用户名: 密码: 验证码:
船舶动力定位的智能控制及推力分配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航海科学技术和船舶与海洋工程的发展,当代海洋资源开发和海上运输对于船舶动力定位系统的要求越来越高,也促进了动力定位系统技术的快速发展。研究动力定位问题具有重要的理论意义和实用价值。
     三自由度的水面船舶是典型意义的非线性系统,它具有强耦合、大惯性、模型参数不确定性以及工作中受到外界的风、浪和流干扰的特点,传统PID和LQG方法虽然在动力定位系统中取得了应用,但是随着人们对定位精度要求的提高,这些方法存在着一定的局限性,因此吸引了国内外广大学者的兴趣。本论文探索和系统研究船舶动力定位新的控制方法,完成了以下研究工作:
     (1)根据MMG模型理论建立了一个动力定位船舶的非线性数学模型,为了说明此模型的精确性,通过船舶旋回仿真实验和实船的比较研究来验证模型的有效性。为了实现船舶的航向保持控制,将一种线性自抗扰控制方法应用于船舶运动模型当中,仿真结果表明该控制算法的有效性。
     (2)基于简化的船舶航向Norrbin非线性模型,针对模型参数不确定和控制增益未知的非线性船舶航向控制问题,采用RBF神经网络自适应控制,提出了一种新的非线性航向保持控制器。理论上,先证明存在连续的控制律,然后通过RBF神经网络对其逼近,最后借助Lyapunov稳定性理论分析证明了船舶航向保持闭环系统的所有误差信号一致最终有界。
     (3)针对带有模型参数确定和外界风浪流干扰的动力定位水面船舶,采用双环滑模变结构方法设计船舶动力定位控制律,利用积分滑模来实现切换函数的设计。外环滑模控制律实现船舶位置的控制,外环控制器产生速度指令,并传送给内环系统,然后通过内环滑模控制律实现船舶实际速度对速度指令的跟踪,Lyapunov稳定性分析证明了闭环系统的所有误差信号渐近稳定。
     (4)针对带有模型参数不确定和外界风浪流干扰的动力定位水面船舶,提出一种动力定位船全速域RBF神经网络自适应控制器。在反步设计的过程中,采用RBF神经网络与Nussbaum函数相结合的控制策略。该方法有效地避免了控制器的奇异问题和反步设计过程中的“计算膨胀”问题,Lyapunov稳定性分析证明了闭环系统的所有误差信号一致最终有界。
     (5)针对带有模型参数不确定和外界干扰的动力定位水面船舶,提出一种动力定位船全速域自适应输出反馈控制器。首先应用Lyapunov直接法设计出全局指数稳定的观测器,然后采用反步设计方法设计出自适应输出反馈控制器,最后利用串级系统理论分析证明了船舶动力定位闭环系统的所有误差信号渐近稳定。
     (6)针对带有非线性约束条件的推力分配优化问题,对动态的等式约束进行等份离散,在传统的粒子群算法中进行了改进,加入了改进的惯性因子,改进的比较准则和改进的干扰算子,将改进后的粒子群算法应用到推力分配策略中,从仿真中可以看出,改进的粒子群算法可实现推进系统有效跟踪期望指令。
With the advancement of the nautical science and technology as well as the ships and marine engineering, contemporary development of marine resources and sea transport has set increasingly higher standards for ship dynamic positioning, and also promoted its rapid development. Therefore, Studying dynamic positioning problem has important theoretical significance and practical value.
     Three degrees of freedom surface vessels are typical of nonlinear systems, they are characteristic of strong coupling, large inertia, uncertainties of model parameter as well as the disturbance to work by the outside wind, wave and flow. With the increasing demand on the positioning accuracy, the traditional PID and LQG methods do have some limitations in spite of their previous applications, thus arousing the interest of many scholars at home and abroad. And this thesis is to explore and systematically research the new control methods for ship dynamic positioning; the research work is as follows:
     (1) Based on MMG model theory, establish a nonlinear mathematical model of dynamically positioned vessels; verify the accuracy and validity of the model through ship's turning simulation tests and comparative study of real ship. In order to achieve control of the ship's course keeping, a linear ADRC method was applied to the ship motion model, and the effectiveness of this control algorithm has been proved by the simulation results.
     (2) Based on a simplified Norrbin nonlinear model of ship course, in view of the uncertainties of model parameter and the unknown control gain, using the RBF neural network adaptive control, a new nonlinear course keeping controller was proposed. Theoretically, first prove the existence of a continuous control law, then approximate through RBF neural network, and via Lyapunov stability theory, finally analyzes and illustrates that the consistency of all error signals of the closed-loop system for ship course keeping are ultimately bounded.
     (3) For surface vessels of dynamic positioning with parameter uncertainties and external disturbances, design the ship dynamic positioning control law by using bicyclic sliding-mode variable structure; achieve the design of the switching function by implementing the integral sliding mode. The outer sliding mode control law is to achieve control of the ship's position, the outer ring controller generates a speed command and sends it to the inner ring system, and then through the inner sliding mode control law, achieve the actual speed's tracking for speed command. Lyapunov stability has illustrated that all error signals of closed-loop system are asymptotically stable.
     (4) For surface vessels of dynamic positioning with parameter uncertainties and external disturbances, a RBF neural network based adaptive controller for the dynamic positioning vessel of all speed envelopes was proposed. In the process of backstepping design, a control strategy was adopted by combining RBF neural network and Nussbaum function. This method was effective to avoid the controller singularity problem and the calculation inflation problems in the process of backstepping design. Based on Lyapunov stability analysis, it's proved that all error signals of vessels path following closed-loop system are uniformly ultimately bounded.
     (5) For surface vessel of dynamic positioning with parameter uncertainties and external disturbances, an adaptive output feedback controller for the dynamic positioning vessel of all speed envelopes was proposed. Firstly, a globally exponentially stable observer was designed by applying Lyapunov direct method, and then an adaptive output feedback controller was designed by adopting backstepping design method, and finally based on cascaded system theory, it's proved that all error signals of closed-loop system of dynamic positioning vessel are asymptotically stable.
     (6) For a thrust with nonlinear constraints allocation optimization problem, equally scatter the dynamic equation constraint; modify traditional PSO by adding the improved inertia factor, comparison criteria as well as the interference operator; apply the improved PSO to thrust allocation strategy. The simulation result has shown that the improved PSO can make the propulsion system well track the desired command.
引文
[1]Det norske Veritas (DnV) Rules and regulations of ships newbuildings, Special Equipment and Systems, Additional class, Part 6, Chapter:Dynamic Positioning Systems(DP), Norway, 1990.
    [2]American Bureau of Shipping (ABS), Guide for thrusters and dynamic position systems, New York,1994.
    [3]Lloyd's Register of Shipping (LRS), Rules and regulations for the classification of ships, Part 8, Chapter 4:Rules for the construction and classification of dynamic positioning systems in stalled in ships, U.K,1997.
    [4]何黎明.船舶动力定位系统的控制方法研究.上海:上海交通大学,2004.
    [5]Hoffman-wellenhof. B., Lichtenegger H., and Collins.J., GPS theory and practice, New York:Springer,1994.
    [6]Sorensen, A. J. (2005). Structual issues in the design and operation of marine control systems. Annual Reviews in Control 29(1):125-149.
    [7]Webster, W. and De Sousa, Optimum allocation for multiple thrusters. Proceedings of the ISOPE'99, Brest, France,1999.
    [8]Berge, S. P. and T.I. Fossen. Robust control allocation of overactuated ships; experiments with a model ship. Preprints IFAC Conference on Maneuvering and Control of Marine Craft. Brijuni, Croatia,1997.
    [9]CHRISTIAAN DE WIT. Optimal Thrust Allocation Methods for Dynamic Positioning of Ships, 2009.
    [10]William. C. Webster, Joao Sousa. Optimum allocation for multiple thrusters. Proceeding of the ninth international offshore and polar engineering conference (ISOPE), Briest, France, 1999.
    [11]C. C. Liang. The optimum control of thruster system for dynamically positioned vessels. Ocean Engineering,31(2004):97-110.
    [12]Zhao, Da-Wei, Ding, Fu-Guang, Tan, Jin-Feng, et al. Optimal thrust allocation based GA for dynamic positioning ship, IEEE International Conference on Mechatronics and Automation, Xi'an, China,2010:1254-1258.
    [13]吴显法,王言英.动力定位系统的推力分配策略研究.船舶工程,2008,6:92-96.
    [14]Sargent, J. S, and Cowgill, P. N.Design considerations for dynamically positioned utility vessels.Proceedings of the 8"'offshore technology conference, Dalas,1976.
    [15]Alf M Meling. DP Control on DEP (Diesel Electric Propulsion) Vessels. DYNAMIC POSITIONING CONFERENCE, October17-18,2000.
    [16]Jon Holvik. Basics of Dynamic Positioning. DYNAMIC POSITIONING CONFERENCE, October 13-14,1998.
    [17]Balchen, J. G. et al. Dynamic positioning of floating vessels based on Kalman filtering and optimal control. Proceedings of the 19th IEEE conference on decision and control, New York, 1980:852-864.
    [18]Grimble, M. J., Patton, R. J. and Wise, D. A, The design of dynamic positioning control systems using stochastic optimal control theory. Optimal control applications and methods, 1980:167-202.
    [19]童进军,何黎明,田作华.船舶动力定位系统的数学模型.船舶工程,2002,(5):27-29.
    [20]E. A. Tannuri, H. M. Morishita. Experimental and numerical evaluation of a typical dynamic positioning system. Applied Ocean Research,2006,28:133-146.
    [21]于培文,陈辉,等.船舶动力定位系统控制技术的发展与展望.中国水运.2009,(2):44-45
    [22]Thor I Fossen. Marine Control Systems:Guidance, Navigation and control of ships,Rigs and Underwater Vehicles. 1st ed. Marine Cybernetics, Trondheim, Norway,2002.
    [23]Krstic M, Kanellakopoulos I.Kokotovic P V. Nonlinear and Adaptive Control Design. New York:Wiley,1995.
    [24]贺昱曜,闫茂德.非线性控制理论及应用.西安:西安电子科技大学出版社,2007.
    [25]Fossen, T.I. and Strand, J.P., Passive nonlinear observer design for ships using Lyapunov methods:full-scale experiments with a supply vesse. Automatic,1999,35(1):3-16.
    [26]Fossen, T. I. and Grovlen, A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping, IEEE transactions on control systems technology,1998,6(1):369-376.
    [27]Fossen, T.I. and Berge, S. P. Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics. Proceedings of IEEE conference on decision and control, San Diego,1997:4237-4242.
    [28]Robertson, A. and Johansson R. Comments on "nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping". IEEE transactions on control systems technology,1998,6(3):439-441.
    [29]Fossen, T. I. and Grovlen, A., A tutorial on nonlinear backstepping:applications to ship control. Modeling, identification and control,1999,20(2):83-135.
    [30]Fossen, T. I. and Blanke, M., Nonlinear output feedback control of underwater vehicle propellers using feedback from estimated axial flow velocity. IEEE transactions on journal of oceanic engineering,2000,25(2):241-255.
    [31]Lorial, A, Fossen, T.I. and Panteley, E., A separation principle for dynamic positioning of ships:theoretical and experimental results. IEEE transactions on control systems technology,2000,8(2):332-343.
    [32]何黎明,田作华,施颂椒.动力定位船舶的非线性观测器设计.上海交通大学学报,2003,(06):964-968.
    [33]Fossen, T. I., Nonlinear passive control and observer design for ships. Modeling, identification and control,2000,MIC-21(3):129-184.
    [34]Narendra K S, Annaswamy A M. Stable Adaptive Systems. NJ:Prentice Hall,1989.
    [35]Polycarpou M M, Ioannou P A. A Robust Adaptive Nonlinear Control Design. Automatica, 1996,32(3):423-427.
    [36]Narendra K S, Valavani L. Stable adaptive controller design--Direct control, IEEE Transactions on Automatic Control,1978,23(4):570-583.
    [37]Narendra K S, Lin Y H, Valavani L S. Stable adaptive controller design-Part II:proof of stability, IEEE Transactions on Automatic Control,1980,25(3):440-448.
    [38]Morse A S. Global stability of parameter adaptive systems, IEEE Transactions on Automatic Control,1980,25(3):433-439.
    [39]K S, Lin Y H. Stable discrete adaptive control, IEEE Transactions on Automatic Control, 1980,25(3):456-461.
    [40]Kumpati S Narendra, Anuradha M Annaswamy. Stable Adaptive Systems. NJ:Prentice Hall, 1989.
    [41]K S Fu and M Walts. A Heuristic Approach to Reinforcement Learning Control Systems. IEEE Trans. Automat Control,1965,AC-10 (4):390-398.
    [42]K S Fu. Learning Control Systems and Intelligent Control Systems:An Intersection of Artificial Intelligence and Automatic Control. IEEE Trans. Automat Control.1971, AC-16(1):70-72.
    [43]周其鉴,李祖枢,陈民轴.智能控制及其展望.信息与控制,1987.
    [44]陈燕庆,等.工程智能控制.西北工业大学出版社,1991.
    [45]孙增圻,张再兴,邓志东.智能控制理论与技术.清华大学出版社,1997.
    [46]王耀南.智能控制系统.湖南大学出版社,1996.
    [47]孙增圻,张再兴.智能控制的理论与技术.控制与决策,1996.
    [48]B Kosko. Neural Networks and Fuzzy System-A Dynamical Systems Approach to Machine Intelligence. Prentice-Hall,1992.
    [49]G N Sarids. Toward the Realization of Intelligent Controls. Proc. Of the IEEE,1979, 67(8):173-182.
    [50]夏国清.水面舰船动力定位系统智能控制技术研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2001.
    [51]孟浩.船舶航行的智能自适应控制研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2003.
    [52]芮世民,朱继懋,黄根余.应用自适应模糊控制实施船舶动力定位.上海交通大学学报,2000,(01):56-59.
    [53]张桂兰,邓志良.模糊控制器在船舶动力定位系统中的应用与改进.中国造船,2005,46(4):26-30.
    [54]谷丽丽,邓志良.船舶动力定位中的模糊控制器优化技术.舰船电子工程,2006,(03):114-116.
    [55]Cybenko G, Approximation by superpositions of sigmoidal Function, Mathematics of Control, Signals and Systems,1989,2 (4):303-314.
    [56]Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators, IEEE Transactions on Neural Networks,1989,2:359-366.
    [57]Park J,Sandberg I W, Universal approximation using radial basis function networks, Neural Computation,1991,3(2):246-257.
    [58]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks, IEEE Transactions on Neural Networks,1990,1(1):4-27.
    [59]Sanner R M, Slotine J J E.Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks,1992,3(6):837-863.
    [60]Sadegh N. A perceptron network for functional identification and control of nonlinear systems, IEEE Transactions on Neural networks,1993,4(6):982-988.
    [61]Yusong Cao, Zhengquan Zhou and William S. Vorus. Application of a Neural Network Predictor/Controller to Dynamic Positioning of Offshore Structures. DYNAMIC POSITIONING CONFERENCE, October 17-18,2000.
    [62]Naoki Mizunoa, Masaki Kurodaa, Tadatsugi Okazakib and Kohei Ohtsu. Minimum time ship maneuvering method using neural network and nonlinear model predictive compensator. Control engineering practice,2007,15:757-765.
    [63]贺昱曜,闫茂德.非线性控制理论及应用.西安:西安电子科技大学出版社,2007.
    [64]张智星,孙春在,水谷英二.神经-模糊和软计算.西安:西安交通大学出版社,2000.
    [65]韩力群.人工神经网络教程.北京:北京邮电大学出版社,2006.
    [66]J. Moody, C. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation,1989,1:281-294.
    [67]韩京清.自抗扰控制技术.前沿科学,2007,(1):24--31.
    [68]Ashraf iuon H, Muske K R, McNinch L C. Sliding-mode tracking control of surface vessels. IEEE transactions on industrial electronics,2008,55(11):4004-4012.
    [69]Lu Y. S., Chiu C W. Global sliding mode control with generalized sliding dynamics. Asian Journal of Control,2009,11(4):449-456.
    [70]Fahimi F. Sliding-mode formation control for underactuated surface vessels. IEEE Transactions on Robotics,2007,23(3):617-622.
    [71]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [72]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,2005.
    [73]Abkowitz M A. Lectures on ship hydrodynamics, steering and maneuverability. Hydro-and Aerodynamics Laboratory. Report No. Hy-5. Denmark,1964.
    [74]Norrbin N H. Theory and observation on the use of a mathematical model for ship maneuvering in deep and confined waters. Publication No.68 of SSPA. Sweden,1970.
    [75]Fossen T I. Marine Control Systems. Trondheim, Norway:Marine Cybernetics,2002.
    [76]McDonald M, Trawlers to Tankers-R. W. System of Bridge Control of Diesel Engines, Conference on Bridge Control Systems for Ships, The Institute of Marine Engineers, March 1975:22-30.
    [77]Zhang Yao, Grant E H, and Pratyush S. A Multivariable Neural controller for Automatic Ship Berthing, IEEE Control Systems.1997,17(4):31-44.
    [78]卜仁祥.限制水域中船舶航速安全的综合评判:(硕士学位论文).大连:大连海事大学,1999.
    [79]赵月林,古文贤.浅水中船舶操纵运动的模拟计算.大连海运学院学报,1990,16(4):337-344.
    [81]刘正江.船舶倒车停止性能研究:(硕士学位论文).大连:大连海运学院,1987.
    [82]日本造船学会.“船舶操纵性能0推定”专集,日本造船学会志,668号,1985.
    [83]赵月林.浅水中船舶操纵运动数学模型研究:(硕士学位论文).大连:大连海运学院,1991.
    [84]日本造船学会.“船舶操纵性能(?)推定”专集,日本造船学会志,668号,1985.
    [86]Thor I Fossen. Marine Control Systems:Guidance, Navigation and control of ships, Rigs and Underwater Vehicles. 1st ed. Marine Cybernetics, Trondheim, Norway,2002.
    [87]卜仁祥.欠驱动水面船舶非线性反馈控制研究:(博士学位论文).大连:大连海事大学,2008.
    [88]Even Borhaug, A Pavlov, Kristin Y Pettersen. Integral LOS Control for Path Following of Underactuated Marine Surface Vessels in the Presence of Constant Ocean Currents. Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico,2008: 4984-4991.
    [89]韩春生,刘剑,汝福兴,徐建安.基于PID算法的船舶航迹自动控制.自动化技术与应用,2012,31(4):9-12.
    [90]吴瑶,吴汉松,袁雷.基于输入输出线性化的自适应模糊滑模航迹控制.计算机技术与自动化,2012,31(3):5-9.
    [91]王震宇,吴汉松,吴瑶.基于输入状态线性化的船舶航迹系统鲁棒控制及仿真.船电技术,2012,32(8):47-53.
    [92]刘文江.欠驱动水面船舶航向航迹非线性鲁棒控制研究:(博士学位论文).大连:大连海事大学,2012
    [93]张为民,郭晨.船舶航向PID型模糊控制器研究.中国造船,2012,53(1):45-52.
    [94]刘文江,隋青美,周风余,肖海荣.基于自适应模糊滑模控制的船舶航向控制器设计.信息与控制,2012,41(2):136-141.
    [95]韩京清.自抗扰控制技术——估计补偿不确定因素的控制技术,国防工业出版社,2009.
    [96]杨盐生.船舶操纵模拟器数学模型的研究.西安:国家教委科技委交通运输学科组青年学术骨干学术讨论会,1993.
    [98]刘挺.大型集装箱船舶操纵控制建模与仿真的研究:(硕士学位论文).大连:大连海事大学,2012.
    [99]Gao Z. Q..Scaling and Bandwidth-parameterization Based Controller Tuning. American Control Conference,2003,6:4989-4996.
    [100]张显库.基于Lyapunov稳定性的船舶航向保持非线性控制.西南交通大学学报,2010,4(1):140-143.
    [101]J. M. Godhavn, T. I. Fossen. Nonlinear and adaptive backstepping designs for tracking control of ships. International Journal of Adaptive Control Signal Processing, 1988,12(8):649-670.
    [102]Anna Witkowska, Roman Smiezchalski. Nonlinear backstepping ship course controller, International Journal of Automation and Computing,2009,6(3):277-284.
    [103]张显库,吕晓菲,郭晨,等.船舶航向保持的鲁棒神经网络控制.船舶力学,2006,10(5):54-58.
    [104]T I. Fossen. Guidance and Control of Ocean Vehicles. New York:Wiley,1994.
    [105]S. Lang, Real Analysis. Reading, MA:Addison-Wesley, Reading,1983.
    [106]M. M. Gupta and D. H. Rao.'Neuro-control systems:Theory and applications'. IEEE Neural Networks Council, New York, NY,1994.
    [107]C. Y. Tzeng, G. C. Goodwub and S. Crisafulli. Feedback linearization of a ship steering autopilot with saturating and slew rate limiting actuator, International Journal of Adaptive Control Signal Process,1999,13(1):23-30.
    [108]M. A. Unar, D. I. Murray-smith. Automatic steering of ships using neural network, International Journal of Adaptive Control Signal Process,1999,13(2):203-218.
    [109]Balchen J G. Design and analysis of a dynamic positioning system based on kalman filtering and optimal control. IEEE Trans on Automatic Control,1983,28(3):331-339.
    [110]Fossen, T. I. and Grovlen, A.. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping, IEEE transactions on control systems technology,1998,6(1):369-376.
    [111]李和贵,翁正新,施颂椒.基于模糊控制的船舶动力定位系统设计与仿真.系统工程与电子技术,2002,24(11):42-44.
    [112]夏国清,Corbett Dan R.基于DRNN神经网络的PD混合控制技术在船舶自动力定位系统中的应用.中国造船,2006,47(1):48-54.
    [113]Katbi M R,Grimble M J, hang Y. H robust control design for dynamic ship positioning. Marine Control, IEE Pro-Control Theory Appl,1997,144(2):110-118.
    [114]何黎明,田作华,施颂淑.动力定位船舶非线性观测器设计.上海交通大学学报,2003,37(6):964-968.
    [115]Do K D. Global robust and adaptive output feedback dynamic positioning of surface ships. Journal of Marine Science and Applicantion,2011,3(10):325-332.
    [116]Fossen, T. I.. Marine control systems. Trondheim, Norway:Marine Cybernetics,2002.
    [117]Do K D., Jiang Z. P., Pan J.:Global robust adaptive path following of-underactuated ships,Automatica,2006,42(10):1713-1722.
    [118]朱齐丹,于瑞亭,夏桂华,刘志林.风浪流干扰及参数不确定欠驱动船舶航迹跟踪的滑模鲁棒控制.控制理论与应用,2012,29(7):960-964.
    [119]Sastry. Adaptive control of linearizable system. IEEE Translations on Automatic Control,1989.34(1):1123-1131.
    [120]杨迪.欠驱动水面船舶路径跟踪的非线性自适应控制:(硕士学位论文).大连:大连海事大学,2013.
    [121]DM. T. Rashed, "Numerical solutions of functional integral equations, " Appl. Math. Comput.,vol.156:507-512,24.
    [122]Vidyasagar M. Decomposition techniques for large-scale systems with nonadditive interactions:Stability and stabilizability. IEEE Trans. Autom. Control,1980,25(4): 773-779.
    [123]K D Do, Z P Jiang, J Pan. Robust adaptive path following of underactuated ships. Automatica,2004,40(6):929-944.
    [124]Jin J, Park Y, Tahk M J. Atrirude control of a satellite with redundant trusters. Aerospace Science and Tecknology,2006,10(7):644-651.
    [125]Servidia PA, Pe a RS. Spacecraftthruster control allocation problems. IEEE Transactions on Automatic Control,2005,5(2):245-249.
    [126]刘曰强.半潜式平台动力定位系统推力分配优化算法研究:(硕士学位论文).哈尔滨:哈尔滨工程大学,2009.
    [127]Johan. Wichers, Stephen. Bultema, Richard. Matten. Hydro-dynamic research on optimizing dynamic positioning system of a deep water drilling vessel, OTC 8854,1998.
    [128]0. J. Serdalen. Optimal thrust allocation for marine vessels. Control engineering practice.1991,5(9):1223-1231.
    [129]C. C. Liang.The optimum control of thrust system for dynamically positioned vessels. Ocean Engineering,2004,31:97-110.
    [130]Tor. A. Johansen. Optimal constrained control allocation in marine Surface vessels with rudders. Control Engineering Practice,2007.
    [131]Tor. A. Johansen. Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming. IEEE Transaction on Control Systems,2004, 12(1):211-216.
    [132]吴显法,王言英.动力定位系统的推力分配策略研究.船舶工程,2008,6:92-96.
    [133]Tor. A. Johansen, Thomas P. Fuglseth, Petter Tondel, Thor I. Fossen. Optimal constrained control allocation in marine surface vessels with rudders. Control engineering practice,2008, (16):457-464.
    [134]Zhao, et al. Optimal thrust allocation based GA for dynamic positioning ship. IEEE International Conference on Mechatronics and Automation,2010:1254-1258.
    [135]杨世知.DP推进系统水动力干扰及最优推力分配算法研究:(硕士学位论文).上海:上海交通大学,2010.
    [136]Kenndy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Volume IV, Perth, Australia, IEEE Service Center, Piscataway, N. J.,1995:1945-1948.
    [137]Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments. Proceedings of ICAI,2000.
    [138]Clerc M, Kennedy J. The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. on Evolutionary Computation,2002,6(1):58-73.
    [139]Eberhart R, Hu X. Human tremor analysis using particle swarm optimization. Proceedings of Congress on Evolutionary Computation, Washingon., D. C,1999:1927-1930.
    [140]Fukuyama Y, Yoshida H A. Particle swarm optimization for reactive power and voltage control in electric power systems. Proceedings of Congress on Evolutionary Computation, Seoul, Korea,2001.
    [141]Eberhart R, Shi Y H. Particle swarm optimization:Development, applications and resources. Proceedings of Congress on Evolutionary Computation, Seoul, Korea,2001.
    [142]曾建潮,等.微粒群算法.北京:科学出版社,2004.
    [143]Karl-Petter. W. Lindegard. Acceleration Feedback in Dynamic Position[PhD Dissertation]. Trondheim:Norwegian University of Science and Technology,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700