用户名: 密码: 验证码:
船舶减摇无模型自适应控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上航行船舶受到海洋风浪流干扰后,将产生六个自由度运动,其中横摇运动对船舶的影响最大。剧烈的横摇运动不仅使船员无法正常工作,严重的有可能导致设备仪器失灵,甚至有可能导致船舶海难事故的发生,造成环境污染和财产生命等重大损失。
     如何有效地避免这种现象的发生是目前船舶运动控制领域的热门课题。为保证船舶安全航行,首先要研究海洋环境的特性,以便研究海洋环境对船舶的扰动作用,分析航行于海上的船舶一般运动规律。其次要研究船舶横摇运动的动力学特性,分析引起横摇运动难于控制的原因。此外要研究选用什么样的装置来控制横摇运动、典型的控制系统各组成部分的作用,以及常用的控制器的形式。最后要引入新的控制算法以提高控制系统的控制效果,从而达到控制横摇,并安全航行的目的。
     本文以船舶的横摇运动为研究对象,在分析其动力学特性后,重点研究了横摇运动减摇控制的新策略,具体研究内容如下:
     (1)基于改进的希尔伯特-黄变换方法对船舶大幅横摇运动的非线性响应特性的分析研究。深入研究了希尔伯特-黄变换方法的实现过程,并结合船舶横摇运动时序呈现出非线性、随机性和非平稳性等特征的特点,提出了改进的希尔伯特-黄变换分析方法。改进的算法以滑动窗口技术和三次B样条理论为基础,提高了分解速度,使得实时经验模态分解名副其实。改进算法在船舶横摇运动的响应特性分析中的应用,不仅扩展了该方法的应用领域,同时,更深入地分析了船舶横摇运动的频率构成因素,分析了横摇运动难于控制的原因所在,为基于无模型控制理论在船舶横摇运动控制中的应用奠定基础。
     (2)基于多新息理论、跟踪微分器技术和混沌遗传优化算法的改进标准无模型自适应控制理论研究。深入分析了模型控制策略和经典控制策略(PID控制)在船舶减摇控制系统中存在的问题,提出了无模型自适应控制策略引入的必要性和可行性。针对船舶减摇控制系统的特点,提出了三点改进:第一,通过理论推导及仿真验证了基于多新息理论用于改进无模型自适应控制方法的可行性,因改进无模型自适应控制方法中控制律形式的改变,在保证良好的跟踪性能的前提下,提高了控制算法的收敛速度。第二,通过仿真验证了将跟踪微分器技术用于改进无模型自适应控制方法的可行性,因跟踪微分器技术的引入,增强了控制算法的抗干扰能力。第三,将智能优化算法-混沌遗传算法融合在改进的无模型控制方法中,提高了算法的自适应能力。
     (3)将改进的无模型自适应控制算法作为新的控制策略,应用于船舶减摇控制系统中。以单一减摇鳍减摇系统及减摇鳍-减摇水舱联合减摇系统为被控系统,通过与传统PID控制、标准无模型自适应控制策略的控制效果对比,验证了本文所提出的改进方法的有效性和实用性。
     (4)船舶在不规则海浪中运动的仿真研究。开发设计了船舶摇荡运动的仿真平台。该平台具有界面简单、实时运算速度快和三维显示的特点,不仅可为科研工作人员提供船舶的运动规律,为船舶的设计提供理论基础,同时可直观观察船舶的实时三维运动形态,为船舶的减摇控制提供了一种可视化、形象生动的表现形式。
Disturbed by the wave and wind, the sailing ships have six degrees of freedom motions. When the condition is bad, rolling has the largest effect of the six degrees of freedom motions. The severe rolling not only makes the crew can't work, but also might lead to equipment instruments failure. The serious rolling may even create capsizing accidents, heavy losing of property, environmental pollution and effects on life safety.
     Currently, how to effectively avoid this phenomenon occurred is a hot topic in the field of ship motions control. In order to ensure the safety of navigation ships, firstly, the characteristics of the wave environment should be studied, so the disturbed effects on the ship will be studied and the disciplines of the ship motions in the wave will be achieved. Secondly, the dynamic characteristics of the ship rolling motion should be studied, and then the reason of hard controlling of the ship rolling can be found. Thirdly, what kind of anti-rolling equipment will be chosen should be analyzed and what kind of control strategy will be chosen should be verified. At last, the new and effective control strategy should be studied to get the better anti-rolling effects for the purpose of safe navigation.
     Therefore, the ship rolling motion was chosen as the research object, after the analysis of its dynamic characteristics, the paper is focusing on the rolling reduction strategy. The specific studies are as follows:
     (1) On the basis of the overview of ship rolling methods for analysis of nonlinear dynamic characteristics at domestic and foreign, the Hilbert-Huang Transform (HHT) method was introduced into the analysis of the ship nonlinear dynamic characteristics, the sliding widows technique and the three B spline theory were applied into the improved HHT method, which not only extends the application field of the HHT method, but also provides a new idea for the characteristics analysis of the ship rolling motion. At the same time, the frequency components of the rolling motion were discussed and the reason that the rolling motion is difficult to control was analyzed, which provide the foundation of the application of the model-free control methods on the ship rolling motion control.
     (2) The standard MFLAC method and the PID method were introduced in the paper, according to the shortcomings of the application of standard MFLAC method on the ship anti-rolling system, the improved MFLAC method was studied, including the MI theory> the TD technology and the CGA algorithms. The improved MFLAC based on MI theory has the better convergence speed. The improved MFLAC based on TD technology has the stronger ability of anti-interference. The improved MFLAC based on CGA has the better adaptive ability.
     (3) On the basis of the overview of the ship rolling control methods at home and abroad, the improved MFLAC method was introduced into the area of the ship anti-rolling control. The single fin stabilizer system and the integrated fin and anti-rolling tank system were chosen as the controlled system. Compared with the traditional PID control method, the standard MFLAC method, the effectiveness and the practical application of the improved method were verified.
     (4) The simulation platform of ship motions was designed. The platform has the simple interface, the rapid calculation ability and the feature of3D display. It not only can provide the disciplines of the ship motions in the irregular wave, which bring the theoretical guidance for the safe navigation, but also can be intuitive to observe the real-time motions, at the same time, the control effect can be shown in this platform, which provides the visual, vivid form of expression about the control methods.
引文
[1]孟克勤.舰船减摇装置[J].机电设备.2000,(3):11-14.
    [2]张显库.船舶控制系统[M].大连:大连海事大学出版社,2010.
    [3]Kreuzer E, Wendt M, Kreuzer E, et al. Ship capsizing analysis using advanced hydrodynamic modeling [J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences,2000, 358(1771):1835-1851.
    [4]王凤武,吴兆麟,郑中义.大风浪海损事故的灰色关联分析[J].大连海事大学学报,2003,29(4):31-34.
    [5]The specialist committee on prediction of extreme ship motions and capsizing final report and recommendations to the 23rd ITTC [C]. Proceedings of the 23rd ITTC, II, 2002.
    [6]陶尧森.船舶耐波性[M].上海:上海交通大学出版社,1985.
    [7]李高云.高海情下船舶减摇鳍智能控制系统研究[D].大连:大连海事大学,2007.
    [8]IMO. MSC/83/28/Add.2. International code on intact stability,2008 (2008 IS CODE), PART A,1.2. [S],2008.
    [9]Froude W. On the rolling of ships [J]. Transactions of Institute of Naval Architects, 1861,2:180-229.
    [10]Froude W, Abell W, Gawn R, et al. The Papers of William Froude, MA, LL. D., FRS, 1810-1879 [M]:Institution of Naval Architects,1955.
    [11]Krylov A N. A general theory of the oscillation of a ship in waves [J]. Transactions of Institute of Naval Architects,1898,40:135.
    [12]Korvin-Kroukovsky B V. Investigation of ship motions in regular waves [J]. SNAME Trans,1955,63:386-435.
    [13]Nayfeh A H, Mook D. T. Nonlinear oscillations [M]:Wiley-VCH,2008.
    [14]Nayfeh A, Khdeir A. Nonlinear rolling of biased ships in regular beam waves [J]. International shipbuilding progress,1986,33(381):84-93.
    [15]丁勇,胡开业,邱敏芝.船舶非线性横摇运动分析的Lyapunov特性指数法[J].中国造船,2008,49(3):1-6.
    [16]Hu K Y, Ding Y, Wang H W, et al. Global stability of ship motions in stochastic beam seas [J]. Journal of Harbin Engineering University,2011,32(6):719-723.
    [17]Lansbury, A N, Thompson. Incursive fractals a robust mechanism of basin erosion preceding the optimal escape from a potential well, Physics Letters A [J].1990, 150(8):355-361.
    [18]Senjamovic I, Paurnov J and Cipric G. Safety analysis of ship rolling in rough sea [J]. Chaos solitons & Fractals,1997,8(4):659-680.
    [19]Senjamovic I, Paurnov J and Cipric G. Nonlinear ship rolling and capsizing in rough sea [J]. Brodogradnja,1996,44(1):19-24.
    [20]伍晓榕.风浪中船舶倾覆的安全池研究[D].广州:华南理工大学,2002.
    [21]沈栋,黄祥鹿.随机波浪作用下的船舶倾覆[J].船舶力学,1999,3(5):7-14.
    [22]纪纲,张纬康.船舶横摇的安全池研究[J].中国造船,2002,43(4):26-34.
    [23]Lee S C. Domains of attraction of system of non-linearly coupled ship motions by simple cell mapping [J]. Trans of the ASME,1992,114:22-27.
    [24]欧阳茹荃,朱继懋.船舶横摇运动的非线性振动与混沌[J].水动力学研究与进展(A辑),1999,(03):334-340.
    [25]Falzarano J M, Shaw S W and Troesch A W. Application of global methods for analyzing dynamic systems to ships rolling motion and capsizing [J]. International Journal of Bifurcation and chaos,1992,2:101-115.
    [26]Jiang C, Troesch A W and Shaw S W. Highly nonlinear rolling motion of biased ships in random beam seas [J]. Journal of Ship Research,1996,40(2):125-135.
    [27]Liu L Q, Tang Y G, Zheng H Y, et al. Analysis Method of Capsizing Probability in Time Domain for Ships in Random Beam Waves [J]. Journal of Tianjin University,2006,39(2):165-169.
    [28]刘利琴.船舶横摇非线性随机动力学行为的研究[D].天津:天津大学,2006.
    [29]Wan W, McCue L. Application of the extended Melnikov's method for single degree of freedom vessel roll motion [J]. Ocean Engineering,2008,35:1739-1764.
    [30]丁千,陈予恕.用胞映射法分析双线性结构刚度的机翼颤振[J].空气动力学学报,2002,20(2):123-132.
    [31]袁远,余音,金咸定.船舶在规则横浪中的奇异倾覆[J].上海交通大学学报,2003,37(7):995-998.
    [32]Esparza I, Falzarano J. Nonlinear rolling motion of a statically biased ship under the effect of external and parametric excitation [J]. ASME, NEW YORK, NY (USA),1993, 56:111-122.
    [33]谷家扬,缪振华.随机海浪中船舶安全概率的数值模拟[J].江苏科技大学学报(自然科学版),2005,19(6):6-11.
    [34]Gu J Y. Nonlinear rolling motion of ship in random beam seas [J]. Journal of Marine Science and Technology,2004,12 (4):273-279.
    [35]Liu L Q, Tang Y G. Stochastic nonlinear rolling of ship in beam wave [J]. International Shipbuilding Progress,2009,(56):15-27.
    [36]余音,朱航彬,夏利娟等.基于小波理论的舰船非线性横摇运动特性分析[J].上海交通大学学报,2005,39(5):682-685.
    [37]余音,朱航彬,夏利娟.用Morlet小波变换研究舰船横摇垂荡耦合特性[J].船舶力学,2005,9(5):1-7.
    [38]Yu Y, Shenoi R A, Zhu H, et al. Using wavelet transforms to analyze nonlinear ship rolling and heave-roll coupling [J]. Ocean engineering,2006,33(7):912-926.
    [39]Zhu H B, Yu Y, Hu Y R. Nonlinear Dynamical Character of Ship Rolling Investigated by Harmonic Wavelet Transform [J]. Journal of Ship Mechanics,2004,8(6):13-18.
    [40]袁远,余音,金咸定.船舶在随机横浪中的奇异倾覆机理[J].船舶力学,2004,8(1):44-50.
    [41]Hsieh S R, Shaw S W and Troesch A W. Global geometric analysis of ship rolling and capsizing in random waves [J]. China Ocean Engineering,2007,21(4):577-586.
    [42]Wang Y G, Tan J H. Global geometric analysis of ship rolling and capsizing in random waves [J]. China Ocean Engineering,2007,21(4):577-586.
    [43]丁庆华.基于突变理论的船舶非线性横摇运动分析[D].哈尔滨:哈尔滨工程大学,2009.
    [44]戚增坤.突变控制机制及其在船舶非线性横摇运动中的应用研究[D].哈尔滨:哈尔滨工程大学,2010.
    [45]余音,胡毓仁.船舶在波浪中非线性横摇研究的现状与发展[J].船舶力学,2000,4(1):73-77.
    [46]丁勇,胡开业,邱敏芝等.船舶非线性自由横摇运动的近似解析解[J].哈尔滨工程大学学报,2007,28(1):45-48.
    [47]Hu K Y, Ding Y, Wang H W, et al. Global stability of ship motions in stochastic beam seas [J]. Journal of Harbin Engineering University,2011,32(6):719-723.
    [48]罗凯华.三种常用信号处理方法比较[J].计量与测试技术,2007,(02):15-16,18.
    [49]Daubechies I,李建平,杨万年.小波十讲.北京:国防工业出版社,2004.
    [50]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [51]孟克勤.舰船减摇装置的性能与展望[J].航海技术,2000,(06):12-14.
    [52]许可建,刘维亭,朱志宇等[J].船舶减摇控制方法综述[J].船舶,2004,(5):14-17.
    [53]曹新华,孟克勤.船舶减摇装置的回顾与展望[J].中国船检,2000,(6):56-57.
    [54]Lewison G R G, Williams I M. An assessment of NPL roll stabilizer tank [C].The Royal Institution of Naval Architect, vol.114,1972.
    [55]Bell J, Walker W P. Activated and Passive controlled fluid tank system for ship stabilization [J]. SNAME Transaction,1967,75:150-193.
    [56]Goodrieh G J. Development and design of Passive roll stabilizers. Trans RINA, 1969(3):81-95.
    [57]新开明二[日].小型高速艇中减纵摇水舱装备计划及其评价[J].西部造船学会会报,1993(86):99-109.
    [58]新开明二[日].小型高速艇中减纵摇水舱装备计划及其评价[J].西部造船学会会报,1994(87):95-104.
    [59]Miller E R, Clager J J.Webster W C. Development of technical practice for roll stabilization system selection [R].NAVSEC Report 6136-74-250. ADA-017655,1974.
    [60]潘秋华.小型船舶减摇装置的最优设计及性能分析[J].上海船舶运输科学研究所学报,2006,29(1):4.
    [61]胡殿宇,谢田华.船舶横摇减摇装置简介[C].全国防止船舶航行事故新经验新技术学术研讨会论文集,2004.
    [62]金鸿章,赵为平,綦志刚等.大型船舶综合减摇系统的研究[J].中国造船,2005,46(1):29-35.
    [63]马洁.运动系统多层递阶自适应预报与控制[M].北京:机械工业出版社,2009.
    [64]马洁.船舶运动姿态预报与控制方法研究[D].哈尔滨:哈尔滨工程大学,2006.
    [65]刘胜,姚波.船舶减摇鳍系统最小方差控制[J].信息与控制,1994,23(3):178-184.
    [66]Astrom K J and Hagglund T. PID controllers:theory, design and tuning [M]. Triangle Park, North Carolina, USA:Instrument Society of America, ISA,1995.
    [67]Kaarray F, Gueaied W and Sharhan S A. The hierarchical expert tuning of PID controllers using tools of soft computing [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2002,32(1):77-90.
    [68]Sato T, Inoue A. Improvement of tracking performance in self-tuning PID controller based on generalized predictive control [J]. The International Journal of Innovative Computing, Information and Control,2006,2(3):491-503.
    [69]徐培,王科俊,金鸿章等.模糊控制在船舶减摇技术上的应用[J].自动化技术与应用,2001,1:18-20.
    [70]Yang Y, Zhou C, Jia X. Robust adaptive fuzzy control and its application to ship roll stabilization [J]. Information Sciences,2002,142(1):177-194.
    [71]朱松.随机回归神经网络的动力学行为研究[D].武汉:华中科技大学,2010.
    [72]刘维亭,张冰,姜建国.H∞控制理论在船舶减摇鳍控制中的应用研究[J].工矿自动化,2003,(3).
    [73]杨承恩,贾欣乐.一种用u分析设计的舵减摇鲁棒控制器[J].中国造船,1999,(4):28-34.
    [74]杨盐生.不确定系统的鲁棒控制及其在船舶运动控制中的应用[D].大连:大连海事大学,2000.
    [75]杨盐生,贾欣乐.不确定系统的鲁棒控制及其应用[M].大连:大连海事大学出版社,2003
    [76]张丽坤.闭环增益成形算法及其在舵阻摇系统中的应用[D].大连:大连海事大学,2003.
    [77]Ma J, Chen Z Y, Li G B. Simulation comparison between separate and combined control methods of anti-rolling system based on MFAC [C].The 2008 IEEE International Conference on Mechatronics and Automation,2008.
    [78]Ma J. Data-based adaptive fault prediction method and its application[C]. Proceeding of 9th International Conference on Electronic Measurement & Instruments, IEEE Press, Vol. Ⅳ,1011-1016,2009.
    [79]Ma J. The application of multi-level recursive prediction in time-varying system[C]. Proceeding of the 2009 IEEE International Conference on Mechatronics and Automation,2009.
    [80]Ma J, Lu T C, He X. Research on moving rule and anti-rolling technique of ships under heavy sea states [C]. The 2008 IEEE International Conference on Mechatronics and Automation,2008.
    [81]徐庚保,曾莲芝.论仿真技术的重点和其中的热点与难点[J].计算机仿真,2003,20(2):1-4.
    [82]Dongkon L S, Sup L B, Jin P.3-D geometric modeler for rapid ship safety assessment [J]. Ocean Engineering,2004,31:1219-1230.
    [83]孙才勤,郭晨,史成军.大型轮机模拟器中船舶电力系统的建模与仿真[J].系统仿真学报,2009,21(11):3251-3254.
    [84]Ratan G. Simulation methods and applications [J]. Simulation Practice and Theory, 2002,9:91-93.
    [85]Young G L, Jae K H. Simulating nonlinear waves on the free surface in surf zones with two-dimensional sloping beach [J]. Ocean Engineering,2005,32:57-84.
    [86]Zhu D X, Katory M. A time-domain prediction method of ship motions [J]. Ocean Engineering,1998,25:781-791.
    [87]Murphy C A, Perera T. The definition of simulation and its role within an aerospace company [J]. Simulation Practice and Theory,2002,9:273-291.
    [88]Boo S Y. Linear and nonlinear irregular waves and forces in a numerical wave tank [J]. Ocean engineering,2002,29:475-493.
    [89]Debabrata Sen. A study on sensitivity of maneuverability performance on the hydrodynamic coefficients for submerged bodies [J]. Journal of Ship Research,2000, 44:186-196.
    [90]李文魁,陈永冰,田蔚风等.基于MATLAB的船舶运动控制实时仿真研究[J].系统仿真学报,2007,(10):4424-4427.
    [91]卞钢,刘寅东.基于3dmax的船舶三维运动仿真[J].计算机仿真2004,22(5):216-218,270.
    [92]何金花.船舶运动建模及虚拟现实技术的实现[D].厦门大学,2007.
    [93]陆灏铭,陈玮.船舶运动可视化仿真平台的设计与实现[J].计算机仿真,2012,29(8):277-281.
    [94]黄毅.船舶多运动量测试装置的设计研究[D].哈尔滨:哈尔滨工程大学,2007.
    [95]桑松,徐学军.海洋浮体结构非线性运动响应研究综述[J].武汉大学学报(工学版),2010,43(5).
    [96]黄世涛,宋继良,刘美娟等.海浪信号的实时仿真[J].哈尔滨理工大学学报,2001,6(5):4.
    [97]赵振民,孔民秀,杜志江等.船舶振荡运动仿真的方向谱方法[J].哈尔滨工业大学学报,2010,(05):742-745.
    [98]欧珊.船舶在波浪中的非线性横摇研究[D].武汉:武汉理工大学,2010.
    [99]Nayfeh A, Khdeir A. Nonlinear rolling of ships in regular beam seas [J]. International Shipbuilding Progress,1986,33(379):40-49.
    [100]Nayfeh A, Sanchez N E. Stability and complicated rolling responses of ships in regular beam seas [J]. International Shipbuilding Progress,1990,37(412):331-353.
    [101]Sanchez N E and Nayfeh A H. Nonlinear rolling motions of ships in longitudinal waves [J]. International Shipbuilding Progress,1990,37(411):247-272.
    [102]成钰龙,程刚,沈利华等.HHT和Morlet小波变换在齿轮故障信息提取中的对比研究[J].组合机床与自动化加工技术,2012(6):35-37.
    [103]Huang N E, Shen S S. Hilbert-Huang transform and its applications [M]:World Scientific,2005.
    [104]Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms [J]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP, 3,2003:8-11.
    [105]郭淑卿.HHT方法在两自由度体系动力响应特征分析中的应用研究[D].天津:天津大学,,2006.
    [106]张郁山.希尔伯特—黄变换(HHT)与地震动时程的希尔伯特谱——方法与应用研究[D].北京:中国地震局地球物理研究所,2003.
    [107]杨志华Hilbert-Huang变换的若干应用研究[D].广州:中山大学,2005.
    [108]白玮莉.基于HHT的电力系统短期负荷预测模型[D].成都:西南交通大学,2010.
    [109]Liu Y.H. Fault diagnosis based on SWPT and Hilbert transform [J]. Procedia Engineering.2011,15:3881-3885.
    [110]秦品乐.船舶液货装卸智能控制系统关键技术研究[D].大连:大连理工大学,2009.
    [111]王尤慧. Online-HHT方法在时间序列数据流预测中的应用研究[D].大连理工大学,2009.
    [112]时世晨EEMD时频分析方法研究和仿真系统设计[D].上海:华东师范大学,2011.
    [113]Flandrin P, Gonclves and Rilling G. EMD equivalent filter banks, from interpretation to applications, in Hilbert-Huang transform:Introduction and application, eds. N. E. Huang and S. S. P. Shen [R]. World Scientific, Singapore,2005:67-87.
    [114]侯忠生.非线性模型及其自适应控制理论[M].北京:科学出版社,1999.
    [115]侯忠生,控制理论.非参数模型及其自适应控制理论[M]:科学出版社,1999.
    [116]韩志刚,王德进.无模型控制器[J].黑龙江大学(自然科学学报),1994,4.
    [117]Hou Z, Huang W. The model-free learning adaptive control of a class of SISO nonlinear systems [C]. American Control Conference,1997 Proceedings of the 1997, 1:IEEE,1997:343-344.
    [118]韩志刚.无模型控制器理论与应用的进展[J]. 自动化技术与应用,2004,23(2):13-16.
    [119]Coelho, L. D. S., Coelho, A. A. R. and Rodrigo, R. S. Model-Free Learning Adaptive Controller with Neural Network Compensator and Differential Evolution Optimization [C]. Joint CCA, ISIC and CACSD 2006, Munich, Germany, October 4-6,2006:2018-2023.
    [120]Dos Santos Coelho L, Guerra F A. Applying particle swarm optimization to adaptive controller [J]. Soft Computing in Industrial Applications, Vol.1:Springer, 2007:82-91.
    [121]Dos Santos Coelho L, Coelho A A R. Model-free adaptive control optimization using a chaotic particle swarm approach [J]. Chaos, Solitons & Fractals,2009, 41 (4):2001-2009.
    [122]Qin P, Han X, Lin Y. Comparison research on pid controller and model-free controller based on multi-innovation theory [C]. Electronic Measurement & Instruments,2009 ICEMI'09 9th International Conference on:IEEE, 2009:3-537-533-540.
    [123]Hou Z, Bu X. Model free adaptive control with data dropouts [J]. Expert Systems with Applications,2011,38(8):10709-10717.
    [124]Chi R-H, Hou Z-S. A Model-free Periodic Adaptive Control for Freeway Traffic Density via Ramp Metering [J]. Acta Automatica Sinica,2010,36(7):1029-1033.
    [125]韩志刚.无模型控制器的应用[J].控制工程,2002,9(4):22-25.
    [126]卫才望.基于无模型自适应的汽包水位控制研究[D].山西:太原科技大学,2010.
    [127]梁永兴.电动变桨系统的无模型自适应控制研究[D].兰州:兰州交通大学,2012.
    [128]刘杰.基于MFAC的坦克电传动调速控制器设计[D].北京:北京交通大学,2011.
    [129]L jung L. Convergence Analysis of Parametric Identification Methods [J]. IEEE Trans. on Automatic Control, AC-23,1978, (5):770-783.
    [130]Ding F, Xie X M, Fang C Z. Multi-innovation identication methods for time-varying systems [J]. Acta Automatica Sinica,1996,22(1):85-91.
    [131]Ding F, Chen T. Performance analysis of multi-innovation gradient type identification methods [J]. Automatica,2007,43(1):1-14.
    [132]Ding F. Several multi-innovation identification methods [J]. Digital Signal Processing,2010,20(4):1027-1039.
    [133]韩京清,袁露林.跟踪微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [134]万晖.自抗扰控制器的绝对稳定性分析[J].上海电力学院学报,2011,27(5):507-511.
    [135]武俊峰,刘亮亮,仲小虎.带有跟踪微分器的无模型自适应控制器[J].电机与控制学报,2007,11(5):547-550.
    [136]Holland J. Application in natural and artificial systems [M]. Ann Arbor: University of Michigan Press,1975.
    [137]宁薇薇.无模型控制方法的改进设计与仿真[D].河北:华北电力大学,2006.
    [138]易尚潭,汤井田,聂更亮.改进的混沌遗传算法[J].长沙航空职业技术学院学报,2004,4(3):35-37.
    [139]Alligood K T, Sauer T D, Yorke J A. Chaos [M]:Springer,1997.
    [140]Li B and Jiang WS. Chaos optimization method and its application [J]. Control Theory and Application,1997,14(4):613-615.
    [141]Cambel A B. Applied chaos theory-A paradigm for complexity [M]. Academic Press Inc.,1992.
    [142]J.F. Yao, C. Mei and X. Q. Peng, The application research of the chaos genetic algorithm (CGA) and its evaluation of optimization efficiency [J]. Acta Automatica Sinica,2002,28(6):935-942.
    [143]Fei C G and Han Z Z. A novel chaotic optimization algorithm and its applications [J]. Journal of Harbin Institute of Technology (New Series),2010,17(2)254-258.
    [144]Wang N, Wei C J and Sheng Z H. Genetic algorithm combined with a chaotic sequence [J]. Systems Engineering Theory & Practice,1999,19(11)1-7.
    [145]胡彬,杨景曙,王粒宾.改进的混沌遗传算法及其应用[J].计算机工程,2010,36(5).
    [146]Wigren T. Recursive prediction error identification using the nonlinear Wiener model [J]. Automatica,1993,29(4):1011-1025.
    [147]齐小伟.船舶减摇鳍系统仿真[D].大连:大连海事大学,2008.
    [148]支龙,昌放辉,吴新跃.用Matlab实现减摇鳍模糊控制器仿真[J].海军工程大学学报,2004,16(6):5.
    [149]金鸿章,王科俊.智能技术在船舶减摇鳍系统中的应用[M].北京:国防工业出版社,2003.
    [150]赖志昌.U型减摇水舱及实验摇摆台的研究[D].哈尔滨:哈尔滨工程大学,2002.
    [151]李传庆,刘广生.锅炉汽包水位MFAC-PID串级控制方案的仿真研究[J].东北电力学院学报,2005,(04):14-18.
    [152]Evangelos Petroustsos著,邱仲潘等译Visual Basic.NET叭入门到精通[M].北京:电子业出版社出版.
    [153]薛定宇著.控制系统计算机辅助设计MATLAB语言与应用[M].北京:清华大学出版社,2006.
    [154]Shang Z Q, Song X H. The VB-based Accession technique of database [J]. Journal of Shandong University of Science and Technology (Natural Science), 2006,25(04):74-79
    [155]王跃强,王纪龙,王云才.VB程序中实现调用MATLAB的方法[J].计算机应用,2001,21(2):95-96.
    [156]李俐玲.VB与MATLAB相结合混合编程方法的研究[J].绵阳师范学院学报,2004,23(5):26-27.
    [157]刘辉.零基础学SQL Server 2005 [M]北京:机械工业出版社,2008.
    [158]Paul Dickinson. ADO.NET高级编程-VB. NET编程篇.[M].北京:清华大学出版社,2003
    [159]Dongkon Lee, Soon-Sup Lee, Beom Jin Prk.3-D geometric modeler for rapid ship safety assessment [J]. Ocean Engineering,2004,31:1219-1230.
    [160]Richard S. Wright等著,付飞,李艳辉译.OpenGL超级宝典[M].北京:人民邮电出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700