用户名: 密码: 验证码:
路面不平度垂向传递机理及其对车辆结构疲劳损伤的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路面不平度是造成车辆结构或零部件疲劳损伤的主要输入之一,是影响汽车疲劳寿命的根本因素。为揭示汽车运行过程中随机路面不平度的传递机理及其对车辆结构产生的损伤,本文通过实测路面不平度高程,等效重构了符合实际运行条件的各等级路面;通过建立车路垂向耦合模型,分析了路面不平度传递特性;通过疲劳损伤理论和实测载荷谱,分析了试验场路面对车辆结构产生疲劳损伤的影响规律,对副车架、控制臂等结构进行了寿命预测。
     (1)基于实测道路谱的路面不平度等效重构
     应用课题组开发的路面不平度激光测试系统,测取不同等级公路路面和试验场路面的高程数据。利用经验模态分解提取并去除路面高程数据趋势项,利用基于固定门限准则的经验模态分解小波硬阈值法,进行数据去噪。选择典型路面数据进行功率谱分析,获得各类等级路面的路面不平度功率谱。利用二维AR模型对各等级路面进行了虚拟重构,利用F检验法和相关指数法对重构路面进行检验与分析。利用VC++和Matlab混合编程技术,开发了基于实测高程数据的路面虚拟重构软件系统,生成CarSim、VPG、ADAMS动力学仿真软件使用的虚拟路面文件。结果表明,重构谱与实测谱重合度较高,为车路耦合系统动力学仿真试验和车辆疲劳耐久性分析提供准确的路面激励。
     (2)路面不平度垂向传递特性分析与试验
     应用1/4车辆子系统模型、考虑路面变形的欧拉-贝努力道路模型、考虑包容特性的垂向耦合弹性轮胎模型,建立车路垂向耦合系统动力学模型。对某SUV型样车的悬架和轮胎性能参数进行识别。解析求解并仿真分析了路面垂向位移,进行了车路垂向耦合系统中车轮、车身处加速度、位移等参数的仿真,分析了路面不平度的垂向传递特性。通过实车试验,验证了悬架位移、车轮垂向加速度等参数特征,分析了复合路面不平度在车轮-车身子系统的动力传递特性。结果表明,随车速的提高和路面等级的降低,路面激励引起的路面动位移逐渐增加,增加趋势为非线性;复合路面不平度不改变车轮-车身系统频响特性,与车辆结构载荷具有一致的随机性,是车辆结构产生疲劳损伤的根本原因。
     (3)不同路面不平度引起的车辆结构疲劳损伤分析与寿命预测
     为分析路面不平度激励下车辆结构的疲劳损伤,建立了前述试验车前、后悬等重要结构总成的三维实体模型,根据有限元分析结果,确定了车辆前悬控制臂、副车架,后悬纵臂、横臂等重要结构件疲劳损伤危险点,确定载荷谱测试点位置。制定载荷谱测试方案,在某汽车试验场完成载荷谱测试。利用雨流计数法,编制了车辆结构各测点载荷谱,载荷谱均值符合正态分布、幅值服从威布尔分布。利用ncode8.0glyphworks软件,分析了车辆结构(副车架、控制臂等)在试验场路各强化路面激励下的疲劳损伤分布规律,并进行了寿命预估,提出了表示车辆结构疲劳损伤的网状图法和当量系数法。结果表明,车辆结构疲劳损伤随路面等级降低而增加,同时受车辆加减速、转弯等使用工况的影响较显著。
     本文的创新之处在于:
     (1)提出一种基于实测道路谱的路面等效重构方法,在车辆动力学仿真应用中,针对不同用户的使用目的和需求,在实测高程数据的基础上,重构了与实测路面谱等效的虚拟路面,并开发了路面重构软件,为整车与零部件的疲劳耐久试验研究提供准确的路面激励,使车辆动力学仿真更准确可靠。
     (2)建立了考虑轮胎包容特性的车路垂向耦合动力学模型,分析了车路垂向耦合作用过程中车辆结构对复合路面不平度的响应特性,为疲劳耐久性研究提供了更准确的动力学求解方法。
     (3)提出了表征组合路况引起车辆结构疲劳损伤状况的网状图法和基于损伤等效的当量系数法。网状图法用圆心角表示各路面产生损伤的贡献率、半径表示损伤密度,形成网状图封闭面积表示结构的疲劳损伤状况。当量系数法根据疲劳损伤等效原则,计算任意路面相对于某一关注路面的当量里程及当量系数。为车辆道路试验规范修订提供了重要的方法依据,降低车辆疲劳耐久试验成本。
     本文以路面不平度研究为基础,开展了路面不平度对车辆疲劳耐久性影响的应用研究,为车路耦合动力学和车辆疲劳耐久性研究提供了重要的基础理论与有效方法。
Road roughness is one of primary input that caused to damage on the vehicle structure or component, and is a fundamental factor that impact on the vehicle fatigue life. To reveal the transfer mechanism on random road roughness and the vehicle structure damage by it caused, in this paper, each grade road is reconstructed equivalently based on the measured road roughness. Road roughness transfer mechanism is analyzed by established the model of vehicle and pavement coupled. Through fatigue damage theoretical and measured load spectrum, the law of vehicle structure fatigue damage is analysis under the condition of proving ground road, and subframe, control arm and other structures life are predicted.
     (1) Road roughness equivalent reconstruction based on measured road spectrum
     Elevation data on different level pavement and proving ground is tested by applying road roughness laser test systems that project team developed. The data trend term is extracted by using the empirical mode decomposition, and data is removed the noise by using the of empirical mode decomposition wavelet hard threshold method based on fixed threshold criteria. Power spectral density of typical pavement data is analyzed. Each class of virtual pavement is reconstructed by two-dimensional AR model, and reconstruction results are tested and analyzed by using the F-test and associated index method. A software on pavement virtual reconstruction based on measured elevation data is developed by using the hybrid programming technology on VC++and Matlab, and can generate virtual road files applied to the CarSim, VPG, ADAMS dynamics simulation software. The results show that the reconstruction accuracy are high between reconstruction spectrum and measured spectrum. It provides accurate road excitation for the vehicle road coupling system dynamics simulation and vehicle fatigue durability analysis.
     (2) Road roughness vertical transfer characteristics simulation and experiment
     Vehicle and road vertical coupling dynamics model is built by three subsystem models including on1/4vehicle models, Euler-Bernoulli road model considered pavement deformation, vertical coupling elastic tire model considered the inclusive features. Some performance parameters are for recognized on a sport utility vehicle suspension and tire. Pavement vertical displacement is resolved by analytical method and simulation analysis, on this basis. Then acceleration and displacement parameters in wheels and body are simulated in the vehicle and road vertical coupling system, and road roughness vertical transfer mechanism is analyzed. Vehicle tests verify the suspension displacement and wheel vertical acceleration parameters characteristics, and dynamic transfer characteristics of complex road roughness are analyzed in wheel-body subsystems. The results show that with increased speed and reduced road grade, dynamic displacement caused by road excitation induced increased gradually, and increasing trend is nonlinear. And complex road roughness couldn't change the wheel-body system frequency response characteristics, and its stochastic characteristic is consistent with vehicle structural load, and it is the root cause of vehicle structure fatigue damage.
     (3) Fatigue damage analysis and life prediction of vehicle structure caused by different road roughness
     In order to analyze fatigue damage of vehicle structure under the road roughness, some important structure three dimension models such as front suspension and rear suspension are built. According to the FEA result, and the key points in the structures including front suspension control arm, subframe, rear suspension arm and cross arm are determined, then load test points are determined. According to the project, the load spectrum test in a vehicle test field is finished. By rain flow count method, the load spectrum of all test points is drawn up, its mean values are in line with normal distribution, and amplitude values are in line with Weibull distribution. By ncode8.0glyphworks software, the fatigue damage distribution laws of vehicle structures (subframe and control arm etc.) are analyzed under the strengthened test field road pavement, and the life prediction is done, then the network diagram and equivalent coefficient method indicting vehicle structure fatigue damage are proposed. The results show that vehicle structure fatigue damage increases with road grade decreasing, which can be affected drastically by the conditions such as vehicle acceleration and turning.
     The innovations lie in:
     (1) Road equivalent reconstruction method based on the measured spectrum is proposed. During the process of vehicle dynamics simulation, aimed to the using purposes and requirements of the different users, the virtual road pavements equivalent with measured road spectrum are reconstructed, and the road reconstruction software is exploited, which can provide accurate road roughness for fatigue tests of the whole vehicle and parts, make vehicle dynamics simulation be more accurate and reliable.
     (2) Vehicle-road vertical coupling dynamics model considering tire enveloping property is built, then the vehicle structures response properties for complex road roughness under the action of vehicle-road vertical coupling. It provides a more accurate solving method for vehicle fatigue durability research.
     (3) Network diagram method of evaluating vehicle structure fatigue damage caused by combination roads and equivalent coefficient method based on damage equivalent are proposed. The method of using central angle indicating damage contribution rate caused by different roads and radius indicating damage density, the forming network diagram envelop area indicting fatigue damage is referred as network diagram method. By the rule of fatigue damage equivalence, the equivalent mileage and factor of any road compared with focused road are calculated, which is the damage equivalent method. It provides important methods for the vehicle road test specification revision, can cut test cost greatly.
     Taken road roughness as basis, the effect research of vehicle fatigue duration is developed, which provides important basic theory and effective method for the research of vehicle-road coupling dynamics and fatigue duration performance.
引文
[1]赵济海,王哲人.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000
    [2]王国林,魏领军.汽车道路路面谱采集典型道路选择方法[J].合肥工业大学学报(自然科学版),2009,32(5):640-643
    [3]魏领军,王国林,张利,焦贤正.基于德尔菲法的路面不平度预测[J].公路,2008(12):32-35
    [4]谢飞,段虎明,马颖,等.中国典型道路谱数据库的开发与应用[J].振动与冲击,2010,29(11):160-165
    [5]段虎明,石峰,张开斌,等.中国典型汽车道路谱研究的构建及应用[J].中国测试,2009,35(4):76-79
    [6]段虎明,石峰,谢飞,张开斌.路面不平度研究综述[J].振动与冲击,2009,28(9):95-102.
    [7]王锡爱,刘大维,严天一,等.青石308国道路面不平度特性研究[J].青岛大学学报(工程技术版),2007,22(1):91-94
    [8]马吉胜,马英忱.基于逆动力学分析的路面不平度测试研究[J].力学与实践,2010,32(2):82-84
    [9]王东浩,关强.路面破损特征量的激光检测研究[J].公路交通科技.2009,2(5):51-53
    [10]Kropac, O. and Mucka, P. Indicators of longitudinal unevenness of roads in the USA [J]. Int. J. Vehicle Des.46,393-415,2008
    [11]Ferris, J. B. Characterizing road profiles as Markov chains [J]. Int. J. Vehicle Des.36, 103-115,2004
    [12]Muddiman M W, Moore G R. Structural correlation of automotive proving ground to China customer field usage[R].USA:UltiTech Corporation,6-9,2003
    [13]GB/T7031-2005/ISO8608:1995机械振动-道路路面谱测量数据报告[S].北京:中国标准出版社,2005
    [14]朱茂桃,刘建,王国林.路面不平度重构的AR模型阶数确定方法研究[J].公路交通科技,2010,27(7):25-28
    [151薛贯海,马吉胜,崔清斌.由路面谱重构路面不平度的AR模型法[J].军械工程学院学报,2005,17(2):20-22
    [16]李晓雷,韩宝坤.用小波变换分析路面不平度及振动响应[J].北京理工大学学 报,2003,23(6):717-719
    [17]王岩松,李章明,何辉,等.四轮车辆非平稳路面不平度时域模拟及小波分析[J].汽车工程,2004,26(1):42-47
    [18]张丽霞,赵又群,徐培民,等.路面功率谱密度识别的仿真[J].农业机械学报,2007,38(5):15-18
    [19]Tricot C. A model of rough surfaces[J]. Composites Science and Technology, vol.63, pp. 1089-1096,2003.
    [20]刘献栋,邓志党.公路路面不平度的数值模拟方法研究[J].北京航空航天大学学报,2003,29(9):843-846
    [21]唐光武,贺学锋,颜永福.路面不平度的数学模型及计算机模拟研究[J].中国公路学报,2000,13(1):114-117
    [22]侯占峰.基于分形理论的路面不平度特性研究[D].南京:南京农业大学,硕士学位论文,2006
    [23]关凯书,赵虹,王志文.路表不平的分形特征[J].农业机械学报,2000,31(6):22-24
    [24]王若平,李成彬.分形模型在路面不平度再现中的应用[J].吉林大学学报(工学版),2010,40(4):991-994
    [25]张丽萍,郭立新.基于逆虚拟激励法的随机路面谱的识别方法[J].东北大学学报(自然科学版),2012,33(2):258-261
    [26]李炜明,朱宏平,黄民水,等.路面随机谱激励的数值计算方法及统计特征[J].中国公路学报,2009,22(3):20-25
    [27]蔚晓丹.国际平整度指数IRI作为路面平整度评价指标的研究[J].公路交通科技,1999,16(1):9-14
    [28]刘献栋,邓志党,高峰.基于逆变换的路面不平度仿真研究[J].中国公路学报,2005,18(1):123-127
    [29]Ftk A U, Cheng Y S, et al. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles[J]. Computers and Structures, vol.79, pp.853-872,2001.
    [30]Marzbanrada J, Ahmadib G, et al. Stochastic optimal preview control of a vehicle suspension[J]. Journal of Sound and Vibration, vol.275, pp.973-990,2004.
    [31]Stensson A., AsPlundC., KarssonL.Nonlinear behaviour of a MaePherson strut wheel suspension[J]. Vehicle System Dynamics, vol.23, pp.85-106,1994.
    [32]赵江波,王军政.一种路面曲面不平度的数字生成方法[J].振动与冲击,2007,26(6):149-152.
    [33]张立军,张天伙.车辆四轮相关路面非平稳随机输入通用时频模型[J].振动与冲击,2008,27(7):75-79
    [34]张永林.车辆道路数值模拟与仿真研究[D].华中科技大学博十学位论文,2010.12
    [35]Donald L, Turcotte. Fractals in geology and geophysics[J]. Pure and Applied Geophysics, 1989,13(1):171-196.
    [36]Spanos P D.ARMA algorithms for ocean ware modeling [J]. Energy Resources Tech, 1983,105:300-309.
    [37]Marco MaRtorella, Fabrizio Berizzi, Enzo Dalle Mese. On the fractal dimension of sea surface backscattered signal at low grazing angle [J]. IEEE transactions on antennas and propagation,2004,52(5):1993-1204
    [38]马俊福,周晓军,徐志农.一种路面不平度模拟及识别的研究[J].机床与液压,2008,36(1):143-145.
    [39]赵江波,王军政.一种路面曲面不平度的数字生成方法[J].振动与冲击,2007,26(6):149-151
    [40]向华荣,张开斌,张琢玉,等.基于伪白噪声的路面不平度模拟及其车辆平顺性[J].重庆工学院学报(自然科学),2009,23(9):11-16
    [41]Baumeister J, Scondo W. Demetriou M A. On-line parameter estimation for infinite dimensional dynamical systems [J]. SIAM J Control Optim,1997,35,678-713
    [42]缪瑞平,孙雪玲.一种新的路面不平度模拟方法的研究[J].沈阳航空工业学院学报,2004,21(5):31-33.
    [43]邓学钧,孙璐.车辆地面结构系统动力学[M].北京:人民交通出版社,1998
    [44]季学武,高更民,裘熙定.轮胎动刚度和阻尼特性的研究[J].汽车工程,1994,16(5):315-321
    [45]裘熙定,季学武,王志浩,等.轮胎刚度的非线性特性[J].吉林工业大学学报,1994,24(76):9-15
    [46]屈求真,刘延柱.基于轮胎非线性特性的汽车动力学问题[J].力学季刊,2000,21(1):38-44
    [47]孟泉,王玉彬.汽车悬架系统非线性特性分析[J].非线性动力学学报.2001,8(4):335-337
    [48]Stensson A., AsPlundC., KarssonL.Nonlinear behaviour of a MaePherson strut wheel suspension.Vehicle System Dynamics,1994,v23,n2:85-106
    [49]Zhu Q. Ishitobi M. Chaotic vibration of a nonlinear full-vehicle model. International Journal of Solids and Structures,2006,43(3-4):747-759
    [50]朱博,张立军,邹晓华.车辆非线性悬挂系统的随机响应研究[J].辽宁工程技术大学学报,2004,23(2):250-252
    [51]杨欣梁.重型货车非线性悬架结构参数动力学优化[J].农业机械学报,2007,38(6):23-25
    [52]钟阳,王哲人,等.不平整路面上行驶的车辆对路面随机动压力的分析[J].中国公路学报,1992,5(2):40-43
    [53]徐斌,郑钢铁.道路破坏的影响因素及悬架参数优化[J].汽车工程,2000,22(6):418-422
    [54]葛剑敏,郑联珠.路面特性对车辆振动影响规律研究[J].中国公路学报,2004,17(3):117-121
    [55]吕彭民,尤晋闽,和丽梅.路面随机不平度下车辆对路面的动载特性[J].交通运输工程学报,2007,7(6):55-58
    [56]申永刚,张治成,谢旭.复杂场地车辆引起的环境振动[J].浙江大学学报(工学版),2008,42(6):1089-1096
    [57]路永婕.重载汽车与路面相互作用动力学研究[D];北京交通大学;2011年
    [58]Panse,S.M.,Awate,C.M., Development of accelerated structural durability test program for a mini-truck and its components[J]. SAE Technical Paper 2006-01-0085
    [59]Tajuddin Mazidah. Optimized PID for electro-hydraulic road profile simulation[J]. ELEKTRIKA-UTM Journal of Electrical Engineering,14(2):31-36,2013
    [60]兰国冠,许文杰,郭磊.车辆荷载对公路路基的动力作用研究[J].成都理工大学学报,2010,29(4):346-348
    [61]单景松,元松.局部不平整引起的车路动态响应分析[J].武汉理工大学学报(交通科学与工程版),2010,34(5):990-994
    [62]Chiu Liu, Denos Gazis. Surface roughness effect on dynamic response of pavements [J]. Journal of Transportation Engineering, vol.7, pp.332-337,1999.
    [63]D. Cebon. Theoretical road damage due to dynamic tyre forces of heavy vehicles[M]. Proc. Inst. Mech. Engrs. vol.202, No.C2,1997
    [64]吴志华,梁波.关于车-路垂向耦合模型的分析[J].公路运输,2009,(4):67-71
    [65]罗红,梁波,苏世毅.车辆-道路垂向耦合动力分析模型[J].重庆交通大学学报,2008,27(5):803-805
    [66]李小珍,张黎明,张洁.公路桥梁与车辆耦合振动研究现状与发展趋势[J].工程力 学,2005,25(3):230-234
    [67]张丙强,李亮.车辆-路面耦合振动系统模型与仿真分析[J].振动与冲击,2010,29(2):35-38
    [68]张丙强,李亮.人-车-路耦合系统振动分析及舒适度评价[J].振动与冲击,2011,30(1):1-5
    [69]Panse,S.M.,Awate,C.M., Development of Accelerated Structural Durability Test Program for a Mini-truck and its Components[J], SAE Technical Paper 2006-01-0085,2006.
    [70]Muddiman M W, Moore G R. Structural correlation of automotive proving ground to China customer field usage[R].USA:UltiTech Corporation, pp.6-9,2003.
    [71]Gerry Peticca, Drive file correction based on vehicle characterization on a four poster road test simulator[M]. Windsor, Ontario, Canada,2000.
    [72]W. Ronald Hudson. Probabilistic Approaches for Pavement Fatigue Cracking Prediction based on Cumulative Damage Using Miner's Law[J]. Journal of engineering mechanics, vol.5, pp.546-549,2005.
    [73]张继运,张行,张珉.基于疲劳裂纹形成曲线的裂纹扩展分析数值方法[J].机械工程学报,2004,40(7):55-62
    [74]张文姣,王奇志,张行.构件疲劳寿命预估的改进型损伤力学方法[J].机械强度,2009,31(5):866-870
    [75]刘再生,霍福祥.基于路谱输入的汽车台架耐久性试验方法研究[J].汽车技术,2010(9):47-50
    [76]金祥曙,周晓军.基于随机载荷谱的汽车驱动桥疲劳性能强化试验研究[J].机械设计,2007,(12):49-52
    [77]朱涛,宋健,李亮.复现试验场工况的转向拉杆室内加速疲劳试验[J].公路交通科技,2010,27(2):129-132
    [78]汪斌,过学迅,徐古,等.路面时域波形室内再现方法研究[J].中国机械工程,2010,21(3):364-367
    [79]牛龙浩,王青春,田燕林,等.不同路面激励下车内噪声预测与板件声学贡献量分析[J].力学与实践,2011,33(4):55-60
    [80]彭辉,胡文伟,何荣国,等.道路谱在四通道整车道路模拟试验中的应用[J].汽车技术,2011,(11):783-788
    [81]S.Lambert, E.Pagnacco, L.Khalij. A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects[J]. International Journal of Fatigue, 32(2):463-474,2010
    [82]H.Riahi,Ph. Bressolette, A. Chateauneuf. Random fatigue crack growth in mixed mode by stochastic collocation method[J]. Engineering Fracture Mechanics,77(16):3292-3309,2010
    [83]A. Cristofon, D.Benasciutti, R.Tovo. A stress invariant based spectral method to estimate fatigue life under multixial random loading[J]. International Journal of Fatigue,33(7): 887-899,2011
    [84]Bevan A, Molyneux-Berry P, Eickhoff B, et al. Development and validation of a wheel wear and rolling contact fatigue damage model [J]. Wear,2013
    [85]Kollmer H, Kucukay F, Potter K. Measurement and fatigue damage evaluation of road profiles in customer operation [J]. Internal of Vehicle Design,56(1):106-124,2011
    [86]Sarkar S, Gupta S, Rychlik I. Wiener chaos expansions for estimating rain-flow fatigue damage in randomly vibrating structures with uncertain parameters [J]. Probabilistic Engineering Mechanics,26(2):387-398,2011
    [87]Mojie Sun, Gangui Yan, Yingjie Zhang. Study on reliability test method of heavy duty vehicle based on proving ground[J]. Advanced materials research,614:460-463,2012
    [88]包名,尚德广,陈宏.一种新的随机多轴疲劳寿命预测方法[J].机械强度,2012,34(5):737-743
    [89]徐姣,尚德广,陈宏.多轴块载加载下疲劳损伤累积方法研究[J].机械强度,2012,34(6):875-880
    [90]Karlsson, M. Load modelling for fatigue assessment of vehicles-a statistical approach[D], Chalmers University, Gothenburg, Sweden,2007
    [91]徐建波,邓洪洲,王肇民.考虑非高斯和宽带修正的桅杆风振疲劳分析[J].同济大学学报(自然科学版),2004,32(7):889-892
    [92]刘永臣,王国林,杨彦鹏,等.基于实测道路谱的路面等效重构[J].农业工程学报,2012,28(19):26-32
    [93]邓拥军,王伟,钱成春,等.EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001,46(3),257-263
    [94]G.Rilling, P. Flandrin, and P.Goncalves,On Empirical Mode Decomposition and its algorithms, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I) 2003.
    [95]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点廷拓[J].海洋学报,2003,25,(1):1-11
    [96]吕品,刘建业等.光纤陀螺实时小波去噪中的阈值选取[J].弹箭与制导学报,2009,29(1):18-22
    [97]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报,2004,(2):9-12
    [98]盛承懋,李慧芬,钱君燕.应用回归分析[M].上海:上海科学技术文献出版社,1989
    [99]张亮,王继阳MATLAB与C/C++混合编程[M].北京:人民邮电出版社,2008
    [100]苏金明,等,编著MATLAB高级编程(第二版)[M].北京:电子工业出版社,2008
    [101]侯永涛,王国林,刘建,等.汽车三维虚拟道路重构系统的设计与实现[J].机械工程学报,2011,47(8):126-133
    [102]朱孔源.车辆—柔性路面力学相互作用系统的研究[D].北京:中国农业大学,2001
    [103]严人觉,王贻荪,韩清宇.动力基础半空间理论概论[M].北京:中国建筑工业山版社,1981
    [104]杨国岳.车辆随机载荷与柔性路面相互作用的研究[D].长沙:中南大学,2007
    [105]周玉民,谈至明,刘伯莹.1/4车-路耦合动力学模型研究[J].同济大学学报(自然科学版),2012,40(3):408-413
    [106]管迪华,范成建.用于不平路面车辆动力学仿真的轮胎模型综述[J].汽车工程,2004,26(2):162-167
    [107]郭孔辉,刘青,丁国峰.载荷和胎压对轮胎包容特性的影响[J].农业工程学报,1998,14(3):53-55
    [108]Guo kongkui.TirerollereontactmodelforsimulationofvehielevibrationinPut. Society of Antomotive Engineers(SAE932008),1993,991:45-51
    [109]郭孔辉,刘青,丁国峰.轮胎包容特性分析及其在汽车振动系统建模中的应用[J].汽车工程,1999,21(2):65-80
    [110]黄小平,林茂成,赵济海.轮胎位移包容性研究及有效路面谱计算方法[J].汽车工程,1991,13(3):161-169
    [111]管欣,董波.结合轮胎包容特性的主动悬架模型[J].汽车工程,2003,25(4):356-359
    [112]周继铭,程悦荪,郑联珠,等.轮胎刚度和阻尼非线性模型的研究[J].吉林工业大学学报,1992,(3):47-51
    [113]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1996
    [114]陈栋华,靳晓雄.轮胎刚度和阻尼非线性模型的解析研究[J].中国工程机械学 报,2004,2(4):408-412
    [115]史广奎,李槟.汽车设计中减震器相对阻尼系数的确定[J].汽车工程,1995,17(6):367-374
    [116]韦勇.双轴汽车减振器阻尼系数与悬架系统阻尼比匹配设计研究[J].广西机械.2001,(1):23-26
    [117]顾信忠,张铁山.汽车减振器相对阻尼系数的确定[J].车辆与动力技术,2011,(2):29-33
    [118]邓学钧,孙璐.车辆—地面结构系统动力学.北京:人民交通出版社,2000
    [119]Bogsjo K. Evaluation of stochastic models of parallel road tracks. Probabilist Eng Mech 2007,22(4):362-70.
    [120]Bogsjo K, Rychlik I. Vehicle fatigue damage caused by road irregularities. Sweden: Department of Mathematical Statistics,Lund University; 2007,17.
    [121]Bengtsson A, Rychlik I. Uncertainty in fatigue life prediction of structures subject to Gaussian loads. Probabilist Eng Mech2009,24:224-35.
    [122]郭虎,陈文华,樊晓燕.汽车试验场可靠性试验强化系数的研究[J].机械工程学报,2004,40(10):72-76
    [123]王若平,焦贤正,王国林.基于汽车车身垂直加速度的典型道路路面谱识别研究[J].汽车工程,2008,30(12):1047-1051
    [124]胡文伟,易明,靳晓雄.轿车车头道路模拟试验加载谱研究[J].同济大学学报,2003,31(7):861-863
    [125]霍福祥,康一坡,魏德永,等.应用实测载荷谱预测轿车变速器壳体寿命[J].机械设计,2012,29(4):84-88
    [126]吴建国,周鋐陈,栋华魏,等.目标用户道路谱与试验场道路谱的载荷当量等效模拟研究[J].汽车技术,2007,(7):21-23
    [127]朱茂桃,熊梦锦,何志刚,等.钢板弹簧疲劳分析[J].农业机械学报,2006,37(3):149-152
    [128]李显生,霍娜,田静妹,等.空气悬架系统关键承载构件动载荷仿真及疲劳寿命计算[J].吉林大学学报(工学版),2011,41(1):12-17
    [129]李鹏.汽车试验场道路强化系数的研究[D].长春:吉林大学硕士学位论文,2007
    [130]刘永臣.轮式装载机传动系载荷测试与处理[J].筑路机械与施工机械化,2010,7(12):48-51
    [131]Matsuishi M, Endo T. Fatigue of metals subject to varying stress. Paper presented to Japan Society of Mechanical Engineers, Fukuoka, Japan; 1968.
    [132]傅会民,高镇同.确定威布尔分布三参数的相关系数优化法[J].北京航空航天大学学 报,1990,11(7):323-327
    [133]Miner MA. Cumulative damage in fatigue[J]. Journal of theApplied Mechanics.1945. 67(12):159-164.
    [134]Manson,S.S..Interfaces Between Fatigue Creep and Fracture[J].Fracture,1966(2):51-56.
    [135]刘建伟.疲劳累积损伤理论发展概述[J].山西建筑,2008,34(23):76-78
    [136]机械设计手册委员会,机械设计手册(疲劳强度设计)[M].北京:机械工业出版社,2007
    [137]刘永臣,王国林,孙丽.车辆控制臂疲劳损伤分析与寿命预测[J].农业工程学报,2013,29(16):83-91
    [138]孙丽,刘永臣,张二坤.车辆操纵稳定性评价的改进网状图法[J].机械设计与制造,2012,(6):64-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700