用户名: 密码: 验证码:
基于虚拟样机模型汽车悬架NVH性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展和人们生活水平的不断提高,汽车的保有量越来越大。在这种形势下,汽车的NVH性能(NVH即是噪声Noise,振动Vibration和声振粗糙度Harshness三个英文单词的首字母)得到了越来越多的关注,也被认为是衡量现代汽车工业水平的重要指标。由于该性能和人们的身心健康密切相关,很多国际组织都制定了相应法规来明确对汽车NVH性能的要求。同时学术界和工业界投入了大量的人力物力财力进行了研究。目前汽车的NVH研究主要集中在汽车的动力总成,进排气系统,传动系统等方面,本学位论文旨在研究在不同路面工况激励下的悬架系统的NVH性能,针对悬架关键参数对NVH性能的影响和改善进行了理论分析,仿真和试验研究。
     论文首先在查阅大量文献的基础上,回顾了汽车NVH技术发展历程和研究现状。然后采用有限元理论和方法,对悬架构件进行模态分析和柔性化处理。分析了路面不平垂向激励经过悬架传递到车身的传递路径,设定汽车NVH性能参数指标,并建立了刚柔耦合的汽车动力学模型。研究了不同工况条件下,前后悬架刚度阻尼对汽车NVH性能指标的影响。采用试验设计(DOE)方法,匹配优化改善汽车NVH性能。
     论文从理论上分析了悬架橡胶衬套的结构和材料特性,采用有限元方法分析其各向弹性变形,与厂商提供的试验数据对比。对比了衬套安装前后,汽车NVH性能指标变化,然后研究了不同方向刚衬套度对该指标影响的灵敏度。选择较敏感的参数进行试验设计(DOE),经过优化改善NVH性能。建立考虑衬套影响的半车模型,将其不同工况条件下的仿真结果与不考虑衬套影响的半车模型,刚柔耦合汽车动力学模型进行对比。
     论文从理论上分析了轮胎的结构和材料特性,建立了子午线轮胎滚动分析的三维有限元模型。在模型中充分考虑到轮胎材料和结构的复杂性,以及轮胎与轮辋、地面的接触摩擦,研究了轮胎转向状态下的不同车速和转向角对轮胎变形、接地区应力的影响。研究了轮胎的充气压力和径向刚度之间的关系。轮胎的径向刚度进而影响悬架刚度,建立其与悬架刚度的数学关系,并对比不同轮胎刚度时的整车仿真响应曲线分析其对汽车NVH性能的影响。
     论文进而分析了半主动悬架相较与传统被动悬架在改善汽车NVH性能方面的作用。对影响汽车NVH性能的时域指标进行了频域加权处理,考虑了不同频段对NVH性能指标影响的敏感度不同,同时在控制方法设计中兼顾了行驶安全性。通过仿真,对比不同工况下半主动悬架对汽车NVH性能的改善。
     论文进行了大量试验,测试了不同工况条件下的汽车NVH性能,验证了仿真模型的准确性。将半主动悬架安装到试验车上,通过台架和实车道路测试,验证了其对汽车NVH性能的改善。
With the great improvement of economics and people's living standard, the number of retained vehicles is becoming more and more huge.In this situation, the vehicle NVH performance(NVH, just the three initial characters of noise, vibration and harshness)is drawing more and more concerns, and it is also considered as one important index for judging the level of the modern vehicle industry.Because the performance is closely related to the physical and metal health of human beings, many international organizations have established according laws and regulations to confirm the requirements of the vehicle NVH performance.In the meanwhile,the academia and industria have invested a lot of money, materials and manpower for the vehicle NVH researches.At present, the vehicle NVH researches are centered on the vehicle power assembly, intake and exhaust system, and transmission assembly. This dissertation aims at studying the suspension NVH performances under different road conditions, and carries out theoretical analyses, simulation and tests of the effects of the key suspension parameters on the NVH performance.
     Firstly, the dissertation reviews the vehicle NVH technology development and research status on the basis of looking up many papers.After that, this dissertation uses the finite element theory and method for the modal analyses and flexible treatments of some suspension parts.The dissertation analyses the path of the road irregularity vertical excitations transferred to the vehicle body, establishes the vehicle NVH performance index and builds up the rigid-flexible coupling vehicle dynamical model.Under different work conditions,the effects of the suspension stiffness and damping on the vehicle NVH performance are studied.The DOE(Design of Experiments) method is applied for improving the vehicle NVH performance by fitness-optimization.
     dissertation analyzes the structural and material properties of the suspension rubber bushings.The flexible deformations in every direction are analyzed, and compared with the test data supplied by the manufacturers.The vehicle NVH performance are compared, before and after the suspension bushings are installed.Then the sensitivities of different suspension bushing stiffness on the NVH index are studied.Some rather sensitive parameters are choosed for the DOE,in order to improve the vehicle NVH performance.The dissertation establishes up the half vehicle model including the bushing effects, and compares the simulation results with those of the half vehicle model without the bushing effects and rigid-flexible coupling model.
     The dissertation analyzes the structural and material properties of the vehicle tires in theory, and builds up the three-dimensional(3D) finite element method(FEM) model for the analysis of the radial tire roll. In the FEM model,the complexity of the tire materials and structures are taken into account adequately, and the contact frictions among the tires,rim and ground are also studied.The dissertation studies the effects of different vehicle speeds and steering angle on the tire deformations and ground area stress distribution.The relations between the tire pneumatic stress and radial stiffness are studied.The tire radial stiffness would affect the suspension stiffness furthermore.and the mathematical relations between it and the suspension stiffness are also built up.By comparing the full vehicle simulation response curves of different tire stiffness, the vehicle NVH performance is studied.
     And then, the dissertation analyzes the effects of semi-active suspensions on the vehicle NVH performance,as compared to traditional passive suspensions.On those vehicle NVH time-domain indices,frequency weightings are carried out.When taking into account of the different sensitivities of diverse frequency bands towards the NVH performance indices,the driving safety is also considered in the control method design. Through simulation,the effects of the semi-active suspension on the vehicle NVH improvement are verified.
     Many tests are carried out in the dissertation, and by testing the vehicle NVH performances under different work conditions,the exactness of simulation models are verified.The semi-active suspensions are installed on the test vehicle,through rig and real vehicle road tests,those suspension effects on the vehicle NVH performance improvements are verified.
引文
[1]赵艳杰,陈翀.发动机曲柄连杆机构振动仿真分析.拖拉机与农业运输车[J].2009,36(5):77-81.
    [2]Mohamad Qatu, Rachel Wheeler, Roger King.Journal of Vehicle Engineering [J].2011, 1(4):254-262.
    [3]赵夕长,时培成.动力总成悬置系统振动分析与解耦优化.农业装备与汽车工程[J].2010,(5): 7-10.
    [4]史文库,蔡俊.主动控制式电磁液压悬置隔振性能研究.噪声与振动控制[J].2006,(3):1-5.
    [5]刘胜.车用汽油发动机进排气系统噪声仿真研究.合肥:合肥工业大学[D].2007.
    [6]顾颖.汽车排气消声器流体力学与声学性能仿真分析.镇江:江苏大学[D].2010.
    [7]曹勇,乐玉汉,姚泽胜.基于NVH性能的电动汽车车身模态匹配与优化.上海汽车[J].2011,(5):29-32.
    [8]王晓军.汽车车内噪声与车身密封性的关系探讨.北京汽车[J].2011,(2):30-32.
    [9]余志生主编.汽车原理[M].北京:机械工业出版社,2006.
    [10]章兰珠,王军.汽车悬架对行驶平顺性的影响.华东理工大学学报(自然科学版)[J].2008,34(6):908-912.
    [11]王高峰.空气悬架客车平顺性仿真与阻尼优化.镇江:江苏大学[D].2010.
    [12]宗长富,陈双,冯刚等.基于频率加权滤波的汽车平顺性评价[J].吉林大学学报(工学版),2011,41(6):1517-1521.
    [13]杨建伟,孙守光,刘海波.汽车半主动磁流变悬架自适应相对控制[J].系统仿真学报,2011,23(9):1951-1955.
    [14]张秀芹,杨波.基于ADAMS的随机路面输入平顺性仿真分析[J].上海汽车,2011,(8):18-23.
    [15]汪小朋,刘文彬,黄俊杰,李振远.路面随机激励下的汽车振动仿真分析[J].山东交通学院学报,2010,18(3):7-11.
    [16]李成,张万枝,潘旭,铁瑛.基于ADAMS汽车平顺性建模与仿真分析[J].郑州大学学报(工学版),2010,31(5):99-102.
    [17]赵振东.汽车悬架与橡胶衬套的设计机理及对于整车性能影响的研究.上海:同济大学[D].2006.
    [18]胡培龙,上官文斌.汽车悬架橡胶衬套静刚度设计方法.机械设计[J].2011,28(3):3-5.
    [19]赵振东,雷雨成,袁学明.悬架橡胶衬套变形响应的非线性有限元分析.上海汽车[J].2005,(9):23-25.
    [20]姜栋,高翔,刘义.橡胶元件在.机械设计与制造[J].2011,(10):207-209.
    [21]赵振东,雷雨成.橡胶元件在汽车悬架中的应用分析.汽车技术[J].2006,(1):19-22.
    [22]高晋,宋传学.橡胶衬套刚度对悬架特性的影响.吉林大学学报(工学版)[J].2010,40(2):324-329.
    [23]王万英,彭为,郭辉等.橡胶衬套刚度对悬架特性的影响.振动与冲击[J].2010,29(6):88-95.
    [24]熊建强,黄菊花,廖群.轮胎气压对汽车振动噪声的影响.噪声与振动控制[J].2011,(3):65-68.
    [25]王东,陆森林,陈士安等.优化PID和神经PID控制主动悬架的性能对比研究.机械设计与制造[J].2011,(10):96-98.
    [26]郑玲,邓兆祥,李以农.汽车半主动悬架的滑模变结构控制.振动工程学报[J].2003,16(4):457-462.
    [27]胡斐,赵治国.主动悬架的LQR控制加权系数多目标遗传算法优化.机械与电子[J].2011,(2):28-31.
    [28]沈俊,宋健.基于ADAMS的汽车悬架参数对ABS影响机理研究.机械设计与制造[J].2006,(12):62-64.
    [29]张云清,项俊,陈立平.整车多体动力学模型建立、验证及仿真分析.汽车工程[J].2006,(3):287-291.
    [30]钱德猛,王长文.基于虚拟样机技术的某型商务车底盘悬架系统的试验开发.合肥工业大学学报(自然科学版)[J].2007,30(12):68-72.
    [31]王海波,陈无畏,张良邓.基于有限元法空气弹簧参数对其垂向刚度的影响.机械设计与制造[J].2011,(8):52-54.
    [32]徐龙,成艾国,黄清敏等.板簧悬架垂直刚度影响因素的研究.机械科学与技术[J].2011,30(8):1252-1257.
    [33]赵振东.汽车悬架与橡胶衬套的设计机理及对于整车性能影响的研究.上海:同济大学[D].2006.
    [34]李增刚主编ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    [35]Ahmed A.Shabana.Dynamics of Multibody Systems[M].Cambridge:Cambridge University Press,2005.
    [36]丁克勤主编.多柔体系统动力学[M].北京:机械工业出版社,2010.
    [37]Carlo L.Bottasso.Shabana.Multibody Dynamics Computational Methods and Applications[M].Germany:Springer Press,2009.
    [38]吴光强,李运超,盛云.后悬架多轴疲劳寿命预测.同济大学学报(自然科学版)[J].2010,38(6):880-884.
    [39]陈无畏,李欣冉,陈晓新等.悬架中高频振动传递分析与橡胶衬套刚度优化.农业机械学报[J].2011,42(10):25-29.
    [40]庞剑,谌则,何华编写.汽车噪声与振动—理论与应用[M].北京:北京理工大学出版 社,2006.
    [41]Bakker E.,Pacejka H B.,Lidner L.A New Tire Model with an Application in Vehicle Dynamics Studies[J].SAE Paper,1989,890087:101-113.
    [42]E.Bakker,L.Nyborg,H.B.Tyre Modelling for Use in Vehicle Dynamics Studies[J]. SAE 870421,1987.
    [43]胡建军,李彤,秦大同.基于整车动力学的电动助力转向系统建模仿真[J].系统仿真学报,2008,20(6):1577-1581.
    [44]Yongchul Choi, Gwanghun Gim. Improved UA Tire Model as a Semi-empirical Model[J]. SAE Technical Paper 2000-05-0278,2000.
    [45]Myung-Gyu Kim, Jae-Sung Jo, Jeong-Hyun Sohn and Wan-Suk Yoo. Reduction of Road Noise by the Investigation of Contributions of Vehicle Components[J]. SAE 2003-01-1718, 2003.
    [46]Ji-Un Lee, Jin-Kwan Suh and Seung-Kab Jeong. Development of Input Loads for Road Noise Analysis[J]. SAE 2003-01-1608,2003.
    [47]陈杰平,陈无畏,祝辉,朱茂飞.基于Matlab/Simulink的随机路面建模与不平度仿真[J].农业机械学报,2010,41(3):11-15.
    [48]彭辉,靳晓雄,叶武平.悬架系统对轿车车内噪声的影响预测[J].汽车工程,2000,22(1):42-47.
    [49]H Tanaka. A comparative study of GA and orthogonal experimental design[J]. Evolutionary Computation,1997., IEEE International Conference:143-146.
    [50]姜立标,侯文超,谷方德.汽车稳态回转性能仿真与正交试验研究[J].汽车技术,2011,(2):43-46.
    [51]张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报,2005,36(12):29-31.
    [52]李以农,郑玲.基于微分几何理论的汽车半主动悬架非线性振动控制[J].中国公路学报,2010,31(5):109-112.
    [53]王宵峰 编写,汽车底盘设计[M].北京:清华大学出版社,2010.
    [54]王望予 编写.汽车设计[M].北京:机械工业出版社,2011.
    [55]喻凡林逸编写.汽车系统动力学[M].北京:机械工业出版社,2005.
    [56]李静,吴云平,杨宗昂等.车辆姿态控制系统悬架阻尼控制策略[J].吉林大学学报(工学版),2006,36(2):24-28.
    [57]高红华,陈学东,钱文军.汽车平顺性的建模分析与研究[J].工程设计学报,2003,10(6):321-324.
    [58]刘新田,石少亮,黄虎等.减振器下衬套刚度对后多连杆独立悬架性能影响分析,2010,(10):99-101.
    [59]石少亮,吴伟蔚,黄虎,刘新田.车用橡胶衬套的非线性有限元分析[J].机械设计与制 造,2011,(9):30-32.
    [60]Ellen M.Arruda,Mary C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids,1993,41(2):389-412.
    [61]陈文哲编写.机械工程材料[M].长沙:中南大学出版社,2007.
    [62]余志生主编.汽车原理[M].北京:机械工业出版社,2006.
    [63]赵振东,雷雨成.悬架橡胶元件对汽车NVH性能影响的分析方法[J].橡胶工业,2008,55(8):490-494.
    [64]严济宽主编.机械振动隔离技术[M].上海:上海科学技术文献出版社,1985.
    [65]李欣冉,陈晓新,王家恩,汪明磊.橡胶衬套对汽车悬架系统NVH性能影响研究[J].合肥工业大学学报,2012,(5).
    [66]包秀图,张涛,李子然等.轮胎振动噪声的数值模拟[J].振动与冲击,2008,2008(11):6-11.
    [67]管迪华,董培蕾,范成建等.轮胎自由与约束悬置的模态试验与综合分析[J].汽车工程,2003,25(4):353-359.
    [68]葛剑敏,郑联珠.路面特性对车辆振动影响规律研究[J].中国公路学报,2004,17(3):117-121.
    [69]王洪礼,任炜,乔宇.汽车轮胎动力学特性研究[J].机械强度,2002,24(3):345-348.
    [70]魏瑞广,张小杭,廖艳培.汽车轮胎等效模型探讨[J].装备制造技术,2011,(6):17-19.
    [71]曹立波,张滕滕,邵飞达.轮胎模型逼真度对偏置碰撞仿真的影响分析[J].汽车工程学报,2011,1(2):48-52.
    [72]Guo.K, Ren.L.A Unified Semi-Empirical Tire Model with Higher Accuracy and Few Parameters[J]. SAE Technical Paper 2003-01-1608,2003.
    [73]庄继德主编.汽车轮胎学[M].北京:北京理工大学出版社,1999.
    [74]应世洲,陈方,王国林.基于Rebar单元的载重子午线轮胎模型建立与验证[J].轮胎工业,2007,(8):462-465.
    [75]董永涛,张耀春.板壳结构非线性屈曲分析的拉格朗日法[J].土木工程学报,1997,30(2):34-40.
    [76]刘建华.岩体力学行为拉格朗日分析方法研究与工程应用[J].岩石力学与工程学报,2006,25(11):47-51.
    [77]闫相桥.稳态滚动轮胎的有限元分析模型[J].复合材料学报,2001,18(4):108-114.
    [78]许喆,王伟,赵树高.轮胎静态及侧偏刚度有限元分析[J].橡胶工业,2010,57(4):215-219.
    [79]熊建强,黄菊花,廖群.轮胎气压对汽车振动噪声的影响[J].噪声与振动控制,2011,(3):65-68.
    [80]孙保苍,王欢,应世州.轮胎非线性对悬架系统振动影响的研究[J].振动与冲击,2007,(4):129-132.
    [81]葛锋,曲学春,杨生辉等.轮胎气压与汽车性能的关系及其选择[J].军事交通学院学报,2009,11(1):52-55.
    [82]Gillespie,T.D著,赵六奇,金达锋译.汽车动力学基础[M].北京:清华大学出版社,2006.
    [83]张为春,何吕昌,刘存波.拖拉机轮胎垂直动态刚度和阻尼特性的研究[J].农机化研究,2007,(12):148-150.
    [84]陈杰平,冯武堂,郭万山.整车磁流变减振器半主动悬架变论域模糊控制策略[J].农业机械学报,2011,42(5):7-14.
    [85]陈一锴,何杰,陈无畏等.多轴重型货车悬架系统改进天棚控制策略的研究[J].汽车工程,2011,33(4):345-351.
    [86]Duan Min,Li Gang.Shi Jing. Reseach on the Adaptive Fuzzy Control Based on Variable Universe with Magneto-Rheological Suspension[J]. Advanced Materials Reseach, Vols. 433-440(2012),pp:7112-7118.
    [87]赵玉壮,陈思忠.基于整车的半主动油气悬架滑模控制研究[J].北京理工大学学报,2011,31(10):1168-1173.
    [88]王东,陆森林,陈士安等.优化PID与神经PID控制主动悬架的性能对比研究[J].机械设计与制造,2011,(10):96-98.
    [89]杨建伟,李敏,孙守光,基于半主动自适应悬架系统的整车道路友好性研究[J].中国公路学报,2011,24(2):120-126.
    [90]张立军,张天侠.汽车非平稳行驶状态下的半主动悬架控制[J].振动与冲击,2010,29(6):189-193.
    [91]兰波,喻凡.汽车主动悬架LQG控制器的设计与仿真分析[J].农业机械学报,2004,35(1):14-17.
    [92]Xiaobin Fan,Bingxu Fan,Huigang Wang.Study on Contrcl Technology for Vehicle Active Suspension[J]. Applied Mechanics and Materials,Vols.143-144(2012),pp:69-73.
    [93]张晓亮,罗文广.汽车主动悬架系统的线性二次最优控制研究[J].广西工学院学报,2011,22(4):44-48.
    [94]张伟.基于状态反馈线性二次型最优控制器的设计[J].计算技术与自动化,2011,30(3):20-23.
    [95]唐晓娟,谢能刚,王璐.半主动悬架LQG控制及仿真分析[J].自动化与仪表,2008,(10):1-3.
    [96]黄兴惠,金达峰,赵六奇.基于频域加权性能指标和输出反馈的主动悬架控制策略研究[J].汽车工程,1998,20(6):321-326.
    [97]王世明,王孙安,李天石.半主动悬架及其控制[J].汽车工程,1999,(12):1-3.
    [98]杨启耀,周孔亢,张文娜等.半主动空气悬架Fuzzy-PID控制[J].农业机械学报,2008,39(9): 24-29.
    [99]陈思忠,杨杰,吴志成等.外置串联阀式阻尼可调油气弹簧研究[J].汽车工程,2007,29(8):719-722.
    [100]朱茂飞,陈无畏,祝辉.基于磁流变减振器的半主动悬架时滞变结构控制[J].机械工程学报,2010,46(12):113-119.
    [101]任尊松著.车辆系统动力学[M].北京:中国铁道出版社,2007.
    [102]张文春著.汽车理论[M].北京:机械工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700