用户名: 密码: 验证码:
在役钢—混凝土组合桥面系中承式吊杆拱桥健康监测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁作为重要的交通基础设施,其服役期间结构的安全性、耐久性、适用性直接关系到国家经济发展和人民生命财产安全。二十世纪九十年代,我国修建了较多钢筋混凝土中承式吊杆拱桥,这种拱桥具有建筑高度较小、引道较短、立柱少、自重轻、施工简单、造型优美等优点。但是由于受到交通量快速增长、材料老化等因素影响,这些在役钢筋混凝土中承式吊杆拱桥出现了系列损伤病害。且这些损伤病害降低了桥梁的承载力,影响了其使用期间的工作性能,加剧了桥梁的老化,严重时将引起桥梁垮塌。因此,本文针对一座在役钢-混凝土组合桥面系中承式吊杆拱桥,对其健康监测中的关键技术问题进行了研究。主要研究内容和结论如下:
     (1)根据钢-混凝土组合桥面系中承式吊杆拱桥的构造和受力特点,基于桥梁结构有限元分析理论,建立了考虑和不考虑吊杆体系几何刚度时钢-混凝土组合桥面系中承式吊杆拱桥的有限元静动力方程,给出了吊杆体系的几何刚度矩阵及其张力的通用计算公式,并根据桥梁施工过程基于位移控制推出了施工各阶段吊杆体系张力的计算公式,然后将考虑吊杆体系几何刚度时的中承式吊杆拱桥有限元分析理论用于后续加固改造后的在役拱桥静动力性能分析,取得了接近于工程实际的分析结果。
     (2)以在役钢-混凝土组合桥面系中承式吊杆拱桥为研究背景,通过定期检测评定了该桥的初步技术状况,为其后续静动载试验、有限元模拟、模型修正及基准有限元模型的建立提供了基础数据。
     (3)针对该在役中承式吊杆拱桥,结合其定期检测结果,采用上述考虑吊杆体系几何刚度时的中承式吊杆拱桥有限元分析理论,建立了初始空间有限元模型,计算了该桥施工各阶段吊杆体系的张力,分析了其施工阶段的静力性能及成桥后的动力特性,结果表明:整个施工过程中组合桥面系的纵、横钢梁截面应力均满足设计要求;钢-混凝土组合桥面系结构的竖向刚度相对较小,箱型拱肋的竖向刚度相对较大,全桥的整体抗扭刚度较大;对比考虑吊杆体系几何刚度影响时与不考虑时的动力特性分析结果,该在役中承式吊杆拱桥的前五阶频率,前者较后者增大了4.11%-5.14%,说明设计分析中承式吊杆拱桥时需考虑吊杆体系几何刚度的影响。
     (4)针对输入未知的桥梁结构振动,根据随机振动理论,提出采用基于环境振动的功率谱峰值法识别模态参数,并在该中承式吊杆拱桥的动载试验研究中采用此法识别了频率等模态参数。这种模态参数识别法仅用较少的数据即可识别出桥梁结构的模态参数,且简单、快速、可靠、成本较低,可用于大型复杂桥梁结构的模态参数识别。
     (5)对比该在役中承式吊杆拱桥基于动载试验的模态参数识别结果与初始有限元模型分析结果可知该桥需要进行有限元模型修正,并提出通过ANSYS的优化功能,结合灵敏度分析,采用基于优化分析的设计参数型修正法实现了该桥的有限元模型修正。这种模型修正法实用性强,能够广泛应用于大型桥梁结构的模型修正、健康监测。
     (6)针对该在役钢-混凝土组合桥面系中承式吊杆拱桥进行了静载试验研究与理论模拟分析。静载试验时共设置了八种荷载工况以获取拱肋、纵横钢梁各控制截面的应变和挠度,同时采用有限元修正模型对该桥进行了静力分析,然后以此为基础对该桥的工作性能进行了分析评定,结果表明:该桥桥跨结构的整体刚度较大,各构件强度均满足设计要求,有一定的承载力安全储备,结构整体工作状态良好;同时也验证了基于ANSYS优化分析的设计参数型模型修正法的可靠性,说明该桥的有限元修正模型可作为基准有限元模型。
     (7)通过动、静载试验研究及有限元模拟,建立了该桥的技术档案,为其今后服役期间健康状况监测与评定提供了基准数据。
As an important transportation infrastructure, the structural safety, durability, serviceability during their service of bridges are directly related to national economic development and people's life and property safety, so it widely receive attentions. In the1990s, half-through reinforced concrete arch bridges were heavily built due to their smaller height of the building, shorter bridge approach, fewer columns, light weight, simple construction, and aesthetic shape. However, due to the influence of the rapid growth of traffic, aging of the structure materials and other factors, a series of damage have appeared in the large number of half-through reinforced concrete arch bridges in-service. Moreover, the existence of damage will reduce the bearing capacity of the bridges, affect the working performance during their use, and even cause serious bridge collapse. Therefore, take a half-through arch bridge with steel-concrete composite bridge deck system in service as engineering background, some key technological problems involved in health monitoring in this dissertation studies. Its main contents and conclusions are as follows:
     (1) Based on structural finite element analysis theory, combined with the structure and mechanical characteristics of a half-through arch bridge with steel-concrete composite bridge deck system, static and dynamic finite element equations of this type of arch bridge are derived respectively when the geometric stiffness of boom system being considered and not. The geometric stiffness matrix and tension general formula of boom system are derived. Combined with the bridge construction process, the tension formulas of boom system in different stages of construction are deduced based on the control of displacements. Then the above finite element analysis theory of a half-through arch bridge with steel-concrete composite bridge deck system considering the geometric stiffness matrix of boom system is used to analyze the static and dynamic performance of a retrofitted half-through arch bridge in service, and analysis results close to practical engineering are obtained.
     (2) For a half-through arch bridge with steel-concrete composite bridge deck system in service, by regular inspection, the preliminary technical condition of the bridge is assessed. And these results can provide the basic data for the subsequent static and dynamic load test, finite element analysis, and finite element model updating of the bridge.
     (3) Combined with its regular inspection, the initial space finite element model of the half-through arch bridge with steel-concrete composite bridge deck system in service is established, which is based on the above finite element analysis theory of the half-through arch bridge considering the boom system geometric stiffness. Then the boom tensions at the various construction stages are calculated, the static performance of the bridge in the construction phase and the dynamic characteristics after the completion of the bridge are analyzed. The results of the static analysis show that section stresses during the construction phase meet the design requirements for the longitudinal and horizontal beams of the composite bridge deck system. The results of the dynamic analysis indicate that:vertical stiffness of the steel-concrete composite bridge deck is relatively small and the vertical stiffness of box-shape arch rib is relatively large; the overall anti-torsion rigidity of the half-through arch bridge is larger, and the box-shaped arch ribs followed. Comparison of the results of the dynamic analysis considering the geometric stiffness of boom system and not, shows that for the top five frequencies, the former increase4.11%~5.14%than the latter. This indicates that the geometric stiffness of boom system should be considered when the half-through arch bridge with steel-concrete composite bridge deck system is designed and analyzed.
     (4) For a bridge structural vibration with the unknown input, according to the random vibration theory, the power spectrum peak method based on ambient vibration is proposed to identify modal parameters. For the dynamic load test studies of the half-through arch bridge, the modal parameters of the arch bridge are identified by the power spectrum peak method based on ambient vibration. The modal parameter identification method, by which the modal parameters can be identified from less data, is simple, fast, reliable, and low-cost and can be applied to modal parameters identification of large-scale complex bridge structures.
     (5) For the half-through arch bridge with steel-concrete composite bridge deck system in service, comparison of the modal parameters identification results of dynamic test and modal analysis results of the initial space finite element model is found that the finite element model of the bridge need updating. Then a model updating method by modifying the design parameters based on optimization analysis is develop to achieve updating of space finite element model of the studied bridge through the optimization function of ANSYS. Correction parameters are selected with the sensitivity analysis and bridge engineering experience. The finite element model updating method based on the optimization analysis is simple and practical, which can be widely used for model updating and health monitoring of large-scale bridge structures.
     (6) For the half-through arch bridge with steel-concrete composite bridge deck system in service, the static load test and theoretical modeling analysis are implemented. Eight Load Cases are set up. to obtain the strain and deflection of control cross-sections of rib, vertical and horizontal steel beams for static load test. Using the updated finite element model of the bridge, the static analyses are conducted. A method combining the static analysis of the updated finite element model with static load test is raised to evaluate the working performance and actual mechanical conditions of the bridge. The results show that the overall stiffness of the bridge is larger and strength of each component meets the design requirements. The globe bridge structure in service has certain safety reserve capacity, and is in good working condition. Reliability of the above finite element model updating method based on the optimization analysis of ANSYS is also validated. The modified finite element model of the half-through arch bridge with steel-concrete composite bridge deck system in service can be used as a baseline finite element model, being applied to health monitoring, damage detection, the overall performance evaluation during its subsequent service.
     (7) The technical files of the half-through arch bridge with steel-concrete composite bridge deck system in service is set up by static and dynamic load test and finite element simulation, and baseline data provided for inspection and assessment of the health status during its subsequent service.
引文
[1]Zong Z H, Wang T L, Huang D Z, et al. State-of-the-art report of bridge health monitoring [J]. Journal of Fuzhou University:Nature Science,2002,30(2):127-152.
    [2]张树仁,王宗林.桥梁病害诊断与改造加固设计[M].北京:人民交通出版社,2006.3.
    [3]李爱群,缪长青.桥梁结构健康监测[J].北京:人民交通出版社,2009.
    [4]邬晓光,徐祖恩.大型桥梁健康监测动态及发展趋势[J].长安大学学报:自然科学版,2003,23(1):39-42.
    [5]Bendat J S, Piersol A G. Engineering Application of Correlation and Spectral Analysis [C]. Second Edition. New York:John Wiley & Sons,1993.
    [6]REN W, PENG X, LIN Y. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge [J]. Engineering Structures,2005, 27(4):535-548.
    [7]王学敏,黄方林,刘建军.人型桥梁模态参数识别的一种方法[J].工程力学,2007,24(2):110-114.
    [8]常军,孙利民,张启伟.基于随机子空间结合稳定的拱桥模态参数识别方法[J].建筑科学与工程学报,2007,24(1):21-25.
    [9]徐士代.环境激励下工程结构模态参数识别[D].南京:东南大学,2006.
    [10]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2002.
    [11]王学敏,黄方林,刘建军.大型桥梁模态参数识别的一种方法[J].工程力学,2007,24(2):110-115.
    [12]秦世强,蒲黔辉,施洲.环境激励下大型桥梁模态参数识别的一种方法[J].2012,31(2):95-99.
    [13]张艳辉,郭学东,曹健.基于风载激励下桥梁结构模态参数识别[J].辽宁科技大学学报,2011,34(3):271-273.
    [14]Francesco B., Carmelo G. Operational modal testing and FE model tuning of a cable-stayed bridge [J]. Engineering Structures,2011 (33):2063-2073.
    [15]徐佳,黄声享,麻凤海.基于改进HHT理论的大型桥梁动态特性分析[J].武汉大学学报(信息科学版),2010,35(7):801-805.
    [16]郝向炜,刘洋.时变温度下某吊杆拱桥结构的模态试验与分析[J].公路交通科技, 2010,27(8):45-50.
    [17]刘宗政,陈恳,郭隆德等.基于环境激励的桥梁模态参数识别[J].振动、测试与诊断,2010,30(3):25-35.
    [18]常军,顾坚,孟浩.不中断运营的在役桥梁模态参数识别[J].广西大学学报(自然科学版),2010,35(1):131-135.
    [19]张敏,谢慧, Sung-Han Sim等.基于随机子空间的分布式结构模态参数识别[J].深圳大学学报理工版,2009,26(4):394-399.
    [20]林贤坤,张令弥,郭勤涛等.预应力连续箱梁桥的基准动力有限元模型研究[J].振动与冲击,2009,28(11):38-42.
    [21]侯立群,欧进萍叉,赵雪峰等.哈尔滨四方台斜拉桥模态参数和索力识别[J].振动与冲击,2009,28(5):106-110.
    [22]Soyoz S, Feng M. Q. Long-term Monitoring and Identification of Bridge Structural Parameters[J]. Computer-Aided Civil and Infrastructure Engineering,2009, 24(2):82-92.
    [23]Lin P., Zhang N., Ni B. On-line Modal Parameter Monitoring of Bridges Exploiting Multi-core Capacity by Recursive Stochastic Subspace Identification Method[C]. Proceedings of the American Control Conference, Seattle,2008:632-637.
    [24]潘晓杰,谢慧才,程林等钢管混凝土拱桥模型的理论和试验模态分析[J].四川建筑科学研究,2008,34(5):66-70.
    [25]He X. F., Moaveni B., Conte J. P., et al. Modal Identification Study of Vincent Thomas Bridge Using Simulated Wind-induced Ambient Vibration Data. Computer-Aided Civil and Infrastructure Engineering[J].2008,23(5):373-388.
    [26]谢献忠,陈文新,钟新谷等.环境激励下湘潭莲城大桥模态参数识别研究[J].湖南科技大学学报(自然科学版),2008,23(4):53-56.
    [27]何旭辉,余志武,陈政清.基于EMD和随机减量技术的大型桥梁模态参数识别[J].铁道科学与工程学报,2007,4(4):6-10.
    [28]任伟新,林友勤,彭雪林.大跨度斜拉桥环境振动试验与分析[J].实验力学,2006,21(4):418-426.
    [29]Ren W. X., Peng X. L., Lin Y. Q. Experimental and Analytical Studies on Dynamic Characteristics of a Large Span Cable Stayed Bridge[J]. Engineering Structures,2005, 27(2):535-548.
    [30]Macdonald J. H. G., Daniell W. E. Variation of Modal Parameters of a Cable Stayed Bridge Identified from Ambient Vibration Measurements and FE Modeling [J]. Engineering Structures,2005,27:1916-1930.
    [31]陈宜言,许有胜,宗周红.九跨预应力混凝土连续梁的环境振动试验与模态分析[J].福州大学学报(自然科学版),2005,33(6):782-785.
    [32]陈常松,田仲初,郑万泔.大跨度混凝土斜拉桥模态试验技术研究[J].土木工程学报,2005,38(10):72-75.
    [33]彭涛,田仲初,蒋田勇.大跨度组合体系拱桥模态试验方法的研究[J].中外公路,2009,29(3):128-132.
    [34]樊可清,倪一清,高赞明.改进随机子空间系统辨识方法及其在桥梁状态监测中的应用.中国公路学报,2004,17(4):70-73.
    [35]Chen J., Xu Y. L., Zhang R. C. Modal Parameter Identification of Tsing Ma Suspension Bridge under Typhoon Victor:EMD-HT method[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(10):805-827.
    [36]陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用[J].振动工程学报,2003,16(3):383-388.
    [37]宗周红,Bijaya Jaishi,林友勤.西宁北川河钢管混凝土拱桥的理论和实验模态分析[J].2003,25(4):89-96.
    [38]张启伟.桥梁结构模型修正与损伤识别[D].同济大学博士论文,1999.
    [39]秦仙蓉.基于灵敏度分析的结构计算模型修正技术及相关问题研究[D].南京航空航天大学博士论文,2001.
    [40]Friswell M. I. and Mottershead J. E. Finite element model updating in structural dynamics[M]. Dordrecht:Kluwer Academic Publisher,1995.
    [41]Bijaya Jaishi. Finite element model updating of civil engineering structuretional conditions[D].(?)福州大学博士学位论文,2005.
    [42]宗周红,夏樟华.联合模态柔度和静力位移的桥梁有限元模型修正方法[J].中国公路学报,2008,11,21(6):43-49.
    [43]李辉,丁桦.结构动力有限元模型修正方法研究进展[J].力学进展,2005,35(2):170-180.
    [44]Gravitz S I. An analytical procedure for orthogonalization of measured[J]. MJAS, 1958,25(11):1168-1173.
    [45]刘东,廖日东,左正兴.试验模型相关及修正技术若干问题[J].强度与环境,2003,30(1):23-30.
    [46]张德文,(美)魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999.
    [47]荣见华,郑健飞,徐鸿飞.结构动力修正及优化设计[M].北京:人民交通出版社,2001.
    [48]王元清,姚南,张天申,石永久.基于最优化理论的多阶段模型修正及其在桥梁安全评估中的应用[J].工程力学,2010,27(1):91-97.
    [49]邓苗毅,任伟新.基于静力荷载试验的连续箱梁桥结构有限元模型修正[J].福州大学学报(自然科学版),2009.37(2):54-55.
    [50]向天宇,赵人达,刘海波.基于静力测试数据的预应力连续梁结构损伤识别[J].土木工程学报,2003,36(11):79-82.
    [51]李书,冯太华等.一种利用静力实验数据修正有限元模型的方法[J].应用力学学报,1995,12(3):52-57.
    [52]钟颖.基于静力测试数据的桥梁结构有限元模型修正[D].西南交通大学硕士学位论文,2009.
    [53]谭东莲,肖汝诚.基于Levenberg-Marquardt算法的桥梁结构静力参数识别[J].交通运输工程学报,2005,5(3):56-59.
    [54]F. Bakhtiari-Ne jad, Rahai A. and Esfandiari A. A structural damage detection method using static noisy data[J]. Journal of Structural Engineering, ASCE, 2005(27):1784-1793.
    [55]崔飞.桥梁参数识别与承载力评估[D].同济大学博士学位论文,2000.
    [56]Berman A. Mass matrix correction using an incomplete set of measured modes [J]. AIAA Journal,1979,17(10):1147-1148.
    [57]Baruch M., Bar Itzhack I. Y. Optimal weighted orthogonal ization of measured models[J]. AIAA Journal,1978,16(4):346-351.
    [58]范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正[J].土木工程学报,2000,33(1):9-13.
    [59]郑惠强,陈鹏程.大型桥吊结构动力有限元模型修正[J].同济大学学报,2001,29(12):1412-1415.
    [60]袁爱民,戴航,孙大松.考虑边界条件约束和参数灵敏度的斜拉桥有限元模型修正[J].应用基础与工程科学学报,2010,18(6):900-909.
    [61]卢海林,吴功,黄民水,徐文胜.环境激励下大跨度连续刚构桥动力分析模型修正[J].武汉工程大学学报,2013,35(3):15-20.
    [62]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002,15(1):74-78.
    [63]夏品奇.斜拉桥有限元建模与模型修正[J].振动工程学报,2003,16(2):219-223.
    [64]Zapico J.L., Gonzalez IVf.P., Friswell M.I., et al. Finite element model updating of a small scale bridge[J]. Journal of Sound and Vibration,2003,268:993-1012.
    [65]王茂龙.结构损伤识别与模型更新方法研究[D].东南大学博士学位论文,2003.
    [66]郭彤,李爱群,韩大章.基于灵敏度分析与优化设计原理的大跨桥梁动力模型修正[J].桥梁建设,2004,6:20-23.
    [67]杜青,蔡美峰,张献民等.钢筋混凝土桥梁结构动力有限元模型修正[J].公路交通科技,2006,23(1):60-62.
    [68]张启伟,范立础.利用静动力测试数据的桥梁结构损伤识别[J].同济大学学报,1998,26(5):528-532.
    [69]田仲初,彭涛,陈政清.佛山东平大桥静动力分层次有限元模型修正研究[J].2007,26(6):162-165.
    [70]宗周红,夏樟华.联合模态柔度和静力位移的桥梁有限元模型修正方法[J].中国公路学报,2008.11,21(6):43-49.
    [71]姚昌荣,李亚东.基于静动力测试数据的斜拉桥模型修正[J].铁道学报2008,30(3):65-70.
    [72]翁尚彬.重庆菜园坝长江大桥有限元模型修正研究[D].重庆大学硕士学位论文,2009.
    [73]岳笛.重庆石板坡长江大桥复线桥基于静动力的模型修正[D].重庆大学硕士学位论文,2007.
    [74]王浩,王付全,李爱群等.大跨度缆索支撑桥梁分阶段有限元模型修正[J].工程力学.2009,26(10):111-116.
    [75]韩万水,王涛,李永庆等.大跨钢柑架悬索桥有限元模型实用修正方法[J].交通运输工程学报,2011,11(5):18-27.
    [76]林贤坤,张令弥,郭勤涛等.基于模态挠度法的预应力连续箱梁桥状态评估[J].土木工程学报,2010,43(10):83-90.
    [77]张纯,宋固全.去噪正则化模型修正方法在桥梁损伤识别中的应用[J].振动工程学报,2012,6,25(1):97-102.
    [78]王蕾,郁胜,李宾宾等.基于径向基神经网络的桥梁有限元模型修正[J].土木工程学报2012,45(S2):11-15.
    [79]Cundy A. L. Use of Response surface meta models in damage identification of dynamic structures[D]. Blacksburg, Virginia:Virginia Polytechnic Institute and State University, 2003.
    [80]Ren W. X., Chen H. B. Finite element model updating in structural dynamic by using the response surface method[J]. Engineering Structures,2010,32 (8):2455-2465.
    [81]Ren W X, Fang S. E., Deng M. Y. Response surfac-based-finite-element-model updating using structural static response [J]. Journal of Engineering Mechanics,2011, 137(4):248-257.
    [82]宗周红,高铭霖,夏樟华.基于健康监测的连续刚构桥有限元模型确认(I)-基于响应而法的有限元模型修正[J].土木工程学报,2011,44(2):90-98.
    [83]代汉超,石雪飞.基于静力响应面的混凝土梁桥有限元模型修正[J].交通科学与工程,2013,6,29(2):41-45.
    [84]李晓斌,蒲黔辉,杨永清.钢筋混凝土拱桥悬臂浇注施工模型试验设计与索力优化[J].公路,2007,(7):7-11.
    [85]李晓斌,杨永清,蒲黔辉.钢筋混凝土拱桥悬臂浇注施工模型试验研究[J].西南交通大学学报,2007,42(5):526-530.
    [86]李法雄,聂建国,王家忠等.钢筋混凝土拱桥罕遇地震响应简化分析方法[J].公路交通科技,2012,29(3):109-117.
    [87]包桂钮.拱轴系数对拱桥静动力性能及地震反应的影响[J].公路,2011,(7):36-38.
    [88]高大峰,刘伯栋,张静娟.中承式钢筋混凝土拱桥自振特性分析[J].西北地震学报,2009,31(1):75-79.
    [89]王加迫,陈宝春.600m跨径钢筋混凝土拱桥地震响应分析[J].中外公路,2006,26(4):111-114.
    [90]孙广龙,宋建永,亓路宽等.大跨径钢筋混凝土拱桥的地震时程响应分析[J].公路交通科技,2007,24(3):86-89.
    [91]许世展,姬同庚.大跨径钢筋混凝土拱桥抗震性能分析[J].世界地震工程,2006,22(4):74-79.
    [92]黄盛楠,陆新征,郑建春等.超载导致钢筋混凝土拱桥倒塌的破坏模拟[J].工程力学,2012,29(S2):122-127.
    [93]王业飞,蔡金标,杨国静.劲性骨架混凝土拱桥施工稳定性分析[J].桥梁建设,2011,(3):22-25.
    [94]李征,亓路宽,宋建永.钢筋混凝土拱桥参数化建模及特征值屈曲分析[J].世界地震工程,2007,24(4):113-116.
    [95]李松,强士中,唐英.钢筋混凝土拱桥极限承载力的参数研究[J].西南交通大学学报,2007,42(3):293-298.
    [96]LIU Z, LIF, KIM RW M. Analytic model of long-span sel-f shored arch bridge[J]. Journal of Bridge Engineering,2002,7(1):14-21.
    [97]潘家英,张国政,程庆国.大跨径桥梁极限承载力的几何与材料非线性耦合分析[J].土木工程学报,2000,33(1):5-8.
    [98]姜小明.大跨度钢筋混凝土拱桥的几何非线性对结构内力及变形的影响[J].中南公路工程,2003,28(1):35-36.
    [99]张建民,郑皆连,秦荣.南宁永和大桥双重非线性稳定性分析[J].公路交通科技.2002.19(3):58-62.
    [100]赵长军,王锋君,徐兴.考虑弹性大位移影响的中承式钢管混凝土拱桥稳定性[J].西安公路交通大学学报,2001,21(2):44-46.
    [101]谢尚英,钱冬生.劲性骨架混凝土拱桥施工阶段的非线性稳定分析[J].土木工程学报.2000,33(1):23-26.
    [102]范颖芳,胡志强,周晶.桥面板约束条件对钢筋混凝土拱桥力学性能影响的试验研究[J].工程力学,2006,23(9):146-151.
    [103]司秀勇,王高续,施洲.钢筋混凝土拱桥的检测与评估研究[J].铁道建筑,2011,(9):32-36.
    [104]施洲,蒲黔辉,薛爱.钢筋混凝土拱桥加固后静动力性能评定分析[J].四川建筑科学研究,2008,34(3):79-82.
    [105]张艳,张清华.钢筋混凝土拱桥荷载试验设计与评定[J].四川建科学研究,2009,35(3):30-32.
    [106]李晓斌,杨永清,蒲黔辉.钢筋混凝土拱桥的评估与加固前后性能对比分析[J].四川建筑科学研究,2007,33(4):98-102.
    [107]李贞新,郭丰哲,钱永久.在役钢筋混凝土拱桥耐久性的模糊综合评估[J].西南交通大学学报,2006,41(3):366-370.
    [108]彭可可,黄培彦,邓军.在役钢筋混凝土拱桥时变可靠度分析[J].中国铁道科学,2009,30(3):15-17.
    [109]林道锦,秦权.一座现有拱桥面内失稳的可靠度随机有限元分析[J].工程力学,2005,22(6):122-126.
    [110]邓旭华.超声回弹综合法在钢筋混凝土拱桥路面结构检测中的应用[J].混凝土,2004,173(3):56-58.
    [111]范立础.桥梁工程(上册)[M].北京:人民交通出版社,2001.
    [112]聂建国.钢-混凝土组合结构桥梁[M].北京:人民交通出版社,2011.
    [113]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [114]叶建龙,孙建渊,石洞.梁拱组合桥柔性吊杆张拉力的确定及分析[J].城市道桥与防洪,1999,(4):21-25.
    [115]项海帆.高等桥梁结构理论[M].北京,人民交通出版社,2001.
    [116]潭志勇,吴素春,桥梁结构的力学特性测试与分析计算[J].温度与环境,2000(3):1-6.
    [117]虞建成,邵容光,王小林.系杆拱桥吊杆初始张拉力及施工控制[J].东南大学学报,1998,28(3):112-116.
    [118]盛兴旺,李松报.确定系杆拱桥吊杆力的刚性连续梁法算法[J].铁道科学与工程学报,2009,6(3):42-46.
    [119]刘钊.基于能量法的系杆拱桥最优吊杆内力的确定[J].工程力学,2009,26(8):168-172.
    [120]李新平,钟健聪.空间系杆拱桥吊杆张拉控制分析[J].华南理工大学学报(自然科学版).2004,6(3):89-92.
    [121]何伟.中、下承式钢管混凝土拱桥损伤识别关键问题研究[D].郑州大学博士学位论文,2010.
    [122]施州.基于动力测试的桥梁结构损伤识别及性能评定理论与应用研究[D].西南交通大学博士学位论文,2006.
    [123]周建庭,刘思孟等.钢筋硷肋拱桥现状评价与加固技术研究报告[R].重庆交通大学,2008.
    [124]章关永.桥梁结构试验[M].人民交通出版社,2003.
    [125]周新刚编著.混凝土结构的耐久性与损伤防治[M].中国建材工业出版社,1999,8:44-48.
    [126]黄茂忠,张澍曾.钢管拱桥施工中临时预应力束破断原因分析[J].铁道建筑,1996,9:19-20.
    [127]赵国藩,李树瑶,王健等.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991.
    [128]荀艳,靳克.混凝土结构中钢筋锈蚀的影响因素[J].山东建材.2003,24(4):50-51.
    [129]马林.国产1860级低松弛预应力钢绞线疲劳性能研究[J].铁道标准设计,2000,20(5):21
    [130]姚志强,阮小平,邓清.拱桥吊杆变形差异引发桥面断裂及类似事故的预防措施[J].公路,2002,7:73-74.
    [131]周洪刚.高周疲劳损伤研究和寿命预测探索[D].浙江大学硕士学位论文,2003:3-16
    [132]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [133]王新敏,李义强,许宏伟ANSYS结构分析单元与应用[M].北京:人民交通出版社,:2011.
    [134]周先雁, 孟阳君,陈强.无风撑钢管混凝土拱桥建模分析[J].中南林学院学报,2005,25(6):8-11.
    [135]钟建聪,李新平.空间系杆拱桥吊杆张力控制的研究[J].广东公路交通,2004,(2):1-4.
    [136]刘亚平.钢筋混凝土系杆拱桥吊杆张拉计算及控制的研究[J].中国港湾建设,2002(4):5-8.
    [137]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用[M].天津:天津火学出版社,2001.
    [138]兆辉,樊可清,李霆.系统辨识在桥梁状态监测中的应用[J].中南公路公程.2006,31(3):109-163.
    [139]Feng, M. Q., Kim, J.M. and Xue, H. Identification of a Dynamic System Using Ambient vibration Measurements[J]. Journal of Applied Mechanics, ASME,1998,65(4): 1010-1021.
    [140]夏樟华.基于静动力的桥梁结构有限元模型修正[D].福州大学硕士学位论文,2006.
    [141]魏权龄,王目爽,徐兵等.数学规划与优化设计[M].北京:国防工业出版社,1984.
    [142]白新理等.结构优化设计[M].黄河水利出版社,2008.
    [143]博弈创作室.参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004.
    [144]ANSYS高级技术分析指南[M].北京:国防工业出版社,1984.
    [145]JTJ/T J21-2011.公路桥梁承载能力检测评定规程[S].北京:人民交通出版社,2011.
    [146]徐日永,王博仪,赵家奎.桥梁检验[M].北京:人民交通出版社,1989.
    [147]宋一凡.公路桥梁荷载试验与结构评定[M].北京:人民交通出版社,2002.
    [148]章永关.桥梁结构试验[M].北京:人民交通出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700