用户名: 密码: 验证码:
富水电电网短期与实时节能发电调度控制方法及策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能发电调度是电力行业促进完成我国节能减排战略目标的重大举措。我国电网能源结构以水火电为主,节能发电调度的关键是研究行之有效的水火电调度方法,充分体现安全、经济、节能、环保原则。与火电占主导地位的电网不同,富水电电网的特点是水火电能源互补性好,节能减排潜力大,开展富水电电网节能发电调度控制研究,对节约化石能源,促进国家节能减排目标的完成具有重要的理论意义和工程实用价值。本文围绕节能发电调度背景下富水电电网短期和实时调度控制中存在的关键科学问题和技术难题,以运筹学、水电能源学、数学组合等基础理论为支撑,以水电富集的云南电网、贵州电网为工程背景,以节能调度电源发电顺序为主线,开展了大规模小水电发电调度、特大流域梯级水电站群调峰优化调度、火电系统节能优化调度、梯级AGC协调优化控制建模和求解方法研究。取得了一些有理论意义和工程实用价值的成果,主要内容概括如下:
     (1)通过对小水电调度管理现状和运行特性的分析,提出大规模小水电群多级断面控制负荷分配方法。该方法规范了小水电日前调度计划制定流程,摒弃了由调度机构单方编制计划的传统模式,根据小水电调度关系,对发电计划实行分级制作。在深入分析小水电运行特性基础上,引入自定义调峰规则,提出调度指令负荷分配方法,充分发挥小水电在电网中的调峰作用。采用集合理论对小水电群多级嵌套的并网结构进行描述和解析,并基于公平调度原则,提出多级超载断面计划校正方法,消除超载输电对电网安稳运行的风险。所提方法已在云南电网小水电管理技术支持系统中得到应用(管理电站1789座),德宏地调小水电群的实际调度结果表明,所提方法可以有效提高小水电调度计划的安全性和准确性。
     (2)针对我国电网负荷峰谷差日趋增大,电网调峰困难的问题,构建特大流域梯级复杂异构并网水电站群短期调峰电量最大模型。该模型以系统剩余负荷最大值最小为目标,为了便于优化求解,采用凝聚函数法建立替代优化目标。对于特大流域梯级水电站群存在的电站与机组分区并网问题,提出以电站和机组为调控对象,耦合改进的逐次切负荷方法、坐标轮换法、逐步优化算法、惩罚函数法、启发式策略的混合优化方法进行求解,充分发挥有调节能力大水电优质调峰作用,使剩余的系统负荷过程满足火电机组高效运行要求。乌江梯级水电站群的计算结果表明,所提模型和求解方法具有良好的调峰效果,是一种切实可行的方法。
     (3)以富水电电网中燃煤火电为研究对象,构建火电系统耗煤量最小节能发电调度模型,并提出一种动态机组组合与等微增率法相结合的混合求解方法。为了防止火电机组出力过程频繁波动,在模型中引入出力持续时段约束,并结合机组发电排序表设计了动态机组组合算法,为等微增率法在负荷动态分配过程中确定满足持续时段要求的节能机组组合。采用启发式的迭代修正策略对传统等微增率法进行改进,使分配结果满足机组爬坡速率、出力限制、出力变化趋势等复杂不等式约束。所提方法已应用于贵州电网节能发电调度计划生成系统,贵州电网汛期和枯期典型日实际调度结果表明,所提方法具有良好的节能效果,能够切实满足电网实际运行需求。
     (4)自动发电控制(automatic geration contral,AGC)是短期调度计划得以实施的执行环节。以特大流域梯级AGC协调控制为研究对象,综合考虑AGC中电网安全、振动区、调节速率、机组启停等约束,以梯级各电站日前计划电量为控制目标,构建电网AGC与梯级AGC协调控制模型。针对模型中厂间负荷分配、联合避开振动区、稳定断面超载控制等关键问题,引入AGC投入序位和相对耗水率比例,并结合数学组合和集合运算理论,系统地提出了电网与梯级AGC协调控制策略,主要包括AGC投入序位计算方法、电站组合确定策略、厂间负荷分配方法、组合振动区求解及联合避开策略、超载断面动态校正控制策略。乌江梯级AGC模拟闭环运行结果表明,所提策略是有效的,可以更好地实现实时在线控制与短期离线调度有机衔接,能够满足AGC安全性、时效性、实用性、经济性的要求。
     最后对全文做了总结,并对有待进一步研究的问题进行了展望。
Energy-saving power generation dispatch is a major move in the power industry to promote to complete the strategic goal of energy conservation and emissions reduction. In China, power energy structure is given priority to with thermal power and hydroelectric. The key of energy-saving power generation dispatching is to research the effective hydrothermal scheduling method, in order to fully embody the principle of safe, economic, energy conservation and environmental protection. Different from the grid where thermal power is dominated, the characteristic of the grid with rich hydropower is that hydropower is plentiful, and the thermal power and hydropower have very good complementarity in it. The potential of energy conservation and emissions reduction in the grid with rich hydropower is considerable, so to carry out energy-saving power generation dispatching and control research of the rich hydroelectric power grid has important theoretical significance and engineering practical value for saving fossil energy and promoting the completion of the national energy conservation and emissions reduction targets. This research arises under the background of key science and technology problems of short-term operation and real-time control in the grid with rich hydropower. Based on fundamental theories of Operations Research, Science of Hydropower Energy and Combinatorial Mathematics, this research takes the grid with rich hydropower, such as Yunnan power grid and Guizhou power grid as its engineering backgrounds and takes energy-saving dispatching order of power generation as its main line to carry out large-scale small hydropower generation scheduling, devastating cascade hydropower station group of load optimization scheduling, thermal power system scheduling and the modeling and solving method of cascade AGC coordinated optimization control. The author has made some achievements for the theoretical significance and engineering practical value and these achievements can be wrapped up by presenting four points:
     Firstly, by analyzing the characteristics of small hydropower and operation rules, large-scale small hydropower generation scheduling method is proposed with the consideration of multistage section safety constraint. This method regulates the processes of making plans, abandoned the traditional way of planning models solely by related scheduling institution and carried out making plans by multi-institutions or related department for power generation. Load distribution method based on dispatching order and custom order of peak regulation are adopted to fully display ability of small hydropower in power grid in peak load regulation. The description and analysis of complex nested multistage interconnection structure of the small hydropower is based on the set theory. Besides, following the principle of the fair scheduling, transfinite section plan correction and proofreading method is designed to eliminate risk of stable operation of power grid caused by transmission in transfinite section. The above-mentioned method has been used in the management technology support system of Yunnan power grid including1789small hydropower stations, where the effectiveness has been verified available by the practical engineering.
     Secondly, with regard to the increasing gap between power grid load peak and valley in China and the problem of peak regulation, the maximum electricity short-term peak regulation model of complex hydroelectric power stations is established. This model is to minimize the maximum value of system remaining load. For the sake of optimal solution, the adoption of aggregate function replaces of optimal goals. As for the distribution and combination of the present power stations and power unit in extra-large watershed cascade hydropower stations, the regulation objects has shift to the combination objects of power stations as well as power units. A series of methods are adopted, including improved cutting load method, coordinate alternation method, progressive optimal algorithm, penalty function method and optimization by heuristic strategy. The aim is to make full use of large hydropower to regulate peak load and adjust remain system load to efficient operation of thermal units. The calculation results from Wujiang cascade hydropower stations indicate this model takes a good effect on peak regulation. Therefore, it is a feasible way to solve the existing problem.
     Thirdly, with thermal units in rich hydropower grid as the studying object, the minimum coal consumption generation scheduling model is constructed of thermal power system. A hybrid method of incorporating dynamic unit commitment into equal incremental principle is proposed in this paper. This model introduces duration period requirements in order to prevent thermal power unit from frequently fluctuating during output. Based on the unit power generation sequence, the dynamic unit commitment algorithm is designed so as to let the equal incremental discharge criterion meet the needs of sustained period of time demand for energy conservation unit commitment during the process of dynamic load allocation. With the adoption of heuristic iterative modification strategies, the traditional equal incremental principle is improved in order that the allocation results meet the needs of unit commitment complicated inequation limits including operation ramp rate limit, output limits constraint and generation variation constraints. This method has been applied to energy-saving power generation dispatch decision support system of Guizhou power grid. The practical scheduling results in typical day of flood season and dry season in Guizhou power grid has been taking good effect in energy conservation and proved to meet the practical operation needs of power grid.
     Fourthly, automatic generation control (AGC) is the essential condition to realize short-term scheduling. Relying on cascade AGC coordinated optimization control of extra-huge basin, the model of coordinative control power grid AGC and cascade AGC with taking into consideration of the constraints in power grid safety of AGC, vibration area, adjusting rate and unit commitment is built. Energy of day-ahead generation schedule of cascade stations is used as the control target, In view of the key problems of models on load distribution among factories, the joint avoidance with vibration area, stability of overload control, and relative proportion of water rate is brought in and grid coordinate with cascade AGC control strategy is proposed and connecting with the combination of mathematical theory, the coordinative control strategies of power grid AGC and cascade AGC is put forward systematically with the application of combinatorial theory in math. The control strategies include AGC input sequence method, unit commitment strategy, load distribution method among factories, the joint avoidance strategy with vibration area and stability of overload control strategy. The simulative closed-loop running results of cascaded AGC of Wujiang river main stream show that the proposed strategy is effective and it can better realize the organic link between the real-time online control and the short-term scheduling, which in turn can satisfy the AGC needs of security, timeliness, practicality and economics.
     Finally, a summary is given and some problems to be further studied are discussed.
引文
[1]Brede Markus, De Vries. The energy transition in a climate-constrained world:Regional vs. global optimization[J]. Environmental Modelling & Software,2013,44:44-61.
    [2]Cao Wensheng, Bluth Christoph. Challenges and countermeasures of China's energy security[J]. Energy Pol icy,2013,53:381-388.
    [3]国家发展和改革委员会,国家环境保护总局,国家电力监管委员会,国家能源领导小组办公室.国办发[2007]53号文件:国务院办公厅关于转发发展改革委等部门节能发电调度办法(试行)的通知[R].北京:国务院办公厅.
    [4]Cheng Chun-Tian, Shen Jian-Jian, Wu Xin-Yu, et al. Operation challenges for fast-growing China's hydropower systems and respondence to energy saving and emission reduction [J]. Renewable and Sustainable Energy Reviews,2012,16(5):2386-2393.
    [5]王静,廖胜利,程春田,等.中期火电开机优化的混合搜索算法[J].中国电机工程学报,2011,31(1):94-100.
    [6]廖胜利,高上上,程春田,等.基于RIA技术的中小水电管理系统设计与实现[J].电力系统自动化,2011,35(23):102-106.
    [7]罗云霞,周慕逊,江振东,等.基于改进遗传算法的串联小水电群优化调度[J].水电自动化与大坝监测,2004,28(3):66-69.
    [8]罗云霞,王万良,周慕逊.基于自适应粒子群算法的梯级小水电群优化调度研究[J].水力发电学报,2008,27(4):7-10.
    [9]陈星.我国小水电开发对生态环境影响的研究[J].中国农村水利水电,2009,4:134-136.
    [10]安益民.小水电建设中的问题及对策[J].中国农村水利水电,2002,9.
    [11]Yeh William W-G. Reservoir management and operations models:A state-of-the-art review[J]. Water Resources Research,1985,21(12):1797-1818.
    [12]Labadie John W. Optimal operation of multireservoir systems:State-of-the-art review[J]. Journal of Water Resources Planning and Management,2004,130(2):93-111.
    [13]Mannos. M. An application of linear programming to efficiency in operation for a system of dams[J].Econometrica,1955,33(3):871-880.
    [14]Becker L, Yeh W. W-G. Optimization of real time operation of multiple-reservoir system[J].Water Resource Research,1974,10(6):1107-1112.
    [15]Shawwash Ziad K.,Siu Thomas K., Russell. S.O. Denis. The B.C. hydro short term hydro scheduling Optimization model[J]. IEEE Transactions on Systems, 2000,15 (3):1125-1131.
    [16]Jacobs J, Freeman G, Grygier J, et al.SOCRATES:A system for scheduling hydroelectric generation under uncertainty[J]. Annals of Operation Research,1995,59:99-103.
    [17]Allen R. B., Bridgeman S. G. Dynamic Programming in Hydropower Scheduling[J]. Journal of Water Resources Planning and Management,1986,112(3):339-353.
    [18]Yakowitz S.Dynamic Programming Application in Water Resources[J].Water Resource Research,1982,18(4):673-696.
    [19]Young George K. Finding reservoir operating rules[C]. Proceedings of the American Society of Civil Engineers,1967,297-321.
    [20]梅亚东,朱教新.黄河上游梯级水电站短期优化调度模型及迭代解法[J].水力发电学报,2000,2:1-7.
    [21]Davis MR. The dynamic response of constant resistance anemometers[J]. Journal of Physics E:Scientific Instruments,1970,3(1):15.
    [22]张勇传,邴凤山,刘鑫卿,等.水库群优化调度理论的研究-SEPOA方法[J].水电能源科学,1987,5(3):234-244.
    [23]Howson HR, Sancho NGF. A new algorithm for the solution of multi-state dynamic programming problems[J]. Mathematical Programming,1975,8(1):104-116.
    [24]Heidari Manoutchehr, Chow Ven Te, Kokotovic Petar V, et al. Discrete differential dynamic programing approach to water resources systems optimization[J].Water Resources Research,1971,7(2):273-282.
    [25]Ohno Katsuhisa. A new approach to differential dynamic programming for discrete time systems[J]. IEEE Transactions on Automatic Control,1978,23(1):37-47.
    [26]吴晓黎,张勇传,权先璋.三峡梯级日优化算法及应用[J].华中电力,2004,17(1):1-3.
    [27]罗元胜,魏守平,余波.三峡梯级电站日优化算法及应用[J].水电自动化与大坝监测,2004,28(2):64-67.
    [28]程雄,武新宇,程春田,等.松江跨流域引水梯级电站群长期优化调度方法[J].水利学报,2012:43(4):493-501.
    [29]Barros Mario TL, Tsai Frank TC, Yang Shu-li, et al. Optimization of large-scale hydropower system operations[J]. Journal of Water Resources Planning and Management,2003,129(3):178-188.
    [30]Yakowitz Sidney. Dynamic programming applications in water resources[J]. Water Resources Research,1982,18(4):673-696.
    [31]Perez-Diaz Juan I, Wilhelmi Jose R, Sanchez-Fernandez Jose Angel. Short-term operation scheduling of a hydropower plant in the day-ahead electricity market [J]. Electric Power Systems Research,2010,80(12):1535-1542.
    [32]Jacobs Jonathan, Freeman Gary, Grygier Jan, et al. SOCRATES:A system for scheduling hydroelectric generation under uncertainty[J]. Annals of Operations Research, 1995,59(1):99-133.
    [33]Gill M Kashif,Kaheil Yasir H,Khalil Abedalrazq, et al. Multiobjective particle swarm optimization for parameter estimation in hydrology[J]. Water Resources Research, 2006,42(7):W07417.
    [34]Barros M. T. L, Tsai F. T. C, Yang S, et al. Optimization of large-scale hydropower system operations[J]. Journal of Water Resources Planning and Management, 2003,129(3):178-188.
    [35]Tejada-Guibert J, Stedinger J, Staschus K. Optimization of the value of CVP's hydropower production[J]. Journal of Water Resources Planning and Management, 1990,116(1):52-70.
    [36]Peng Chengshuang, Buras Nathan. Dynamic operation of a surface water resources system[J]. Water Resources Research,2000,36(9):2701-2709.
    [37]Alguacil N, Cone jo AJ. Multiperiod optimal power flow using Benders decomposition[J]. IEEE Transactions on Power System,2000,15(1):196-201.
    [38]Medina Marjorie B. Binding of collagen and inhibition by carrageenans[J]. International Journal of Food Microbiology,2001,69(3):199-208.
    [39]Wang Jinwen, Yuan Xiaohui, Zhang Yongchuan. Short-term scheduling of large-scale hydropower systems for energy maximization[J]. Journal of Water Resources Planning and Management,2004,130(3):198-205.
    [40]葛晓琳,张粒子.考虑水流滞时的梯级水电日优化调度模型[J].华东电力,2013,41(2):264-269.
    [41]贾江涛,管晓宏,翟桥柱.考虑水头影响的梯级水电站群短期优化调度[J].电力系统自动化,2009,33(13):13-16.
    [42]Luo G-X, Habibollahzadeh Hooshang, Semlyen Adam. Short-term hydro-thermal dispatch detailed model and solutions[J]. IEEE Transactions on Power Systems, 1989,4(4):1452-1462.
    [43]Lund Jay R, Ferreira Ines. Operating rule optimization for Missouri River reservoir system[J]. Journal of Water Resources Planning and Management,1996,122(4):287-295.
    [44]Guan X., Ni E., Li R. An optimization-based algorithm for scheduling hydrothermal power systems with cascaded reservoirs and discrete constraints[J]. IEEE Transactions on Power Systems,1997,12(4):1775-1780.
    [45]Guan Xiaohong, Svoboda Alva, Li Chao-an. Scheduling Hydro Power Systems with Restricted Operating Zones and Discharge Ramping Constraints[J]. IEEE Transactions on Power Systems,1999,14(1):126-131.
    [46]Wang Jinwen, Zhang Yongchan. Short-Term Optimal Operation of Hydropower Reservoirs with Unit Commitment and Navigation[J]. Journal of Water Resources Planning and Management,2012,138(3):3-12.
    [47]匡永祝.水电能源投入产出与经济系统的优化[J].水电能源科学,1991,9(1):35-42.
    [48]陈广娟,谭忠富,乞建勋.水电站经济运行的优化模型及其分解协调求解方法研究[J].水电能源科学,2007,25(3):77-81.
    [49]刘俊萍,黄强,田峰巍,等.汉江上游梯级发电与航运的优化调度研究[J].水力发电学报,2001,75(4):8-17.
    [50]何莉,伍永刚,袁晓辉,等.跨流域水电站群中长期补偿效益问题研究[J].水电能源科学,2011,29(3):126-130.
    [51]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展,1997,8(3):275-280.
    [52]王大刚,程春田,李敏.基于遗传算法的水电站优化调度研究[J].华北水利水电学院学报,2001,22(1):5-10.
    [53]Wardlaw R.,Sharif M. Evaluation of genetic algorithms for optimal reservoir system operation[J]. Journal of Water Resources Planning and Management,1999,125(1):25-33.
    [54]Liang R. H.,Hsu Y. Y. Scheduling of hydroelectric generations using artificial neural networks[J]. IEEE Proceedings-Generation, Transmission and Distribution, 1994,141(5):452-458.
    [55]朱敏,王定一.基于人工神经网络的梯级水电厂日优化运行[J].电力系统自动化,1999,23(10):35-40.
    [56]Metropolis N., Rosenbluth A., Rosenbluth M. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics,1953,21:1087-1092.
    [57]Wong K. P.,Wong Y. W. Short-term hydrothermal scheduling part 1:simulated annealing approach[J]. IEEE Proceedings-Generation, Transmission and Distribution, 1994,141(5):497-501.
    [58]Wong K. P., Wong Y. W. Short-term hydrothermal scheduling part 2:paralel simulated annealing approach[J]. IEE Proceedings-Generation, Transmission and Distribution,1994,141(5):502-506.
    [59]张双虎,黄强,孙廷容.基于并行组合模拟退火算法的水电站优化调度研究[J].水力发电学报,2004,23(4):16-19.
    [60]Liang Ruey-Hsun. A noise annealing neural network for hydroelectric generation scheduling with pumped-storage units[J]. IEEE Transactions on Power Systems, 2000,15(3):1008-1013.
    [61]Yin Wa Wong Suzannah. Hybrid simulated anneal ing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants[J]. International Journal of Electrical Power & Energy Systems,2001,23(7):565-575.
    [62]吴耀武,王峥,唐权,等.基于C-PSO的水火电混合电力系统电源规划[J].继电器,2006,34(9):64-69.
    [63]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J].水力发电学报,2006,25(2):94-98.
    [64]李刚,程春田,唐子田,等.结合禁忌搜索思想的粒子群算法在乌江渡水电站厂内经济运行中的应用研究[J].水力发电学报,2009,28(2):128-132.
    [65]程春田,唐子田,李刚,等.动态规划和粒子群算法在水电站厂内经济运行中的应用比较研究[J].水力发电学报,2008,27(6):27-31.
    [66]武新宇,程春田,廖胜利,等.两阶段粒子群算法在水电站群优化调度中的应用[J].电网技术,2006,30(20):25-28.
    [67]张双虎,黄强,吴洪寿,等.水电站水库优化调度的改进粒子群算法[J].水力发电学报,2007,26(1):1-5.
    [68]王永强,周建中,肖文,等.多种群蚁群优化算法在大型水电站自动发电控制机组优化组合中的应用[J].电网技术,2011,35(9):66-70.
    [69]Huang Shyh-Jier. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches[J]. IEEE Transactions on Energy Conversion, 2001,16(3):296-301.
    [70]王凌,郑大钟,李清生.混沌优化方法的研究进展[J].计算技术与自动化,2001,20(1):1-5.
    [71]王子才,张彤.基于混沌变量的模拟退火优化方法[J].控制与决策,1999,14(4):381-384.
    [72]贾东立,郑国莘.基于混沌和高斯局部优化的混合差分进化算法[J].控制与决策,2010,25(6):899-902.
    [73]冯春,谢进,李柏林,等.混沌优化算法的研究[J].机械设计与研究,2004,20(1):304-306.
    [74]许海平,朱奕.变尺度混沌优化方法在电站经济运行中的应用[J].哈尔滨工业大学学报,2000,32(4):55-58.
    [75]Zhiqiang Yuan, Zhijian Hou, Chuanwen Jiang. Economic dispatch and optimal power flow based on chaotic optimization[C]. Kunming:International Conference on Power System Technology,2002,2313-2317.
    [76]Yuan Xiaohui, Zhang Yongchuan, Wang Liang, et al. An enhanced differential evolution algorithm for daily optimal hydro generation scheduling[J]. Computers & Mathematics with Applications,2008,55(11):2458-2468.
    [77]黄强,张洪波,原文林,等.基于模拟差分演化算法的梯级水库优化调度图研究[J].水力发电学报,2008,27(6):13-17.
    [78]李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157.
    [79]杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(12A):1873-1877.
    [80]申建建,程春田,张俊,等.蜜蜂进化算法在水电站厂内经济运行中的应用[J].水电能源科学,2008,26(3):137-140.
    [81]李刚,程春田,曾筠,等.改进等微增率算法求解火电负荷分配问题的实用化研究与应用[J].电力系统保护与控制,2012,40(2):72-76.
    [82]李树山,李刚,程春田,等.动态机组组合与等微增率法相结合的火电机组节能负荷分配方法[J].中国电机工程学报,2011,31(7):41-47.
    [83]张宁,陈慧坤,骆晓明,等.广东电网节能发电调度计划模型与算法[J].电网技术,2008,32(24):11-15.
    [84]施建华,谭素梅.节能发电调度发电计划编制算法[J].电力系统自动化,2008,32(24):48-51.
    [85]王超,张晓明,唐茂林,等.四川电网节能减排发电实时调度优化模型[J].电力系统自动化,2008,32(4):89-92.
    [86]吕素,黎灿兵,曹一家,等.基于等综合煤耗微增率的火电机组节能发电调度算法[J].中国电机工程学报,2012,32(32):1-7.
    [87]叶文加.节能发电调度与实时控制的智能优化分配算法[D].广州:华南理工大学,2012.
    [88]杨湛.基于改进原——对偶内点法的节能发电调度优化算法[D].北京:华北电力大学,2010.
    [89]方辉钦.葛洲坝试点与三峡水电厂自动化[J].电力系统自动化,1993,17(8):5-9.
    [90]方辉钦.试论无人值班水电厂的设计及技术要求[J].电力系统自动化,1996,20(10):46-49.
    [91]方辉钦.BBC公司的水力发电厂监控系统[J].电力系统自动化,1982,(6):55-60.
    [92]蒋建文,江红军,牟奎.紫坪铺水电站AGC的设计与实现[J].水力发电,2007,33(2):73-74.
    [93]伍永刚,王定一,魏守平.水电站AGC中负荷调节策略的研究[J].华中理工大学学报,2000,28(2):56-57.
    [94]曾火琼.浅析水电厂AGC与一次调频的配合[J].水电自动化与大坝监测,2008,32(1):40-42.
    [95]贺晓强,焦景辉.李家峡水电站计算机监控系统AGC实现问题探究[J].长春工程学院学报:自然科学版,2010,(002):92-94.
    [96]孔德宁,段中平,李镇江,等.龙滩水电站计算机监控系统结构及特点[J].水电自动化与大坝监测,2007,31(4):7-11.
    [97]龚传利,黄家志,姚志凌.三峡右岸电站AGC安全性策略[J].水电自动化与大坝监测,2008,32(1):34-36.
    [98]岳华.乌溪江水电厂AGC功能的实现[J].小水电,2011,(4):56-59.
    [99]徐晨光,黄强,赵麦换.中小型水电站厂内经济运行准实时系统的设计与实现[J].水力发电学报,2003,(1):15-20.
    [100]贺胜晖,张学涛,陶学军,等.水电厂厂内经济运行的实现[J].继电器,2005,33(5):72-74.
    [101]刘胡,高仕春,万俊,等.东江水电站厂内经济运行动态规划算法[J].水电能源科学,2000,18(4):14-15.
    [102]杨敬涛.水电站厂内经济运行高级应用软件算法研究与实现[D].武汉:华中科技大学,2004.
    [103]袁江锋.中小水电站优化运行及其程序实现[J].水力发电,2011,37(9):79-81.
    [104]路志宏,魏守平,罗元胜.基于开关控制策略的厂内经济运行模型及应用[J].水电自动化与大坝监测,2003,27(1):11-13.
    [105]杨平,董国威.互联电网AGC控制研究进展[J].华东电力,2011,39(9):1488-1492.
    [106]谭涛,姜杰,何潜,等.省级电网AGC控制策略研究[J].电力系统保护与控制,2011,39(16):63-66.
    [107]周霞,胡朝阳,杨卫东,等.大规模风电接入对华东电网CPS频率考核指标的影响[J].华东电力,2011,39(11):1807-1810.
    [108]唐跃中,张王俊,张健,等.基于CPS的AGC控制策略研究[J].电网技术,2004,28(21):75-79.
    [109]李滨,韦化,农蔚涛,等.基于现代内点理论的互联电网控制性能评价标准下的AGC控制策略[J].中国电机工程学报,2008,28(25):56-61.
    [110]周京阳,于尔铿.能量管理系统(EMS)[J].电力系统自动化,1997,21(5):75-78.
    [111]余涛,周斌,陈家荣.基于Q学习的互联电网动态最优CPS控制[J].中国电机工程学报,2009,29(19):13-19.
    [112]余涛,王宇名,刘前进.互联电网CPS调节指令动态最优分配Q-学习算法[J].中国电机工程学报,2010,30(7):62-69.
    [113]李健.梯级水电厂自动发电控制研究与设计[D].武汉:华中科技大学,2005.
    [114]何国春,刘广宇.集中控制下的梯级AGC运行浅析[J].水电厂自动化,2008,29(4):58-59.
    [115]陈为众.汉江上游梯级电站远方集中控制系统研究[D].西安:西安理工大学,2001.
    [116]吴京津,杨钏.浅谈田湾河梯级水电站AGC的实际操作[J].北京电力高等专科学校学报:自然科学版,2012,29(1):174-174.
    [117]邹体峰,王仲珏.我国小水电开发建设中存在的问题及对策探讨[J].中国农村水利水电,2007,(2):82-84.
    [118]童建栋.促进小水电发展是一项可持续发展的能源政策[J].中国水利,2003,(3):52-56.
    [119]陈森林,高仕春,万飚,等.水电站水库运行与调度[M].北京:中国电力出版社,2008.
    [120]米为民,荆铭,尚学伟,等.智能调度分布式一体化建模方案[J].电网技术,2010,34(10):6-9.
    [121]谢开,刘军,宁文元,等.华北电网一体化调度计划和实时发电控制系统的设计与实现[J].电网技术,2005,29(18):6-11.
    [122]赵亮,钱玉春.适应集约化管理的地区电网调度集控一体化建设思路[J].电力系统自动化,2010,34(14):96-99.
    [123]张保会,姚峰,周德才,等.输电断面安全性保护及其关键技术研究[J].中国电机工程学报,2006,26(21):1-7.
    [124]洪元瑞,康重庆,夏清,等.基于图论的电网动态分区定价方法[J].中国电机工程学报,2005,25(3):1-7.
    [125]程春田,武新宇,申建建,等.大规模水电站群短期优化调度方法Ⅰ:总体概述[J].水利学报,2011,42(9):1017-1024.
    [126]王金文,范习辉,张勇传,等.大规模水电系统短期调峰电量最大模型及其求解[J].电力系统自动化,2003,27(15):29-34.
    [127]武新宇,程春田,申建建,等.大规模水电站群短期优化调度方法Ⅲ:多电网调峰问题[J].水利学报,2012,43(1):31-42.
    [128]李兴斯.解非线性规划的凝聚函数法[J].中国科学:A辑,1991,(12):1283-1288.
    [129]杨庆之.对凝聚函数法的分析[J].计算数学,1996,4:405-410.
    [130]张铭,李承军,袁晓辉,等.大规模混联水电系统长期发电优化调度模型及求解[J].武汉大学学报:工学版,2007,40(3):45-49.
    [131]蔡建章,蔡华祥,洪贵平.电力电量平衡算法研究与应用[J].云南电力技术,1994,3:8-11.
    [132]权先璋.动态规划原理在水电站厂内经济运行中的应用[J].水电能源科学,1983,1(1):95-104.
    [133]李鹏.等微增率准则在机组负荷优化分配中的应用条件[J].南方电网技术,2008,2(5):43-46.
    [134]杭乃善.等微增率方程组的分解,n维求解和协调[J].中国电机工程学报,1994,14(4):65-71.
    [135]程浩忠,朱海峰,马则良,等.基于等微增率准则的电网灵活规划方法[J].上海交通大学学报,2003,37(9):1351-1354.
    [136]付春梅.水火电优化调度建模与算法研究.哈尔滨:哈尔滨工业大学,2011.
    [137]袁晓辉,袁艳斌,张勇传.电力系统中机组组合的现代智能优化方法综述[J].电力自动化设备,2003,23(2):73-78.
    [138]Shoults RR, Mead MM. Optimal estimation of piece-wise linear incremental cost curves for EDC[J].Power Apparatus and Systems, IEEE Transactions on Power System, 1984, (6):1432-1438.
    [139]裴哲义,伍永刚,纪昌明,等.跨区域水电站群优化调度初步研究[J].电力系统自动化,2010,34(24):23-26.
    [140]高宗和,滕贤亮,涂力群.互联电网AGC分层控制与CPS控制策略[J].电力系统自动化,2004,28(1):78-81.
    [141]贾德香,程浩忠,熊虎岗,等.考虑控制性能标准的AGC机组经济补偿研究[J].中国电机工程学报,2007,27(31):52-56.
    [142]余涛,陈亮,蔡广林.基于CPS统计信息自学习机理的AGC自适应控制[J].中国电机工程学报,2008,28(10):82-87.
    [143]赵旋宇,李鹏,汪皓,等.新型控制性能评价方法及相应的自动发电控制模式[J].中国电机工程学报,2010,(16):93-97.
    [144]王坚,张坤,张昆,等.南方电网现时自动发电控制模式分析[J].南方电网技术,2010,4(6):40-44.
    [145]吴红,王玮,黄文伟,等.自动发电控制在贵州电网中的应用[J].电网技术,2002,26(1):73-75.
    [146]GAO Zong-he, TENG Xian-liang, ZHANG Xiao-bai. Automatic Generation Control Strategy Under Control Performance Standard for Interconnected Power Grids [J]. Automation of Electric Power Systems,2005,29(19):40-44.
    [147]Khuntia Swasti R, Panda Sidhartha. Simulation study for automatic generation control of a multi-area power system by ANFIS approach[J]. Applied Soft Computing, 2012,12(1):333-341.
    [148]郭壮志,吴杰康,孔繁镍,等.梯级水电站水库蓄能利用最大化的长期优化调度[J].中国电机工程学报,2010,30(1):20-26.
    [149]梅亚东.梯级水库优化调度的有后效性动态规划模型及应用[J].水科学进展,2000,11(2):194-198.
    [150]唐海华,陈森林,赵宇.三峡梯级电站短期优化调度模型及算法[J].水电能源科学,2008,26(3):133-136.
    [151]刘攀,郭生练,张文选,等.梯级水库群联合优化调度函数研究[J].水科学进展,2007,18(6):816-822.
    [152]张斌.自动发电控制及一次调频控制系统[M].北京:中国电力出版社,2005.
    [153]袁飞,滕贤亮,张小白,等.调度主站AGC中水电机组振动区的动态建模与跨越方法[J].电力系统自动化,2011,35(1):87-90.
    [154]张小白,高宗和,钱玉妹,等.用AGC实现稳定断面越限的预防和校正控制[J].电网技术,2005,29(19):55-59.
    [155]李正,敬东,赵强,等.CPS/DCS标准在大区互联电网AGC控制策略中的应用[J].电力系统及其自动化学报,2003,15(2):27-32.
    [156]张高峰,权先璋,陈建国.三峡梯级水电站自动发电控制[J].水电自动化与大坝监测,2002,26(2):1-4.
    [157]程淑,李承军.梯级水电站AGC的实现方法研究[J].中国农村水利水电,2004,9:106-108.
    [158]王永强.厂网协调模式下流域梯级电站群短期联合优化调度研究[D].武汉:华中科技大学,2012.
    [159]蔡建章,蔡保锐,蔡华祥,等.过渡期电力市场条件下日发电计划编制研究[J].云南电力技术,2003,31(3):4-6.
    [160]赵宇,全宏兴.电力市场过渡期水火电中长期合同计划[J].水电自动化与大坝监测,2007,31(3):6-9.
    [161]刘建明,马光文,王黎,等.基于物理合同的梯级水电厂日前交易电量优化分配[J].水力发电学报,2006,25(4):16-19.
    [162]吴正义,张雪桂,汪军,等.清江梯级水电厂AGC的工程实现[J].水电自动化与大坝监测,2002,26(2):5-8.
    [163]申建建,武新宇,程春田,等.大规模水电站群短期优化调度方法Ⅱ-高水头多振动区问题[J].水利学报,2011,42(10):1168-1176.
    [164]李树山,廖胜利,李刚,等.大规模小水电群一体化发电计划编制方法[J].中国电机工程学报,2012,32(013):29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700