用户名: 密码: 验证码:
河床砂卵石介质渗透特性的试验研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河取水含沙量高是影响区域地表水资源开发利用的一个难题,而采用人工滤床配合渗渠进行取水,可通过人为调节同时满足取水中质和量两方面的需求,是一种很有推广和应用前景的取水手段,在该技术中如何合理地确定滤床的过滤体型式和结构是取水成败的关键。
     文章试图从柳林县黄河滩地原状砂卵石介质的室内大尺度物理模型试验出发,通过分析不同形状和尺度漂石对砂卵石介质渗透能力的影响,构建漂石存在条件下砂卵石介质的渗透模型;然后基于不同级配砂卵石介质的渗透系数试验,从特征粒径指标的角度分析了影响渗透系数的因素及规律,建立了用特征粒径参数预测渗透系数的线性和非线性预报模型;最后对不同砂卵石组合型式对高含沙水的过滤效果进行试验分析,提出了黄河滩地人工滤床推荐的过滤层和支撑层结构,其研究成果可以为山西省乃至全国傍河取高含沙水的滤床工程建设提供技术参考。
     论文研究取得的主要成果包括:
     (1)漂石存在对砂卵石介质渗流特性影响的临界点为0.177,当渗流水力梯度大于该值后,影响效果越来越显著,反之则基本无影响;漂石的形状、截面积和体积均会对砂卵石介质的渗透系数产生不同的影响,过流界面越粗糙,或截面积越大,或体积越大时,产生的渗流阻力越大,渗流速度就越小;而在漂石存在条件下砂卵石介质的渗流模型可用二次多项式来描述。
     (2)单一粒级组的砂卵石介质,随着粒径的减小其渗透系数逐渐降低,而它受压力水头的影响也越来越小;不同级配组合的砂卵石介质,其渗透系数的变化跟介质的特征粒径参数有关,即有效粒径、限制粒径、不均匀系数和曲率系数,而只有在其他参数给定范围的情况下,才能确定渗透系数随某一个参数的变化规律;最后,通过试验研究筛选出渗透性能最优的砂卵石颗粒级配和结构。
     (3)通过对大量不同级配砂卵石介质渗透系数的试验数据进行研究,发现可以用特征粒径参数对渗透系数进行预测预报;然后构建了以限制粒径、有效粒径、不均匀系数和曲率系数为自变量的多元线性和非线性回归模型,模型预测值与实测值平均相对误差分别为12.4%和26.2%,说明多元线性回归模型的预测精度较高。
     (4)在砂卵石介质人工滤床过滤体的技术参数试验中发现,采用0.25~1.Omm细颗粒介质与土工布复合覆盖层作为主过滤层、等粒径介质分层填筑作为支撑层,其水质和水量均能满足取水要求,且又便于淤泥的机械清除和清洗,阻泥、保渗、清洗效果都很好,是一种值得推荐的过滤型式。
     论文的研究中在漂石对砂卵石介质渗流影响分析、利用特征粒径参数预报渗透系数及黄河滩地人工滤床的过滤体型式等方面有所创新。研究提出的人工滤床过滤取水方式可以更便捷的利用黄河高含沙水,是缓解区域水资源供需矛盾的一种新的有效途径。而研究的主要成果都在试验室内取得的,其在工程中的实用性及模型预测的精度等方面需在以后的实践中进一步完善和提高。
This is a problem of high sediment of Yellow River water, which is influence of the area surface water resources development and utilization. However, using artificial filter bed with drainage for getting water can meet the needs of both water quality and quantity by manual adjustments. This getting water means has a promotion and application prospects, which key to success about getting water is how to reasonably determine the body type and structure of filter bed in the technology.
     Article attempt with the indoor large scale physical model experiment about original state sandy pebble medium of the Yellow River beach liulin, anglicizing of different shapes and dimensions boulders influence on the penetration ability of sandy pebble medium, building the infiltration model about the sand pebble medium under the condition of existing boulders; Then based on the permeability coefficient test of different graded sand pebble medium, analysis of the factors and rules about affecting the permeability coefficient from the perspective of the characteristic particle size index, setting up the linear and nonlinear prediction model with the permeability coefficient by predicting characteristic particle size parameters; Finally combined type of different sandy pebble to high water containing sand filtering effect experiment analysis, proposed the structure of filter layer and supporting layer, which recommended by artificial filter bed of Yellow River beach, its research results can provide technical reference for filter bed engineering construction about getting the high containing sand water beside the river in Shanxi Province and even the whole country.
     The results show that:
     (1) the critical point of influence Boulders to sandy pebble medium seepage characteristics is0.177, when seepage gradient is greater than this value, the effect is more and more significant, or no impact conversely. the shape, sectional area and volume of boulders all have different influence on the osmotic coefficient of sand pebble medium, the flow interface more coarse, or the larger the cross-sectional area or volume, the greater the filtrational resistance produce, the smaller the porous flow; the sandy pebble medium seepage model can be described by quadratic polynomial under the condition of boulders exist.
     (2)in the single grade group case, with the decrease of the sandy pebble medium size, the osmotic coefficient of sand pebble medium decreased gradually, and the osmotic coefficient is affected by water head is smaller; to different graded sandy pebble medium, the changes of osmotic coefficient associated with sandy pebble grain size characteristics index, this index including effective particle size, confine particle size, nonuniform coefficient and coefficient of curvature. Only under the condition of when the other parameters give a range, the change rule of osmotic coefficient as a certain parameter change is determined; Finally, the best sandy pebble grain size distribution and structure was selected by an experimental study.
     (3) Through a lot of different graded sandy pebble medium permeability test data analysis, it be found that the osmotic coefficient can be forecasted by the size characteristics index; then linear and nonlinear simulation model with effective particle size, confine particle size, nonuniform coefficient and coefficient of curvature as independent variable were erected, The average relative error model predicted and the measured values were12.4%and26.2%respectively, it means using multivariate linear regression model for the osmotic coefficient sand pebble prediction had higher accuracy.
     (4)it Found that in technology parameters test of sandy pebble medium artificial bed filtration body, taken0.25~1.0mm medium of fine particles and the geotextile composite layer as main filter layer, same particle size medium layered filling as support layer,the water and water yield both meet the requirements, and facilitating silt machinery cleaning and water cleaning, mud resistance, keeping permeability, good cleaning effect, is a kind of filter body type that is worth to recommend.
     There are some innovation in this paper, for example, sandy pebble medium model, predict permeability coefficient by particle size characteristics index and the yellow river artificial filter bed type, etc. This study put forward the way of artificial water infiltration bed which can effectively utilize yellow river water which contain sand, is a efficient path to ease the contradiction between supply and demand of water resources, the research only carried out in indoor laboratory and needs to be further perfect and supplement in the engineering practice and the accuracy of model prediction.
引文
[1]张红利,魏俊芳,董睿.辐射井技术在滨州市黄河滩地地下淡水资源开发中的应用[J].海河水利,2010,(4),51-52.
    [2]张波,武强.黄河三角洲地区黄河河床取水方法研究[J].工程勘察,2004,(4),35-38.
    [3]王兰涛,熊建清,于剑丽等.中条山供水工程取水方式的比选[J].人民黄河,2001,23(4),6-7.
    [4]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [5]Scheidegger,A.E.The Physics of Flow through Porous Media[M],3rd Edition,The Macmillan Co.,1974.
    [6]屈智炯,吴剑明.压实石渣料渗透变形试验研究[J].成都科技大学学报,1984,(2),67-76.
    [7]郭庆国.粗粒土的渗透特性及渗流规律[J].西北水电,1985,(1),42-47.
    [8]Forchheimer,P.H.Wasserbewegun durch Boden, Zeitschrift des Vereines[J]. Deutscher Ingenieure.49,1736-1749, No.50,1781-1788.
    [9]黄俊.渗流基本规律研究的综述[J].四川水利发电,1984,(12),86-95.
    [10]Jaeger,C.Engineering Fluid Mechanics[M].Blackie and Son,Ltd.,London,U.K.,1956.
    [11]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999.
    [12]Bingjun Li,Vinod K.Garga,Michael H.Davies. Relationships for Non-Darcy Flow in Rockfill[J]. Journal of Hydraulic Engineering,1998,124(2),206-212.
    [13]Ergun,S..Fluid flow through packed columns[J].Chemical Engrg.Progress,1952,48(2),89.
    [14]Gent,M.R.A.van.Formulae to describe porous flow[C].Communications on Hydr.and Geotech. Engrg., ISSN 0169-6548 No.922,Delft Univ. of Technol. And MAST-G6S Rep.,Project 1,Delft University of Technology,Delft,The Netherlands.
    [15]毛昶熙.渗流计算分析与控制[M].北京:水利水电出版社,2003.
    [16]J.贝尔.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [17]Fair G M,Hatch L P.Fundamental factors governing the streamline flow of water through sand[J], J.Amer. Water Works Ass.25,1551-1565.
    [18]刘杰.土的渗流稳定与渗流控制[M].北京:水利电力出版社,1992.
    [19]TAYLOR D W. Fundamentals of soil mechanics[M]. New York:John Wiley & Sons, Inc,1948.
    [20]中华人民共和国水利部编.土的分类标准(GBJ145-90)[S].中国建筑工业出版社.1991.8.1.
    [21]屈智炯,吴剑明.压实石渣料渗透变形的实验研究[J].成都科技大学学报,1984.2(2)
    [22]王传雷,许顺方,潘志炎等.堤坝管涌隐患的综合物探勘察与加固处理实例[J].工程勘察,1994(4),69-71.
    [23]前苏联B.H.,阿拉文c.H.奴米罗夫.土工建筑物的渗流计算[M].北京:水利电力出版社,1959.6.
    [24]张斌,屈智炯.考虑剪胀和软化特性的粗粒土应力—应变模型[J].岩土工程学报,1991.11,66-71.
    [25]保华富,屈智炯.粗粒土的本构模型研究.[J].成都科技大学学报,1990.4(4).
    [26]肖晓军.不同应力路径下粗粒土的应力应变强度特性[J].成都科技大学学报,1992.5(5)
    [27]王昆耀,常亚屏.往返荷载下粗粒土的残余变形特性[J].土木工程学报,2000.6(3)
    [28]刘开明,屈智炯.粗粒土的工程特性及本构模型研究[J].成都科技大学学报,1993.6(6)
    [29]陆会青.关于粗粒土原级配大型固结试验的几点体会[J].大坝观测与土工测试,1994.12,42-45.
    [30]赵久柄,王正良.熙—宝高速公路粗粒土路基压实度的试验研究[J].国外公路,1996.12(6)
    [31]张智,屈智炯.粗粒土湿化特性的研究[J].成都科技大学学报,1990.5(5)
    [32]冯郭铭,付琼华.测定土的双向渗透系数的仪器装置和方法[J].大坝观测与土工测试1997.6.
    [33]田树玉,史颜文.测定粗粒料最大密度之HUMPHREY公式的校正[J].水力发电学报,1994(1),28-34.
    [34]田思进,王英敏.崩落矿岩渗漏风特性的实验研究[J].金属矿山,1994.9(9),28-31.
    [35]陈希哲.粗粒土的强度与咬合力的研究[J].工程力学,1994.12(4),56-63.
    [36]杨维训.秦沈客运专线A5标段粗粒土填筑路基技术[J].铁道标准设计,2001.10,4142.
    [37]郭庆国.粗粒土在高层建筑黄土地基处理中的应用[J].岩土工程师,1992.11(4).
    [38]李云蜂.黄土渗透性与空隙性关系的研究[M].北京:地质出版社,1994.10.
    [39][奥]A.E.薛定谔.多孔介质中的渗流物理[M].北京:石油工业出版社,1982.8.
    [40]石金良主编.砂卵石地基工程地质[M].北京:水利电力出版社,1991.2.
    [41]李广诚主编.南水北调工程地质分析研究论文集[N].北京:中国水利水电出版社,2002.4.
    [42]赵明华,张常耀,梁伟民.处理颗分曲线的最佳数值方法[J].勘察科学技术,1995(6),27-30.
    [43]张十辰,李雷.粗砂渗透系数与抗剪强度的概型分布[J].水利水运T程学报,2004.9(3).
    [44]杨光煦.堤防险情及其处理[J].人民长江,1999.9(9)15-17+52
    [45]刘先珊,张立君.改进的渗流参数反演方法及其T程应用[J].水电能源科学,2004.9(3)
    [46]童羽湘,过培鑫.岩土工程的现状与发展[J].电力勘测,1997.12(4),1-9.
    [47]郭见扬.防汛堤坝、坝基结构与渗透变形[J].岩石力学与工程学报,1998,12(6),674-678.
    [48]陈定安.塑性混泥土渗透及渗透变形试验模型与指标测定[J].工业安全与防尘,2001.(11)
    [49]王媛.高等数学(第二分册).概率统计[M].现代出版社.2000.10.
    [50]腾素珍编著.数理统计.大连理工大学出版社[M].2000.1.
    [51]朱崇辉,刘俊民,王增红.无粘性粗粒土的渗透试验研究[J].人民长江,2005.11,36(11):53-55.
    [52]朱崇辉,刘俊民,王增红.粗粒十的颗粒级配对渗透系数的影响规律研究[J].人民黄河,2005.12,27(12):79-81.
    [53]孙陶.无粘性粗粒土渗透系数的近似计算[J].四川水力发电,2003.6,22(2):29-31.
    [54]梁军,孙陶,李蓉.瓦屋山面板坝含软岩堆石体长期渗流研究[J].四川水利,1997.4,18(4):26-6.
    [55]邱贤德,阎宗岭,姚本军,陶世宏.堆石体渗透特性的试验研究[J].四川大学学报,2003.3,35(2):6-9.
    [56]邱贤德,阎宗岭,刘立,王辉.堆石体粒径特征对其渗透性的影响[J].岩十力学,2004.6,25(6):950-954.
    [57]黄会勇.变分法求解边坡稳定问题[D].武汉大学,2004.
    [58]毛昶熙.电模拟试验与渗流研究[M].水利出版社.1981.
    [59]黄文熙等.土的工程性质[M].北京:水利水电出版社.1983.
    [60]康顺祥.天然滤层[J].防渗技术.1999.3,2-6+18.
    [61]汪荣鑫.数理统计[M].西安:两安交通大学出版社1986,198-222.
    [62]许宝田,阎长虹,李小昭.隧道开挖过程中的渗透变形问题分析—结合南京地区工程实例[J].水文地质T程地质,2002,(2),47-50.
    [63]刘建刚,陈建生,赵维炳.堤基渗透变形与计算[J].长江科学院院报,2001,12(6),38-40+44.
    [64]范振国,孟1昭惠.黄河中游河床覆盖层渗透变形特性研究[J].水文地质工程地质,1987,(2)
    [65]张致,寇菊茹.东输林水库坝基应用塑模防渗防止坝基渗透变形的分析[J].水利水电技术,1991.(7)
    [66]盛金保.沟后坝溃坝渗流初步分析[J].大坝观测与土工测试,1996.10(5),11-15.
    [67]刘原英.海滨含水层渗透系数的估计[J].地下水,1994.6(2),37-39.
    [68]崔伯华.一种粗粒土室内渗透比较试验研究[J].大坝观测与土工测试,1996.4(2),15-18.
    [69]常中华,张二勇,柴建峰等.应用主成分分析法研究渗透介质的渗透稳定问题[J].水文地质.1995.1,16-21.
    [70]郭见扬.防汛堤防、坝基结构与渗透变形[J].岩石力学与工程学报,1998.12(6),674-678.
    [71]肖四喜,李银平.大堤管涌型成机理分析及治理方法[J].湖南大学学报,1994.4(2).
    [72]王传雷,许顺方,潘志炎等.堤坝管涌隐患的综合物探勘察与加固处理实例[J].工程勘察,1994(4)69-71.
    [73]崔荣方.无粘性土的渗透特性及其管涌破坏机理研究[D].南京:河海大学硕士学位论文,2006.
    [74]中华人民共和国水利部.土工试验规程(SL237-1999)[S].中国水利水电出版社出版.1999.12.
    [75]Fredlund D. G., Xing A., Huang S. G. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31:533-546.
    [76]Jarvis N J. Messing I. Near-saturated hydraulic conductivity in soils of contrasting textureas measured by tension infiltrometers[J]. Soil Science Society of America Journal.1995,59: 27-34.
    [77]王勇.堆石料渗透特性试验研究[D].南京:河海大学硕士学位论文,2006.
    [78]凤家骥.连续级配理论在混凝土面板堆石坝坝料中的应用.混凝土面板堆石坝会议论文集[C].南京:河海大学出版社,1990.
    [79]傅志安,凤家骥.混凝土面板堆石坝[M].武汉:华中理工大学出版社,1993.
    [80]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [81]田湖南.非饱和砂土工程性状的细粒效应试验研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [82]费雷德隆德D.G.,H.拉哈尔佐著.非饱和土土力学[M].陈仲颐等译.北京:中国建筑工业出版社,1997.
    [83]黄文熙.土的工程性质[M].北京:水利电力出版社,1983:110-119.
    [84]Vanapalli S K,Fredlund D G,Pufahl D E.Comparison of saturated-unsaturated shear strength and hydraulic conductivity behavior of a compacted sandy-clay till[M].In:50th Canadian Geotechnical Conference,Ottawa,1997,625-632.
    [85]徐永福,叶翠明,赵书权等.压应力对非饱和渗透系数的影响[M].上海交通大学学报,2004,38(6):982-986.
    [86]李永乐,刘翠然,刘海宁等.非饱和土的渗透特性试验研究[J].岩石力学与工程学报,2004,23(22):3861-3865.
    [87]李晓.天然河床渗滤取水技术研究[D].成都:西南交通大学博士学位论文,2003.
    [88]李晓,杨立中.利用天然河床渗滤取水的新技术[J].中国给水排水.2003,19(6):74-76.
    [89]史生柏,赵凯荣.潜水含水层给水度的测定[J].水文地质工程地质,1981,(2):48-56.
    [90]王旭升.可变给水度的潜水面运动方程[J].水利学报,2009,(3):335-339.
    [91]张蔚榛,张瑜芳.土壤的给水度和自由空隙率[J].灌溉排水学报,1983,(2):1-16.
    [92]陈崇希.给水度的概念、定义及包气带的水份分布模型[J].水文地质工程地质,1984,(4):30-33.
    [93]朱学愚,钱孝星.非稳定流抽水试验确定潜水含水层给水度的初步探讨[J].水文地质工程地质,1979,(1):38-46.
    [94]邹立芝,杨昌兵,侯杰.关于给水度的定义[J].水文地质工程地质,1994,(1):31-33.
    [95]陈庆秋,刘增进.关于布尔顿给水强度经验公式中给水度的新概念[J].灌溉排水学报,1996,(3):54-57.
    [96]陈南祥.给水度与饱和差关系的初步研究[J].河海大学学报,1998,(4):111-114.
    [97]陶同康,蔡中云.给水度试验仪[J].计量技术,1984,(5):1-4.
    [98]叶水庭,施鑫源,苗晓芳.用潜水蒸发经验公式计算给水度问题的分析[J].水文地质工程地质,1982,(4):45-48.
    [99]张蔚榛,张瑜芳.土壤释水性和给水度数值模拟的初步研究[J].水文地质工程地质,1983,(5):19-28.
    [100]雷志栋,谢森传,杨诗秀等.土壤给水度的初步研究[J].水利学报,1984,(5):10-17.
    [101]鲁荣安.一种推求水位变动带给水度值的近似方法—均衡图解法[J].地下水,1984,(2):8-13.
    [102]张尚武.关于筒测给水度方法及“潜水位变幅带给水度”等问题的管见[J].地下水,1984,(3):29-32.
    [103]李世忠.野外测定给水度值的几种方法探索[J].地下水,1985,(3):1-4.
    [104]牟良亭,朱宝玉,侯盛章.给水度的野外试验[J].地下水,1986,(2):3-6.
    [105]侯盛章.用中子散射法测给水度的尝试[J].地下水,1986,(3):4-7.
    [106]蔡美娟.砂土给水度的试验研究[J].地下水,1986,(3):10-13.
    [107]李世忠,张英泉,龚士良.浅层粘性土给水度测试方法的对比研究[J].水利学报,1987,(3):39-46.
    [108]董新光,葛晓光,成春芳.对无压含水层重力给水度降速效应的探讨[J].地下水,1987,(1):11-15.
    [109]金光炎.论给水度的确定方法[J].地下水,1987,(2):68-72.
    [110]魏宪昌.筒测给水度存在的问题[J].地下水,1987,(3):143-146.
    [111]张蔚榛,蔡美娟.均质壤土给水度的室内试验和数值模拟[J].武汉水利电力学院学报,1988,(2):1-11.
    [112]李俊义.在粗粒无压含水层给水度的求解中解析方法适用性的探讨[J].勘察科学技术,1989, (5):34-38.
    [113]曾泉.用砂柱试验法求粗粒无压含水层给水度的探讨[J].地下水,1989,(4):199-202.
    [114]高云福,梁定伟,任书才.确定浅部层状土给水度的一种新方法[J].地球科学一中国地质大学学报,2005,(3):202-208.
    [115]赵东辉,许元萍.给水度的地中渗透仪试验法[J].地下水,1990,(2):67-69.
    [116]曹万金,胡志荣,伍清潮等.区域平均变值给水度的确定[J].地下水,1994,16(4):145-147.
    [117]刘学军,扬维仁.给水度测定方法研究[J].地下水,2003,25(4):221-229.
    [118]赵延风,王正中,刘计良.给水度测定仪设计[J].农业机械学报,2011,42(9):69-73.
    [119]孙庭芳.试用矿井排水量资料计算入渗系数、地下径流模数及给水度[J].水文地质工程地质,1983,(3):40-42.
    [120]Bardhan M.1975, A new field technique for measuring the specific yield of an aquifer[J]. Pure and Applied Geophysics, Vol.113, pp.583-589.
    [121]Lisa Shevenell. Analysis of well hydrographs in a karst aquifer:estimates of specific yields and continuum transmissivities[J]. Journal of Hydrology, Volume 174, Issues 3-4,15 January 1996, Pages 331-355.
    [122]齐宗汉.用潜水蒸发经验公式计算给水度问题的探讨[J].水文地质工程地质,1984,(6):48-50.
    [123]J.C. Marechal, B. Dewandel, S. Ahmed, L. Galeazzi, F.K. Zaidi. Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture[J]. Journal of Hydrology, Volume 329, Issues 1-2,30 September 2006, Pages 281-293.
    [124]王积强.土壤给水度的初步研究[J].水利学报,1985,(7).
    [125]Bolster C. H., Genereux D. P., and Saiers J. E. Determination of specific yield for the biscayne aquifer with a canal-drawdown test[J]. Ground Water, Vol.39, No.5,2001, pp.768-777.
    [126]范玉均,李连生,高得意.利用灌溉回渗试验求灌溉回渗系数和给水度[J].勘察科学技术,1986,(5):13-17.
    [127]Bwalya Malama.Alternative linearization of water table kinematic condition for unconfined aquifer pumping test modeling and its implications for specific yield estimates[J]. Journal of Hydrology,Volume 399, Issues 3-4,18 March 2011, Pages 141-147.
    [128]姜明武.剖面岩性资料在确定给水度中的应用[J].地下水,1986,(3):8-9.
    [129]Robson, S.G. Preparation of specific-yield logs for clastic bedrock aquifers[J]. Ground Water, v 33, n 1,p4-10, Jan-Feb 1995.
    [130]耿树德,马书平,郭培玉.潜水位变幅带给水度的确定[J].水文,1987,(2):21-24.
    [131]A. Taheri Tizro, K. Voudouris, Y. Basami. Estimation of porosity and specific yield by application of geoelectrical method-A case study in western Iran[J]. Journal of Hydrology, Volumes 454-455,6 August 2012, Pages 160-172.
    [132]杨佃俊,毛连善,朱洪忠.用坑测法测定基岩给水度[J].地下水,1987,(4):201-202.
    [133]Neuman, Shlomo P. ON METHODS OF DETERMINING SPECIFIC YIELD. [J]. Ground Water,25,6,679-684, Nov-Dec 1987.
    [134]李汝宁.利用水位动态资料的有限差分法求含水层的给水度[J].勘察科学技术,1989,(2):16-17.
    [135]Chen, X.,Song, J.,Wang, W. Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer[J]. Journal of Hydrology 2010,388(3/4).
    [136]Price, Michael. Specific yield determinations from a consolidated sandstone aquifer[J]. Journal of Hydrology, v 33, n 1-2, p 147-156, Mar 1977.
    [137]刘克岩.对蓄水容积法估算岩十给水度的改进[J].水文,1989,(1):29-33.
    [138]Shah,Nirjhar; Ross,Mark. Variability in Specific Yield under Shallow Water Table Conditions [J]. Journal of Hydrologic Engineering,14,12,1290-1298,2009.
    [139]张光辉.野外测定给水度的新方法[J].工程勘察,1989,(6):32-36.
    [140]Frohlich, Reinhard; Kelly, William E. Estimates of Specific Yield with The Geoelectric Resistivity Method in Glacial Aquifers [J]. Journal of Hydrology, v 97, n 1-2, p 33-44, Jan 15 1988.
    [141]赵家良.给水度问题浅析[J].水文地质工程地质,1990,(4):43-45.
    [142]Said, Ahmed 1; Nachabe, Mahmoodl; Ross, Markl; Vomacka, Jeffl.Methodology for estimating specific yield in shallow water environment using continuous soil moisture data[J]. Proceedings of the 2004 World Water and Environmetal Resources Congress:Critical Transitions in Water and Environmetal Resources Management, p 1650-1662,2004.
    [143]赵全喜,高殿举,韩国才.计算给水度和导水系数的一种新方法[J].地下水,1992,14(2):85-87.
    [144]Michael Price. Specific yield determinations from a consolidated sandstone aquifer[J]. Journal of Hydrology, Volume 33, Issues 1-2, March 1977, Pages 147-156.
    [145]岳延文,黄贵东,李振江.利用电测井法测定地下水的给水度[J].勘察科学技术,1995,(5):60-61.
    [146]陈南祥.给水度与饱和差关系的初步研究[J].河海大学学报,1998,26(4):111-114.
    [147]A.G. Dos Santos Junior, E.G. Youngs. A study of the specific yield in land-drainage situations[J]. Journal of Hydrology, Volume 8, Issue 1, May 1969, Pages 59-81.
    [148]李佩成.黄土含水层给水度合理取值的研究[J].水利学报,1999,(11):38-41.
    [149]雷绍庆.用煤矿开采排水法计算岩石给水度的探讨[J].太原理工大学学报,2004,35(5):622-624.
    [150]陈天舜,何涛,秦松柏.一种测定松散土体给水度和毛细负压值的仪器[J].地下水,2008,30(1):25-26.
    [151]叶水庭,T.科北特,J.脱司.优选含水层给水度的计算模型[J].水利学报,1985,(1):1-9.
    [152]荆继红,韩双平.零通量方法原位测定给水度[J].地球学报,1998,19(4):423-428.
    [153]王景汉,朱洪忠.利用地下水位动态资料推求潜水变幅带给水度的研讨[J].地下水,2001,23(2):80-81.
    [154]曹崇文.利用土壤传输函数确定入渗参数的方法研究[D].太原:太原理工大学,2007.
    [155]许东,吴静.基于MATLAB 6.X的系统分析与设计—神经网络[M].西安:西安电子科技大学出版社,2002,19-21.
    [156]汪荣鑫.数理统计[M].西安:西安电子科技大学出版社,1986,198-222.
    [157]张晓文,杨煜普.神经网络隐层作用的机理分析[J].华东理工大学学报,2002,9(28):24-26.
    [158]李适宇,厉红梅,林亲铁等.深圳市供水量BP神经网络预测[J].给水排水,2004,30(12):105-108.
    [159]吴利华,郑垂勇.神经网络模型对城市人才资源总量的预测[J].科技进步与对策,2004,(8):100-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700