用户名: 密码: 验证码:
基于热经济学原理的船舶主机能量系统优化与船舶能效评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖和化石能源价格的持续走高,节能减排逐渐被人们所重视。船舶作为水路运输的载体每年都在消耗着巨大的能源,对船舶能效的研究具有重要意义。传统的船舶能效评价方法注重提高船舶的能效,并不很注重船舶营运过程的经济性。本文采用了热经济学方法与传统能效评价方法相结合的方式,并将船舶非营运能耗加入热经济学评价体系,提出了能效与经济性相结合的能效评价方法——船舶热经济学能效评价方法。
     首先,对传统的能效评价方法(EEDI和EEOI)进行了较为系统的研究,分析了EEDI和EEOI各自的特点。对航速、主机功率、转速、油耗率之间的关系进行了研究,通过实例验证了海军常数法在EEOI计算中的可行性。并利用EEOI万法分析了多用途目标船的能效情况。
     第二,对目标船的能量系统提出了船舶总能系统的概念,并对目标船主机能量系统分别进行了热平衡分析和(?)平衡分析。结果表明:目标船主机功率的最佳范围在70%~85%;(?)平衡分析法可以反映能量的品质高低,更能反映出能量相互之间转化的本质,在对能量系统的分析、优化中更有优势。
     第三,研究了目标船主柴油机能量系统的热经济学优化方法。通过采用对称形式的非线性优化问题约束条件的互逆和交换方法,解决了热经济分析中“产品”和“资源”的转换问题;利用拉格朗日乘子理论定义了系统中各部分(?)流、负熵流的影子价格;利用Kuhn-Tucker条件确定了该非线性优化问题具有最优解的充要条件;利用“热经济孤立”理论将整个系统分解为多个相互关联的子系统;并在热经济分析中引入负熵流的概念,解决了系统在被分解为多个子系统后所产生的“组合爆炸”问题。采用以上方法,建立了口标船主柴油机能量系统的热经济优化模型。
     第四,对目标船主柴油机能量系统及其子系统的热经济模型进行了详细分析,在此基础上,对该系统进行了热经济优化。优化结果表明:热经济优化方法可以有效的反映能量流的热经济特性,并得出系统的热经济优化点;在允许范围内,降低扫气温度并且提高最高燃烧压力,可以有效的提高系统的热经济性。
     最后,在以上研究的基础上,将热经济方法拓展至船舶的能效评价,结合EEOI评价方法,提出了船舶热经济能效营运指数的评价方法(TEEEOI),并将其应用于目标船能效的热经济评价。结果显示:将船舶的非营运能耗加入到能效评价体系后,评价结果更全面、更准确;船舶非营运能耗受造船国单位GDP能耗、工业单位GDP能耗影响较大,不同国家建造的船舶其非营运能耗有很大不同;TEEEOI方法在评价船舶能效的同时,还兼顾了经济性;TEEEOI的影响因素中,燃油价格、载货种类、造船成本对其的影响依次减小。
With the aggravation of global warming and the soaring energy prices, humans are attaching great importance to energy saving and emission reduction. Ship, as the media of waterage, is consuming a large amount of energy anaually. The study on ship energy efficiency is significant. Conventional ship energy efficiency evaluation emphasizes much on increasing ship's energy efficiency, but little on the economical efficiency in ship's operation. This paper combines thermoeconomic and traditional energy efficiency evaluation methods, takes ship's non-operational energy consumption into thermoeconomic evaluation system and finally introduces evalution method of ship thermoeconomic energy efficiency, which incorporates both energy efficiency and economical efficiency of the ship.
     Firstly, the evaluation method of conventional energy efficiency (EEDI and EEOI) is systematically researched and features of both EEDI and EEOI are analyzed. By studying the relationship among velocity, main engine power, RPM and fuel consumption as well as a specific example, the naval constant method is proven to be applicable to EEOI calculation. EEOI method is used for analyzing energy efficiency of multi-functional ships.
     Secondly, the concept of ship's total energy system is put forward for the target ship and analysis of thermal equilibrium and exergy equilibrium for the main engine energy system of the target ship is conducted. The results indicate that70%~85%power of the main engine is the optimal range for the target ship. Exergy equilibrium analysis can better reflect the quality of energy and the essence in energy transformation, which has more advantages in analysis and optimization of energy system.
     Thirdly, optimizing method of thermoeconomic is researched for the main engine energy system of target ship. The problem of conversion between "product" and "resource" in thermoeconomic analysis is addressed by means of reciprocation and exchange of constrained conditions for the symmetric non-linear optimizing problem; Lagrange multiplier theory is used for defining shadow price in exergy flow and negative entropy flow; Kuhn-Tucker condition is applied to figure out the necessary and sufficient conditions ensuring that the non-linear optimizing problem has optimum solution; the thermoeconomic isolation theorgy is utilized to divide the whole system into several correlated sub-systems; the concept of negative entropy flow is introduced into thermoeconomic analysis and the problem of "combinatory explosion" resulting from system division is resolved. With all methods above, effective thermoeconomic optimizing model is established for energy system.
     Fourthly, thermoeconomic models are built and analyzed for the main engine energy system and its sub-systems of the target ship. Based on the studies, thermoeconomic optimization is conducted. The optimized results indicate that the method of thermoeconomic optimization can reflect the thermoeconomic characteristic of energy flow effectively, and thermoeconomic optimization point is obtained at the sanme time. In a certain range, thermoeconomic characteristic can be improved through reducing scanvage temperature and increasing maximum combustion pressure.
     Finally, based on the researches above, the thermoeconomic assessment is applied to ship energy efficiency evaluation. With reference to EEOI evaluation method, the Thermal Economics Energy Efficiency Operational Indicator (TEEEOI) is put forward, and applied to the thermoeconomic evaluation of the target ship energy efficiency. The results indicate that, by introducing the ship's non-operational energy consumption into ship energy efficiency evaluation system, evaluation result is more comprehensive and accurate. Energy consumption per GDP of ship-building nation and industrial energy consumption have large influence on ship's non-operational energy consumption, which can vary a lot in different nations. The TEEEOI not only evaluates ship energy efficiency evaluation, but also economical efficiency. Among the influencing factors on TEEEOI, fuel price comes first, then the cargo type and shipbuilding cost.
引文
[1]http://www.mofcom.gov.cn/aarticle/i/jyjl/j/201205/20120508151487.html
    [2]气候变化2007综合报告IPCC第四次评估报告,2007.
    [3]张丽瑛.船舶能效设计指数及其未来对船舶业的影响.中国水运.2011,11(1):1-3.
    [4]许欢,刘伟,张爽.低碳经济下船舶航行速度选择.中国航海,2012,35(2):98-101,109.
    [5]邵颖风,王慧.气候变化新议题:船舶温室气体排放的法律规律.环境经济,2011,87(3):61-62.
    [6]交通运输部.2009中国航运发展报告.2010.
    [7]田长伟,赵翠.新造船舶能效设计指数对主机选型影响分析.广东造船,2011,30(2):45-48.
    [8]康天钦.基于降低船舶EEDI_EOI值的总能系统分析:(硕士学位论文).武汉理工大学,2011.
    [9]姚寿广.船舶热力系统分析.北京:科学出版社,2003.
    [10]柳卫东,陈兵.新造船能效设计指数及其对船舶设计的影响.船舶工程,2010,32(2):17-21.
    [11]张乐山.能效设计指数EEDI的强制实施及其影响.中国远洋航务,2011,(10):28-29.
    [12]张东方,张善杰,陆亦恺.船舶压载水处理系统技术研发现状及展望.世界海运,2012,35(9):51-54.
    [13]徐华.C02设计指数变身EEDI,中国船检,2009,(9):46-48,131.
    [14]刘亮.船舶能效设计中若干耐波性影响因素研究:(硕士学位论文).哈尔滨工程大学,2010.
    [15]大连海事大学国际海事公约研究中心.国际海事组织海上环境保护委员会第64届会议简报.2012.12.
    [16]郑庆功.船舶减速对其温室气体排放的控制研究:(硕士学位论文).大连:大连海事大学,2008.
    [17]魏锦芳,陈京普,周伟新EEDI中船舶失速系数fw的计算方法与软件开发.中国造船,2010,51(3):77-82
    [18]Zhao Zaili,Yang Dan,Kang Tianqin, Yuan Zhaofeng, Zheng Hang.Carbon Emission Estimation of a Chemical Tanker in the Life Cycle. International Workshop of Automobile, Power and Energy Engineering (APEE 2011). Wuhan, China:IEEE,2011.4
    [19]邢丰铄.新造船舶能效设计指数及其限值研究:(硕士学位论文).大连海事大学,2012.
    [20]刘继龙.船舶能效设计指数分析:(硕士学位论文).大连海事大学,2013.
    [21]杨蕖.渔业船舶低碳船型方案决策支持系统:(硕士学位论文).大连理工大学,2013.
    [22]Figari. M. Probability of achieving the energy efficiency index by Monte Carlo simulation. University of Genoa, RINA, Royal Institution of Naval Architects International Conference on Managing Reliability and Maintainability in the Maritime Industry, papers, p 107-114,2012.
    [23]倪骏恺.船舶能效营运指数研究:(硕士学位论文).上海交通大学,2010.
    [24]史战国.风帆助航船舶典型航线能效营运指数研究:(硕士学位论文).大连海事大学,2011.
    [25]刘伊凡.基于蒙特卡罗方法的船舶能效建模仿真及研究:(硕士学位论文).大连海事大学,2013.
    [26]El-Sayed, Y. M., Gaggioli, R. A. Critical review of second law costing methods: Background and algebraic procedures. Journal of Energy Resources Technology, Transactions of the ASME.1989,111(1):1-7.
    [27]Gaggioli, R. A., El-Sayed, Y. M. Critical review of second law costing methods-Ⅱ:Calculus procedures. Journal of Energy Resources Technology, Transactions of the ASME.1989,111(1):8-15.
    [28]El-Sayed, Y. M., Evans, R. B. Thermoeconomics and the design of heat systems. Journal of Engineering for Power.1970,92 Ser A(1):27-35.
    [29]Valero, A., Lozano, M. A., Munoz, M. A general theory of exergy saving. Parts Ⅰ. On the Exergetic Cost, in:ASME Book H0341A, AES:vol.2-3,1986.1-8.
    [30]Valero, A., Lozano, M. A., Munoz, M. A general theory of exergy saving. Parts Ⅱ. On the Thermoeconomic Cost, in:ASME Book H0341A, AES:vol.2-3,1986.9-15.
    [31]Frangopoulos, C. A. Optional synthesis and operation of thermal systems by the thermoeconomic functional approach. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME.1992,114 (4):707-714.
    [32]El-Sayed, Y. M. Application of exergy to design. Energy Conversion and Management. 2002,43(9-12):1165-1185.
    [33]Frangopoulos, C. A., Caralis, Y. C. A method for taking into account environmental impacts in the economic evaluation of energy systems. Energy Conversion and Management. 1997,38(15-17):1751-1763.
    [34]Hua, B., Chen, Q. L., Wang, P. A new exergoeconomic approach for analysis and optimization of energy systems. Energy.1997,22(11):1071-1078.
    [35]Lozano, M. A., Valero, A., Serra, L. Local optimization of energy systems, in: Proceedings of the ASME, Advanced Energy System Division, AES. Atlanta, Georgia:vol. 36,1996.241-250.
    [36]von Spakovsky, M. R., Evans, R. B. Engineering functional analysis-Part Ⅰ. Journal of Energy Resources Technology, Transactions of the ASME.1993,115(2):86-92.
    [37]Evans, R. B., von Spakovsky, M. R. Engineering functional analysis-Part Ⅱ. Journal of Energy Resources Technology, Transactions of the ASME.1993,115(2):93-99.
    [38]Lozano, M. A., Bartolome, J. L., Valero, A., Reini, M. Thermoeconomic diagnosis of energy systems, in:Carnevale, E., editor. Proceedings of the International Conference Flowers' 94-Florence World Energy Research Symposium. Florence, Italy: 1994.149-156.
    [39]Schwarcz, P., Lozano, M. A., von Spakovsky, M. R., Valero, A. Diagnostic analysis of a PFBC power plant using a thermoeconomic methodology, in:Cai, R., Moran, M. J., Zhang, S. and Xiao, Y., editors. TAIES' 97:Thermodynamic Analysis and Improvement of Energy Systems Proceedings of Intl. Conference. Beijing, China:World Pubs. Corp. 1997.240-249.
    [40]Valero, A., Correas, L., Zaleta, A., Lazzaretto, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 1:the TADEUS problem. Energy.2004,29(12-15):1875-1887.
    [41]Valero, A., Correas, L., Zaleta, A., Lazzaretto, A., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 2. Malfunction definitions and assessment. Energy.2004,29(12-15):1889-1907.
    [42]Lozano, M. A., Valero, A. Theory of the exergetic cost. Energy.1993,18(9): 939-960.
    [43]Bejan, A., Tsatsaronis, G., Moran, M. J. Thermal design and optimization. New York:Wiley,1996.
    [44]Tsatsaronis, G., Lin, L., Pisa, J. Exergy costing in exergoeconomics. Journal of Energy Resources Technology, Transactions of the ASME.1993,115(1):9-16.
    [45]Tsatsaronis, G., Pisa, J. Exergoeconomic evaluation and optimization of energy systems-Application to the CGAM problem. Energy.1994,19(3):287-321.
    [46]Frangopoulos, C. A. Thermoeconomic functional analysis:a method for optimal design or improvement of complex thermal systems:[Ph.D. thesis]. Georgia Institute of Technology,1983.
    [47]Silveira, J. L., Tuna, C. E. Thermoeconomic analysis method for optimization of combined heat and power systems-Part Ⅰ. Progress in Energy and Combustion Science. 2003,29(6):479-485.
    [48]Silveira, J. L., Tuna, C. E. Thermoeconomic analysis method for optimization of combined heat and power systems-Part Ⅱ. Progress in Energy and Combustion Science. 2004,30(6):673-678.
    [49]von Spakovsky, M. R. Application of engineering functional analysis to the analysis and optimization of the CGAM problem. Energy.1994,19(3):343-364.
    [50]Valero, A. On causality in organized energy systems:Part Ⅰ. Purpose, cause, irreversibility, cost, in:Stecco, S. S. and Moran, M. J., editors. International Symposium:A future for energy. Florence, Italy:Pergamon Press,1990.387-392.
    [51]Valero, A., Torres, C. On causality in organized energy systems:Part Ⅱ. Symbolic exergoeconomics. in:Stecco, S. S. and Moran, M. J., editors. International Symposium: A future for energy. Florence, Italy:Pergamon Press,1990.393-401.
    [52]Valero, A., Lozano, M. A., Torres, C. On causality in organized energy systems: Part III. Theory of perturbations, in:Stecco, S. S. and Moran, M. J., editors. International Symposium:A future for energy. Florence, Italy:Pergamon Press,1990. 402-420.
    [53]Uche, J. Thermoeconomic analysis and simulation of a combined power and desalination plant:[Ph.D. thesis]. Department of Mechanical Engineering, University of Zaragoza,2000.
    [54]Lozano, M. A., Valero, A. Thermoeconomic analysis of gas turbine cogeneration systems, in:Richter, H. J., editor. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems-Session II:General Thermodynamics & Energy Systems, AES. New Orleans, LA, USA:ASME, vol.30,1993.311-320.
    [55]Valero, A., Lozano, M. A., Serra, L., Torres, C. Application of the exergetic cost theory to the CGAM problem. Energy.1994,19(3):365-381.
    [56]Royo, J., Zaleta, A., Valero, A. Thermoeconomic analysis of steam turbines:an approach to marginal cost allocation, in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Atlanta, GA, USA:ASME, vol.36,1996.437-444.
    [57]Valero, A., Lozano, M. A., Bartolome, J. L. On-line monitoring of power-plant performance, using exergetic cost techniques. Applied Thermal Engineering.1996, 16(12):933-948.
    [58]Correas, L., Martinez, A., Valero, A. Operation diagnosis of a combined cycle based on the structural theory of thermoeconomic. in:Proceedings of the ASME, Advanced Energy Systems Division, AES. Nashville, TE:vol.39,1999.
    [59]Valero, A., Torres, C., Lerch, F. Structural theory and thermoeconomic diagnosis. Part III:Intrinsic and Induced Malfunctions, in:Ishida, M., Tsatsaronis, G., Moran, M. J. and Kataoka, editors. ECOS' 99. Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems. Tokyo. Japan:1999.35-41.
    [60]Verda, V., Serra, L., Valero, A. Effects of the productive structure on the results of the thermoeconomic diagnosis of energy systems. International Journal of Applied Thermodynamics.2002,5(3):127-135.
    [61]Torres, C., Valero, A., Serra, L., Royo, J. Structural theory and thermoeconomic diagnosis. Part I:On malfunction and dysfunction analysis. Energy Conversion and Management.2002,43(9-12):1503-1518.
    [62]Verda, V., Valero, A., Serra, L., Rangel, V. H., et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions. Part-3 Approaches to the Diagnosis problem. in:Proceedings of ECOS 2003. Copenhagen, Denmark:2003.
    [63]Verda, V., Serra, L., Valero, A. The effects of the control system on the thermoeconomic diagnosis of a power plant. Energy.2004,29:331-359.
    [64]Toffolo, A., Lazzaretto, A. On the thermoeconomic approach to the diagnosis of energy system malfunctions indicators to diagnose malfunctions:Application of a new indicator for the location of causes. International Journal of Thermodynamics.2004, 7(2):41-49.
    [65]Correas, L. On the thermoeconomic approach to the diagnosis of energy system malfunctions suitability to real-time monitoring. International Journal of Thermodynamics.2004,7(2):85-94.
    [66]Verda, V. Thermoeconomic analysis and diagnosis of energy utility systems from diagnosis to prognosis. International Journal of Thermodynamics.2004,7(2):73-83.
    [67]Valero, A., Correas, L., Lazzaretto, A., Rangel, V., et al. Thermoeconomic philosophy applied to the operating analysis and diagnosis of energy utility systems. International Journal of Thermodynamics.2004,7(2):33-39.
    [68]Verda, V., Serra, L., Valero, A. Thermoeconomic diagnosis:Zooming strategy applied to highly complex energy systems. Part 1:Detection and localization of anomalies. Journal of Energy Resources Technology, Transactions of the ASME.2005, 127(1):42-49.
    [69]Verda, V., Serra, L., Valero, A. Thermoeconomic diagnosis:Zooming strategy applied to highly complex energy systems. Part 2:On the choice of the productive structure. Journal of Energy Resources Technology, Transactions of the ASME.2005, 127(1):50-58.
    [70]Torres, C., Serra, L., Valero, A., Lozano, M. A. The productive structure and thermoeconomic theories of system optimization. in:Proceedings of the ASME, Advanced Energy Systems Division, AES:vol.36,1996.429-436.
    [71]Uche, J., Serra, L., Valero, A. Thermoeconomic optimization of a dual-purpose power and desalination plant. Desalination.2001,136(1-3):147-158.
    [72]El-Sayed, Y. M., Tribus, M. Strategic use of thermoeconomics for system improvement. ACS Symposium Series.1983:215-238.
    [73]Knoche, K. F., Hesselmann, K. Exergoeconomical analysis of chemical processes-evaluation of an air separation plant. in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Anaheim, CA, USA:ASME, vol.2-3,1986.35-43.
    [74]Gaggioli, R. A., Wepfer, W. J. Exergy economics. Energy.1980,5(8-9):823-837.
    [75]Gaggioli, R. A. Analysis of energy systems-design and operation, in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Miami Beach, FL, USA:ASME, vol.1,1985.175.
    [76]Gaggioli, R. A. Second law analysis of a solar domestic hot water heating system. in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Miami Beach, FL, USA:ASME, vol.1,1985.135-148.
    [77]Gaggioli, R. A., El-Sayed, Y. M., El-Nashar, A. M., Kamaluddin, B. Second law efficiency and costing analysis of a combined power and desalination plant. in: American Society of Mechanical Engineers, Advanced Energy Systems Division. Anaheim, CA, USA:ASME, vol.2-3,1986.77-85.
    [78]Tsatsaronis, G., Winhold, M. Exergoeconomic analysis and evaluation of energy-conversion plants. Ⅰ. A new general methodology. Energy.1985,10(1):69-80.
    [79]Tsatsaronis, G., Winhold, M. Exergoeconomic analysis and evaluation of energy-conversion plants. Ⅱ. Analysis of a coal-fired steam power plant. Energy. 1985,10(1):81-94.
    [80]Moore, B. B., Wepfer, W. J. Application of second law based design optimization to mass transfer processes. ACS Symposium Series.1983:289-306.
    [81]Valero, A., Torres, C., Serra, L. A general theory of thermoeconomics:Part Ⅰ. Structural analysis, in:ECOS'92 International Symposium. Zaragoza, Spain:ASME Book 100331,1992.137-145.
    [82]Serra, L., Torres, C. Structural Theory of Thermoeconomics. in:Frangopoulos, C. A., editors. Exergy, Energy System Analysis, and Optimization, Oxford, UK: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers; 2003.
    [83]Valero, A., Royo, J., Lozano, M. A. The characteristic equation and second law efficiency of thermal energy systems. in:Sciubba, E. and Moran, M. J., editors. Second Law Analysis of Energy Systems:Towards the 21st Century. Roma:1995.99-112.
    [84]Rosen, M. A., Dincer, Ⅰ. Thermoeconomic analysis of power plants:An application to a coal fired electrical generating station. Energy Conversion and Management.2003, 44(17):2743-2761.
    [85]Kim, S.-M., Oh, S.-D., Kwon, Y.-H., Kwak, H.-Y. Exergoeconomic analysis of thermal systems. Energy.1998,23(5):393-406.
    [86]Kwon, Y.-H., Kwak, H.-Y., Oh, S.-D. Exergoeconomic analysis of gas turbine cogeneration systems. Exergy.2001,1(1):31-40.
    [87]王加璇.动力工程热经济学.(第一版).北京:水利电力出版,1995.
    [88]程伟良,王加璇.热经济学的辉煌发展.热能动力工程.1999,14(2):79-82.
    [89]王加璇,王清照,宋乃辉.热经济学研究的使命与任务.热能动力工程.2002,17(2):111-114.
    [90]张晓东,王加璇,高波.关于汽轮发电机组热经济学边际成本的研究.中国电机工程学报.2003,23(5):140-144.
    [91]程伟良,王清照,王加璇.分析能耗的边际(?)成本模型.中国电机工程学报.2004,24(10): 179-182.
    [92]程伟良,王清照,王加璇.300MW凝汽机组的热经济学成本诊断.中国电机工程学报.2005,25(8):126-129.
    [93]Frangopoulos, C. A., von Spakovsky, M. R., Sciubba, E. A brief review of methods for the design and synthesis optimization of energy systems. International Journal of Applied Thermodynamics.2002,5(4):151-160.
    [94]Valero, A., Serra, L., Lozano, M. A. Structural theory of thermoeconomics. in: Richter, H. J., editor. International Symposium on Thermodynamics and the Design, Analysis and Improvement of Energy Systems, ASME Winter Annual Meeting:ASME Book no. H00874,1993.189-198.
    [95]Evans, R. B. Thermoeconomic isolation and essergy analysis. Energy.1980,5(8-9): 805-821.
    [96]Evans, R. B., Kadaba, P. V., Hendrix, W. A. Essergetic functional analysis for process design and synthesis, in:ACS Symposium Series:1983.239-261.
    [97]Munoz, J. R. Optimization strategies for the synthesis/design of highly coupled, highly dynamic energy systems:[Ph.D. thesis]. Virginia Polytechnic Institute and State University,2000.
    [98]Munoz, J. R., Von Spakovsky, M. R. A decomposition approach for the large scale synthesis/design optimization of highly coupled, highly dynamic energy systems. International Journal of Applied Thermodynamics.2001,4(1):19-33.
    [99]Tsatsaronis, G. Thermoeconomic analysis and optimization of energy systems. Progress in Energy and Combustion Science.1993,19(3):227-257.
    [100]Valero, A., Lozano, M. A., Serra, L., Tsatsaronis, G., et al. CGAM problem: definition and conventional solution. Energy.1994,19(3):279-286.
    [101]Frangopoulos, C. A. Introduction to environomics. in:American Society of Mechanical Engineers, Advanced Energy Systems Division. Atlanta, GA, USA:ASME, Vol. 25,1991.49-54.
    [102]Frangopoulos, C. A. Introduction to environomic analysis and optimization of energy-intensive systems, in:ECOS' 92 International Symposium. Zaragoza, Spain:ASME, 1992.231-239.
    [103]Curti, V., von Spakovsky, M. R., Favrat, D. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace. Part I:Methodology. International Journal of Thermal Sciences.2000,39(7):721-730.
    [104]Curti, V., Favrat, D., von Spakovsky, M. R. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace. Part II:Application. International Journal of Thermal Sciences.2000,39(7):731-741.
    [105]Pelster, S., Favrat, D., Von Spakovsky, M. R. The thermoeconomic and environomic modeling and optimization of the synthesis, design, and operation of combined cycles with advanced options. Journal of Engineering for Gas Turbines and Power.2001,123(4): 717-726.
    [106]杨少华.基于环境(?)经济学策略的清洁过程系统优化研究:(博士学位论文).华南理工大学,2000.
    [107]郑莆燕.煤部分气化联合循环的技术、经济和环境性能综合分析研究:(博士学位论文).动力工程系,东南大学,2003.
    [108]张超.复杂能量系统的热经济性优化与分析:(博士学位论文).华中科技大学,2006.
    [109]任敬科.基于(?)传递的火电机组热经济性分析:(硕士学位论文).华北电力大学,2009.[110]熊杰.氧燃烧系统的能源_经济_环境综合分析评价:(博士学位论文).华中科技大
    学,2011.
    [111]程伟良.复杂能源系统及设备的节能技术研究:(博士学位论文).华北电力大学,2011.
    [112]蒋爱华.泛(?)分析方法及其应用研究:(博士学位论文).中南大学,2011.
    [113]项敬岩.基于(?)及热经济学的供热空调系统分析与评价研究:(博士学位论文).天津大学,2012.
    [114]黄连忠.船舶柴油机动力装置环境经济方法的研究:(博士学位论文).大连海事大学,2003.
    [115]关于自愿实施IMO“新造船EEDI设计指数计算方法临时指南”及“EEDI自愿验证临时指南”的通知.中国船级社(2010年)通函第10号总第10号.2010.3
    [116]IMO. Resolution MEPC.197(62) Amendments to MARPOL Annex VI on Regulations for the Prevention of Air Pollution from Ships by Inclusion of New Regulations on Energy Efficiency for Ships. London:July 2011.
    [117]MEPC.1/Circ.684. Guidelines for Voluntary Use of the Ship Energy Efficiency Operational Indicator (EEOI).2009 [118] GHG-WG 2/3/1. Review of the Energy Efficiency Operational Index.2009
    [119]于洪亮,黄连忠.船舶动力装置技术管理.大连:大连海事大学出版社,2008.
    [120]盛振邦,刘应中.船舶原理.上海:上海交通大学出版社,2003.
    [121]李通.风翼助航系统对船舶柴油机动力扰动特性研究:(硕士学位论文).大连海事大学,2011.
    [122]Bungay, Suffolk. Second IMO GHG Study 2009. London:CPI Books Limited, Reading RG1 8EX,2009.
    [123]李庆扬,王能超,易大义.数值分析.华中科技大学出版社,2006,100-120.
    [124]朱明善,刘颖,林兆庄,彭晓峰.工程热力学.北京:清华大学出版社,1995.
    [125]郑令仪,孙祖国,赵静霞.工程热力学.北京:兵器工业出版社,1993.
    [126]刘元成,林发森,柴油机及其动力装置节能技术.北京:人民交通出版社,1985.
    [127]Keenan, J. H.Steam chart for second law analysis. Trans. ASME.1992,54:95-103.
    [128]朱光俊,韩润,梁中渝.锅炉热平衡及热效率计算VB程序开发.工业炉窑热工.2008,02:15-20.
    [129]Milling B W, Hartles E R. Frictional losses in diesel engines. SAE paper 680590,1968.
    [130]Watson N, Pilly T, Hirozasu H A Combustion Correlation for Diesel Engine Simulation. SAE paper 800029,1980.
    [131]杨东华.热经济学.北京:科学出版社,1996.
    [132]R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol.1, Wiley,1962.
    [133]Evans R. B. and von Spakovsky M.R., Engineering Function Analysis, Journal of Energy Resources Technology, ASME,1993, Vol.115:86-99.
    [134]Gibbs. J. W., On the Equilibrium of Heterogeneous Substances, The Collected Works, Vol. Ⅰ, Yale University Press,1928.
    [135]Benelmir R, Evans R. B. and von Spakovsky M. R. High Degree Decentralization for the Optimum Thermoeconomic Design of a Combined Cycle, International Journal of Energy, Environment and Economics, Miami. FL,1991.
    [136]Luenberger D.G线性与非线性规划引论.北京:科学出版社,1980.
    [137]Evans R. B. Thermoeconomic Isolation and Essergy Analysis, Energy, Vol.5, No.8-9, 1980.
    [138]Evans R. B. and Tribus M. Thermoeconomics of Saline Water Conversion, I&EC, Process Design and Development, Vol.4 No.2,1965.
    [139]Von Spakovsky M.R. and Evans R.B., The Design and Performance Optimization Thermal System Components, ASME, Journal of Engineering for Gas Turbine and Power, 1990.
    [140]Valero A., Lozano M., et al., CGAM:Definition and Conventional Solution, Energy, Vol.19,1994.
    [141]G. V. Reklaitis, A. Ravindran, et al., Engineering Optimization, Methods and Applications, John Wiley and Sons, New York,1983.
    [142]孙培廷,李斌.船舶柴油机.大连:大连海事大学出版社,2002.
    [143]陆家祥.柴油机涡轮增压技术.北京:机械工业出版社,1999.
    [144]中华人民共和国国家统计局.中国统计年鉴2011.中国统计出版社,2011.
    [145]中华人民共和国国家统计局.中国统计年鉴1992.中国统计出版社,1992.
    [146]李赪.中国造船业需要进一步加快产业升级步伐.经济研究导刊.2010,1:30-32.
    [147]刘寅东.船舶设计原理.北京:国防工业出版社,2010:259.
    [148]李中军.在世界造船产业转移背景下我国造船产业的发展对策研究:(硕士学位论文),大连海事大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700