤模型[J].地震工程与工程振动,2005,25(2):100-104.
    [1.86]李翌新,赵世春.钢筋混凝土及劲性钢筋混凝土构件的累积损伤模型[J].西南交通大学学报,1994(8):412-417.
    [1.87]杨仁孟,彭博.框架结构地震易损性分析[J].核工程研究与设计,2009(77):112-116.
    [1.88]李磊.混合结构的数值建模理论及在地震工程中的应用[D].西安:西安建筑科技大学,2011.
    [1.89] Ren W X, Guido D R. Structural damage identification using modal data I: simulationverification [J]. Journal of Structural Engineering,2002,128(1):87-101.
    [1.90]王东升,冯启明,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [1.91]杨伟,欧进萍.基于能量原理的Park-Ang损伤模型简化计算方法[J].地震工程与工程振动,2009,29(2):159-165.
    [1.92]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44-53.
    [1.93] Sozen M. A. Review of earthquake response of reinforced concrete buildings with a view todrift control [C]. State of the Art in Earthquake Engineering,7th World Conference onEarthquake Engineering,1980:119-174.
    [1.94] Ghobarah A, Abou-Elfath A.Response-based damage assessment of structure [J]. EarthquakeEngineering Structure Dynamic,1999(28):79-104.
    [1.95] Soren R. K. Nielsen, Jamison Abbott, et al. Local and modal damage indicators for RC framessubject to earthquake [J]. Journal of Engineering Mechanics,1998,124(12):1371-1379.
    [1.96]吕西林,龚治国.某复杂高层建筑结构弹塑性时程分析及抗震性能评估[J].西安建筑科技大学学报(自然科学版),2006,38(5):593-602.
    [1.97]李国强,郝坤超,陆烨.框架结构损伤识别的两步法[J].同济大学学报(自然科学版),1998,26(5):483-487.
    [1.98]李洪泉,欧进萍.剪切型钢筋混凝土结构的地震损伤识别方法[J].哈尔滨建筑大学学报,1996,29(2):8-13.
    [1.99] Xianglin Gu, Zuyuan Shen. Damage analysis on reinforced concrete structures underearthquke series [C]. Proceedings of ICCBE-VII, Seoul, Korea,1997.
    [1.100]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(06):1-8.
    [1.101]叶列平,曲哲,陆新征,等.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50.
    [1.102]吕大刚,于晓辉,陈志恒.钢筋混凝土框架结构侧向倒塌地震易损性分析[J].哈尔滨工业大学学报,2011,43(6):1-5.
    [1.103] Jennings, P. and Husid, R..Collapse of Yielding Structures during Earthquakes [J]. Journalof Engineering Mechanics, ASCE,1968,94(5):1045-1064.
    [1.104] Sun, C.K., Berg, G.V. and Hanson, R. D..Gravity Effects on Single-Degree InelasticSystems [J]. Journal of Engineering Mechanics, ASCE,1973,99(1):183-200.
    [1.105] ALEX H BARDAT, FABRICIO TEDEZ MOYA and JOSE A CANAS. Damage scenariossimulation for seismic risk assessment in urban zones [J]. Earthquake Spectra,1996,12(3):371-394.
    [1.106] Patricia Grossi. Earthquake damage assessment: from expert opinion to fragility curves [C].Proc the8th ASCE Specialty Conference on Probabilistic Mechanics and StructuralReliability,2000.
    [1.107]周雍年.设防标准研究中的结构易损性分析方法[R].国家地震局工程力学研究所研究报告,1995.
    [1.108] Whitman, R. V., et al. Earthquake Damage Probability Matrices. Proceedings of the FifthWorld Conference on Earthquake Engineering [C], International Association for EarthquakeEngineering, Rome, Italy,1973.
    [1.109] Karim K R, Yamazaki F. Effect of earthquake ground motions on fragility curves of highwaybridge piers based on numerical simulation [J]. Earthquake Engineering and StructuralDynamics,2001;30(12):1839-1856.
    [1.110] Dymiotis C., Kappos A.J., and Chryssanthopoulos M.K. Seismic reliability ofmasonry-infilled RC frames [J]. Journal of Structural Engineering,2001;127(3):296-305.
    [1.111]楼思展,叶志明,陈玲俐.框架结构房屋地震灾害风险评估[J].自然灾害学报,2005,14(5):99-105.
    [1.112] H. Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,37(6):47-51.
    [1.113] Freeman, J.R. Earthquake damage and earthquake insurance: studies of a rational basis forearthquake insurance, also studies of engineering data for earthquake-resisting construction[M]. The University of Wisconsin–Madison, McGraw-Hill Book Co.,1932.
    [1.114] S. T. Algermissen and D. M. Perkins. A probabilistic Estimate of maximun Acceleration in Rockin the Contiguous United States [R]. U. S. Geological Survey Open File Report,1976:76-416.
    [1.115]地震工程委员会地震损失估计专家小组编,国家地震局灾害防御司译.未来地震的损失评估[M].北京:地震出版社,1990.
    [1.116] Applied Technology Council. ATC-13: Earthquake damage evaluation data for California [S].Redwood City, California,1985.
    [1.117] Hallegatte,. An Adaptive Regional Input-Output Model and Its Application to theAssessment of the Economic Cost of Katrina [J]. Risk Analysis,2008,28:779-799.
    [1.118]国家地震局灾害防御司未来地震灾害损失预测研究组.中国地震灾害损失预测研究[M].北京:地震出版社,1990.
    [1.119]刘锡荟,李荷,何进.地震损失估计和经济决策模型[J].地震工程与工程振动,1985,5(4):1-11.
    [1.120]肖光先.震后灾害损失快速评估[J].灾害学,1991,6(4):13-17.
    [1.121]王华娟.建筑群地震风险估计概率模型的研究[D].山东:中国海洋大学,2007.
    [1.122]周光全,毛燕,施伟华.云南地区地震受灾人口与经济损失评估[J].地震研究,2004,27(1):89-93.
    [1.123]谭振东,王广东,等.基于逼近算法的结构共振震害定量风险分析[J].辽宁工程技术大学学报(自然科学版),2007,26(5):697-699.
    [1.124]高惠瑛,李清霞.地震人员伤亡快速评估模型研究[C].第三届全国城市与工程安全减灾学术研讨会论文集,2010.
    [1.125] Pandey M.D., Nathwani J.S. and Lind N.C. The derivation and calibration of theLife-Quality In-dex (LQI) from economic principles [J]. Structural Safety,2006,28(4):341-360.
    [1.126] Mitrani-Reiser, J., C. Haselton, C. Goulet, K.A. Porter, J.L. Beck, and G.G. Deierlein,2006.Evaluation of the seismic performance of a code-conforming reinforced-concrete framebuilding-Part II: Loss estimation [C]. Proceedings of Eighth U.S. National Conference onEarthquake Engineering. San Francisco, California.
    [1.127] Haselton CB, Goulet C, Mitrani-Reiser J, Beck J, Deierlein GG, Porter KA, Stewart JP andTaciroglu E. An assessment to benchmark the seismic performance of a code-conformingreinforced-concrete moment-frame building [R]. PEER Report2007, University ofCalifornia, Berkeley, CA,2007.
    [1.128] Rackwitz R. Optimal and acceptable technical facilities involving risks [J]. Risk Analysis,2004,24(3):675-695.
    [1.129]周杨,黄宏伟,胡群芳.基于LQ I的隧道工程人员安全风险控制决策模型[J].地下空间与工程学报,2007,5(3):854-858.
    [2.1]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):3-11.
    [2.2]王连广,刘之洋.型钢混凝土结构在国内外应用和研究的进展[J].东北大学学报(自然科学版),1995,16(3):238-241.
    [2.3]郑山锁,胡义,车顺利,陶清林,等.型钢高强混凝土梁抗剪承载力试验研究[J].工程力学,2011,28(3):129-135.
    [2.4] Husem Metin, Gozutok Serhat. The effects of low temperature curing on the compressivestrength of ordinary and high performance concrete [J]. Construction and Building Materials,2005,19(1):49-53.
    [2.5] JGJ138-2001,型钢混凝土组合结构设计规程[S].北京:中国建筑工业出版社,2002.
    [2.6]熊仲明,王社良.土木工程结构试验[M].北京:中国建筑工业出版社,2006.
    [2.7]郑山锁,陶清林,胡义,等.型钢高强高性能混凝土梁抗弯性能试验研究[J],工程力学,2013,30(3):140-145.
    [2.8]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社,2007.
    [2.9]郑山锁,邓国专,杨勇,等.型钢混凝土结构粘结滑移性能试验研究[J].工程力学,2003,20(5):63-69.
    [2.10] Shan-suo Zheng, Qing-lin Tao, et al. Study on stochastic damage constitutive relation forHSHPC material subjected to uniaxial tension stress [J]. Advanced Materials Research, Vols.374-377(2012):2570-2573.
    [2.11]郑山锁,陶清林,王斌,等.型钢高强混凝土梁力学性能试验研究[J].工程力学,2012.(录用)
    [2.12] ACI-ASCE Committee. The shear strength of reinforced concrete structures [S]. Journal ofthe Structural Division, ASCE,1973:1148-1157.
    [2.13] Hofbeck, J.A., Ibrahim, I.O., and Mattock, A.H. Shear transfer in reinforced concrete [J]. ACIStructural Journal,1969:119-128.
    [2.14]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [2.15]苏联国家建设委员会.苏联劲性钢筋混凝土结构设计指南CИ3-78[S].北京:冶金工业部建筑研究总院技术情报室,1983.
    [2.16]日本建筑学会.铁骨铁筋コンクリト计算规准及解说[S].日本建筑学会,2001.
    [2.17] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [2.18]丁大钧.钢筋混凝土构件抗裂度、裂缝和刚度[M].南京:南京工学院出版社,1986.
    [2.19]陈绍蕃.钢结构设计原理(第三版)[M].北京:科学出版社,2005.
    [2.20]施亮.型钢高强高性能混凝土梁受力性能试验与刚度裂缝理论研究分析[D].西安:西安建筑科技大学,2007.
    [2.21] YB9082-97,钢骨混凝土结构设计规程[S].北京:冶金工业出版社,1998.
    [2.22]程文瀼,王铁成,颜德姮.混凝土结构[M].北京:中国建筑工业出版社,2005.
    [2.23]曾磊.适用于型钢混凝土结构的高强高性能混凝土试验研究[D].西安:西安建筑科技大学,2006.
    [2.24]车顺利.型钢高强混凝土梁的基本性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [2.25]郑山锁,李磊.型钢高强高性能混凝土结构基本性能与设计[M].北京:科学出版社,2012.
    [3.1]王连广,刘之洋.型钢混凝土结构在国内外应用和研究的进展[J].东北大学学报(自然科学版),1995,16(3):238-241.
    [3.2]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社,2007.
    [3.3]陈肇元.高强与高性能混凝土的发展及应用[J].土木工程学报,1997,30(5):3-11.
    [3.4] JGJ138-2001,型钢混凝土组合结构设计规程[S].北京:中国建筑工业出版社,2002.
    [3.5] GB/T50107-2010,混凝土强度检验评定标准[S].北京:中国建筑工业出版社,2010.
    [3.6]郑山锁,李磊.型钢高强高性能混凝土结构基本性能与设计[M].北京:科学出版社,2012.
    [3.7]郑山锁,邓国专,杨勇,等.型钢混凝土结构粘结滑移性能试验研究[J].工程力学,2003,20(5):63-69.
    [3.8]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [3.9]姚谦峰,苏三庆.地震工程[M].陕西:陕西科学技术出版社,2001.
    [3.10]李俊华,薛建阳.型钢高强混凝土柱抗震性能的试验研究[J].世界地震工程,2004,20(4):94-99.
    [3.11]张国军,吕西林,刘伯权.钢筋混凝土框架柱在轴压比超限时抗震性能的研究[J].土木工程学报,2006,39(3):47-54.
    [3.12] Bayrak O., and Sheikh, S. A.. Confinement reinforcement design considerations for ductileHSC columns [J]. Journal of Structure Enginering,1998:124-135.
    [3.13]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2012.
    [4.1]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [4.2]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2010.
    [4.3]中国建筑学会抗震防灾分会建筑结构抗倒塌专业委员会.网址:http://www.collapse-prevention.net,2011.
    [4.4] GB50017-2003,钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [4.5]郑山锁,李磊,邓国专,等.型钢高强高性能混凝土梁粘结滑移行为研究[J].工程力学,2009,26(1):104-112.
    [4.6] Z. P. Ba ant, Luigi Cedolin. Stability of Structures: Elastic, Inelastic, Fracture and DamageTheories [M]. Singapore: World Scientific,2010.
    [4.7] BOOCH B G, RUMBAUGH J, JACOBSON I. Unified Modeling Language User Guidesecond edition [M]. Indiana: Addison Wesley Professional,2005.
    [4.8] MCKENNA F T. Object-oriented finite element programming Frameworks for analysis,algorithms, and parallel computing [D]. University of California, Berkeley,1997.
    [4.9] TAKAHASHI Y, FENVES G L. Software framework for distributed experimental-computational simulation of structural systems [J]. Earthquake Engineering k StructuralDynamics,35(2006):267-291.
    [4.10]许国山,郝伟,陈永盛,等.基于有限元软件OpenSees和OpenFresco的混合试验[J].土木工程学报,2012,45(sup.1):36-41.
    [4.11] SCOTT M H, FENVES G L. Plastic Hinge Integration Methods for Force-BasedBeam-Column Elements [J]. Journal of Structural Engineering,2006,132(2):244-252.
    [4.12] Silvia Mazzoni, Frank McKenna, et al. OpenSees users manual [R]. PEER, UniversityofCalifornia, Berkeley,2004.
    [4.13]张传超.型钢混凝土组合结构的精细化建模理论及方法研究[D].西安:西安建筑科技大学,2011.
    [4.14]李磊.混合结构的数值建模理论及在地震工程中的应用[D].西安:西安建筑科技大学,2011.
    [4.15]郑山锁,李磊.型钢高强高性能混凝土结构基本性能与设计[M].北京:科学出版社,2012.
    [4.16]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [4.17]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社,2007.
    [4.18]郑山锁,李磊,邓国专,等.型钢高强高性能混凝土梁粘结滑移行为研究[J].工程力学,2009,26(1):104-112.
    [4.19]李磊,郑山锁,王斌.断裂力学在钢与混凝土界面粘结中的应用[J].工程力学,2009,26(12):52-57.
    [4.20]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [4.21]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [5.1] Newmark Nathan Mortimore. Fundamentals of earthquake engineering [M]. Prentice-Hall,1971.
    [5.2]郭子雄,刘阳,杨勇.结构震害指数研究评述[J].地震工程与工程振动,2004,24(5):56-61.
    [5.3]杨伟,欧进萍.基于能量原理的Park-Ang损伤模型简化计算方法[J].地震工程与工程振动,2009,29(2):159-165.
    [5.4]楼宝堂.中国古今地震灾情总汇[M].北京:地震出版社,1996.
    [5.5]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究[J].工程力学,2007,24(3):83-90.
    [5.6]李俊华,薛建阳.型钢高强混凝土柱抗震性能的试验研究[J].世界地震工程,2004,20(4):94-99.
    [5.7]蒋传星.配箍率对剪跨比为5的型钢高强混凝土柱受力性能影响的试验研究[D].重庆:重庆大学,2007.
    [5.8]孙苍柏.钢骨高强混凝土柱杭震性能的研究[D].西安:西安建筑科技大学,2004.
    [5.9]刘伟.型钢高强混凝土柱轴压比限值的试验研究[D].重庆:重庆大学,2007.
    [5.10]杨定锋.配箍率对型钢高强混凝土柱在反复荷载作用下受力性能影响的试验研究[D].重庆:重庆大学,2007.
    [5.11]贾金青.钢骨高强混凝土短柱及高强混凝土短柱力学性能的研究[D].大连:大连理工大学,2000.
    [5.12]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [5.13] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [5.14] JGJ138-2001,型钢混凝土组合结构设计规程[S].北京:中国建筑工业出版社,2002.
    [5.15]陈杨泽,梅仲华.对型钢混凝土柱恢复力模型的探讨[J].武汉理工大学学报,2003,25(7):42-43.
    [5.16]李克杰,陶清林.型钢混凝土柱骨架曲线特征点计算方法研究[J].安徽工业大学学报(自然科学版),2013,30(01):71-77.
    [5.17] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [5.18] ACI318M-05, Building Code Requirements for Structural Concrete and Commentary [S].America: American Concrete Institute,2005.
    [5.19] Dooley. K. L. and Bracci, J. M. Seismic evaluation of column-to-beam strength ratios inreinforced concrete frame [J]. ACI Structural Journal,2001,98(6):843-851.
    [5.20]周靖.钢筋混凝土框架结构基于位移系数抗震设计法的基础研究[D].广州:华南理工大学,2006.
    [5.21] Durran i A J, Zerbe H E. Seismic Resistance of R/C Exterior Connections with Floor Slab [J].Journal of Structural Engineering,1987,113(8):1850-1864.
    [5.22] Pantazopoulou S J, Moehle J P, Shahrooz B M. Simple Analytical Model for T-Beams inFleurel [J]. Journal of Structural Engineering,1988,114(7):1507-1523.
    [5.23] Zerbe H E, Durran i A J. Seismic Resistance of Connections in Two-Bay Reinforced ConcreteFrame Subassemblies with a Floor Slab [J]. ACI Structural Journal,1990,87(4):406-415.
    [5.24]郑士举,蒋利学,张伟平,等.现浇混凝土框架梁端截面有效翼缘宽度的试验研究与分析[J].结构工程师.2009,25(2):134-140.
    [6.1] JGJ138-2001,型钢混凝土组合结构设计规程[S].北京:中国建筑工业出版社,2002.
    [6.2]李俊华,薛建阳.型钢高强混凝土柱抗震性能的试验研究[J].世界地震工程,2004,20(4):94-99.
    [6.3]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2012.
    [6.4]郑山锁,陶清林,王斌,等.型钢高强混凝土梁力学性能试验研究[J].工程力学,2012.(录用)
    [6.5]郑山锁,李磊.型钢高强高性能混凝土结构基本性能与设计[M].北京:科学出版社,2012.
    [6.6]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [6.7]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [6.8]薛建阳.钢与混凝土组合结构[M].武汉:华中科技大学出版社,2007.
    [6.9]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D].西安:西安建筑科技大学,2008.
    [6.10]刘齐茂,燕柳斌.多高层建筑结构层间位移和层剪力的动力可靠度计算[J].西北地震学报,2009,31(3):248-253.
    [6.11] Building Code Requirements for Structural Concrete (ACI318-02) and Commentary (ACI318R-02)[S]. ACI Committee318,2002.
    [6.12] Eurocode8, Design Provisions for Earthquake Resistance of Structure [S]. ENV1998-1, CEN,Brussels,1994.
    [6.13] CSA Standard. Design of concrete structures [S]. A23.3-04, Canadian Standards Association,Ontario,2004.
    [6.14] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [6.15]吕西林,龚治国.某复杂高层建筑结构弹塑性时程分析及抗震性能评估[J].西安建筑科技大学学报(自然科学版),2006,38(5):593-602.
    [6.16] Paola Simioni. Seismic Response of Reinforced Concrete Structures Affected byReinforcement Corrosion [D]. University of Braunschweig-Institute of Technology,2009, Italy.
    [6.17] Quantification of Building Seismic Performance Factors (FEMA P-695)[S]. AppliedTechnology Council for the Federal Emergency Management Agency, Washington, D.C.,2009.
    [6.18] GB50009-2001.建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.
    [6.19] H.Ug ur Ko&&y lu&&og lu, Soren R. K. Nielsen, Jamison Abbott, et al. Local and modal damageindicators for RC frames subject to earthquake [J]. Journal of Engineering Mechanics,1998,124(12):1371-1379.
    [6.20]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.
    [7.1]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13-22.
    [7.2]金星.重大工程场地设计地震动与地震动场的研究[D].哈尔滨:国家地震局工程力学研究所,1992.
    [7.3]高玉峰,张健.地震危险性分析研究[M].北京:科学出版社,2007.
    [7.4]章在墉,陈达生.二滩水电站坝区场地地震危险性分析[J].地震工程与工程振动,1982,2(3):1-15.
    [7.5]陶夏新.对“地震危险性分析中贝叶斯模型的意义及其应用”一文的讨论[J].地震工程与工程振动,1983,3(3):97-101.
    [7.6]潘华.概率地震危险性分析中参数不确定性研究[D].哈尔滨:中国地震局地球物理研究所,2000.
    [7.7] Vamvatsikos D. Seismic performance, capacity and reliability of structures as seen throughincremental dynamic analysis [D]. Stanford, CA: Stanford University,2002.
    [7.8]叶列平,马千里,廖志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-21.
    [7.9] Ghobarah A, et al. Response-based damage assessment of structure [J]. EarthquakeEngineering Structural Dynamic,28(1999):79-104.
    [7.10]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报,2006,15(2):107-114.
    [7.11] GB/T24335-2009.建筑地震破坏等级划分标准[S].北京:中国建筑工业出版社,2009.
    [7.12] JGJ138-2001,型钢混凝土组合结构设计规程[S].北京:中国建筑工业出版社,2002.
    [7.13] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [7.14] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [7.15] Quantification of Building Seismic Performance Factors (FEMA P-695)[S]. AppliedTechnology Council for the Federal Emergency Management Agency, Washington, D.C.,2009.
    [7.16] FEMA356. Prestandard and commentary for the seismic rehabilitation of builings [S].Washington D. C.,2000.
    [7.17]李刚,程耿东.基于性能的抗震设计—理论、方法与应用[M].北京:科学出版社,2004.
    [7.18]谢礼立,马玉宏,翟长海.基于性能的抗震设防与设计地震动[M].北京:科学出版社,2009.
    [7.19]中国地震局.地震现场工作大纲和技术指南[M].北京:地震出版社,1998.
    [7.20] S. T. Algermissen and D. M. Perkins. A probabilistic Estimate of maximun Acceleration in Rockin the Contiguous United States [R]. U. S. Geological Survey Open File Report,1976:76-416.
    [7.21]尹之潜.地震灾害及损失预测方法[M].北京:地震出版社,1996.
    [7.22]陶清林.地震激励下SRC框架-RC核心筒混合结构损伤模型研究[D].西安:西安建筑科技大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700