用户名: 密码: 验证码:
火灾模式下多梁式混凝土T型梁桥结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于交通基础设施,火灾是最严重的灾害之一。近年来,随着交通量的迅猛增加以及运输工具的多样性,桥梁火灾事故频现,穿越公路的重型硬脂酸车、苯酚运输车、运油(气)卡车、海上油(气)轮日渐增多,交通事故和人为原因引发的火灾对公路桥梁带来了新的威胁。作为桥梁偶然荷载之一的火灾对大桥造成的破坏不可估量,桥梁火灾不仅影响交通质量,造成巨大经济损失,而且重者可造成桥梁的永久损失、甚至坍塌。目前关于桥梁火灾的研究仅停留在单梁及局部结构体系阶段,还未涉及桥梁结构的整体抗火性能,与实桥工程应用的目标还有较大距离。
     本文以交通运输部交通建设科技项目“火灾下桥梁结构灾变机理及安全性评价与加固技术研究(2011318812970)”之专题3—“火荷载作用下具有砼桥面的大型梁桥结构影响参数研究”为依托,基于长安大学中央高校基金项目(CHD2011TD010),针对多梁式混凝土T型梁桥结构整体抗火性能,建立了火灾温升模式,设定了火灾场景,综合各材料高温特性和温升曲线,提出了火灾全过程混凝土烧深时程关系公式和累积烧损时程关系公式,研究了桥面不同区域火灾模式下和桥下不同梁肋火灾模式下多梁式混凝土T型梁桥空间变形及应力分布性态,揭示了火灾全过程多梁式混凝土T型梁桥结构的力学性能变化规律,建立了基于分层算法的T型混凝土梁桥火灾全过程剩余刚度与剩余承载力计算模型,提出了基于抗火涂层厚度及导热性能的实体结构温度计算公式,为火灾后桥梁结构的准确评估奠定了基础,为提出桥梁抗火设计实用计算方法提供了丰富的数据。主要研究工作有:
     (1)研究了空间单元的温度梯度与温度传导率之间的变化关系,考虑混凝土的结晶水随延火温度的变化状态,研究了结晶水随温度变化的潜热函数和单元瞬态温度场传导矩阵方程。基于温度热传导的虚拟层法,提出了混凝土加筋实体单元截面分层温差应力随延火时间和温度变化的计算方法,推导了单向火灾作用下混凝土加筋截面内力计算随延火时间和温度变化的应力应变矩阵,建立了影响结构内力变化的敏感矩阵模型。
     (2)研究了热力耦合场结构分析所采用的多维加筋单元的计算假定与条件及力学行为和破坏准则,综合考虑热应变增量、塑性应变增量、子步间迭代的应力总量,采用修正增量迭代法得到单元修正坐标系下的计算总应变。
     (3)研究并分析比较了ISO834、ASTME119和HC及HCM火灾温升曲线,对多梁式梁桥桥面火灾、桥下火灾场景进行了设定、归类并明确了火灾分析的温升模式和计算方法,建立了桥面整跨火灾模式、桥面局部火灾模式、桥下整跨火灾模式、桥下局部火灾模式及桥面和桥下局部火灾模式,给出了形成完整火灾场景的计算条件。
     (4)选择不同的火灾模式分析混凝土烧损深度,研究了延火时间、ISO834火灾温升模式、HCM火灾温升模式与混凝土烧损深度的时变规律,拟合提出了基于ISO834火灾温升模式和HCM火灾温升模式的火灾全过程混凝土烧损深度的时程关系公式。继而,分析了不同火灾模式下的混凝土累积烧损深度的延时变化规律,采用等效刚度和强度换算厚度的计算方法,拟合提出了基于ISO834火灾温升模式和HCM火灾温升模式的火灾全过程混凝土累积烧损深度的时程关系公式。
     (5)基于高温场焓传导模型,利用热-力耦合方法研究了桥面不同区域、桥下不同梁肋火灾全过程混凝土T型梁桥的空间变形与应力分布状态,揭示了火灾全过程多梁式混凝土T型梁桥实体剪力滞空间变化规律和时程剪力滞比的包络规律。
     ①研究了多梁式混凝土T型梁桥多区域跨中桥面受火模式,分析了此模式下多梁式混凝土T型梁桥各梁肋截面关键点温度时程变化规律及温度应力场分布,计算了钢筋应力时程分布及梁肋与关键点挠度在自重荷载作用下的变化规律,揭示了桥面对称火荷载作用下多梁式混凝土T型梁桥实体剪力滞空间变化规律和时程剪力滞比的包络规律。
     ②研究了多梁式混凝土T型梁桥桥下不同梁肋受火模式,分析了此模式下多梁式钢筋混凝土T梁桥各梁肋截面关键点温度时程变化规律及温度应力场分布,计算了梁肋与关键点挠度在自重荷载作用下的变化规律,揭示了桥下对称火灾全过程多梁式混凝土T型梁桥实体剪力滞空间变化规律和时程剪力滞比的包络规律。
     (6)考虑混凝土烧损深度和延火时间及温度的时域分布,采用截面有效高度的计算方法,提出了桥面、桥下火灾全过程混凝土梁桥剩余刚度时程修正计算公式,并对剩余刚度时程修正计算公式进行了相对偏差估计;提出了桥面、桥下火灾全过程混凝土T型梁桥剩余承载能力时程计算公式。研究了抗火涂层不同导热系数和不同厚度下混凝土T型梁截面的温度时程分布和温差时程分布,拟合提出了抗火涂层不同导热系数和不同厚度下混凝土实体结构的温度计算公式。
Fire is one of the most severe hazards to transportation infrastructure subjected duringtheir lifetime. In recent years with the rapid increase of traffic and the diversity oftransportation, fire hazard in bridges is frequent. When increasing transport vehicles filledwith stearinic acid and phenol and oil as well as gas is riding on the highway, a great threat tobridge caused by fire hazard has a tough issue as a result of traffic accidents and human factor.Bridge fires as one of accidental load can lead to significant economic and public losses,what’s more, permanent loss or collapse. The current research presenting an overview of firehazard in bridges is only stayed in the stage of single beam and local structure, which it ishard to be applied actually.
     Based on study on catastrophe mechanism and strengthening for concrete bridgestructure exposed to fire(Grant No.2011318812970) sponsored by Research Fund Ministry ofTransport of the People's Republic of China, and Study on thermodynamics model and heatconduction mechanism for concrete bridge exposed to fire(Grant No. CHD2011TD010)sponsored by Research Fund for the Central Universities of China, fire temperature rise modelis established and fire scenarios is designed. Material properties and temperature rise curveare comprehensively putted into consideration, time-dependent formula of burning depth andcumulative burning damage depth for concrete is proposed. The deformation and stressdistribution of multi-beam concrete T-shaped section beam girder are studied under conditionof different fire mode. Fire-resistant performance of structure is revealed. Residual stiffnessand bearing capacity calculation formulae are suggested. Temperature calculation formulaincluding coating thickness and thermal conductivity is constructed on the basis of laminatealgorithm. All of these laid a foundation for fire designation and evaluation. The mainresearch contents are as follows:
     (1)The relationship between temperature gradient and temperature conductivity of spaceelements is studied. Based on variation of crystalliferous water in concrete, the latent heatfunction of crystalliferous water is studied with increasing temperature, then, thermalconduction matrix equation of elements in transient temperature field is obtained. Based on virtual layer method of heat conduction, calculation method of thermal stress for reinforcedconcrete solid is proposed, and the stress-strain matrix of structure internal force calculationfor reinforced concrete beam exposed to one-way fire is deduced, with extending time andincreasing temperature. also, sensitivity matrix of structure internal force is set up.
     (2)In the thermo-mechanical coupling analysis, calculation assumptions and mechanicalbehavior and failure criterion of multidimensional reinforced element is studied. Withmodified increment iteration method, total strain of element is gained, which includingthermal and plastic strain increment and total stress of iteration, in modified coordinatesystem.
     (3)The temperature rise curves such as ISO834and ASTM119and HC and HCM isstudied, fire hazard scene including deck fire and underbridge fire is set and classed in orderto put forward kinds of fire model, for example, deck span fire model, deck local fire model,underbridge span fire model, underbridge local fire model, combining deck and underbridgelocal fire model. all in all, the calculation condition of perfect fire scene is proposed.
     (4)Based on different fire temperature rise model, the time-dependent relationship amongsome parameters including ISO834model and HCM model and concrete burning depth isstudied, and time-dependent formula of burning depth during process of fire is fitted andproposed. Meanwhile, time-dependent formula of cumulative burning damage depth duringthe whole process of extending fire is put forward by step of the equivalent stiffness andstrength calculation method on the basis of reaearch on variation of cumulative burningdamage depth.
     (5)Based on high-temperature enthalpy conduction principle, thermo-mechanicalcoupling analysis method is applied to analyzed the variation law of space deformation andstress distribution and solid shear-lags for concrete T-shaped section beam girder undercondition of kinds of deck and underbridge fire model, are studied.
     ①Temperature and stress distribution is studied for deck fire model, and time-dependentcurves of key point for every beam is obtained. During the whole process of extending fire,variation of transverse deflection under dead loads is calculated. At last, the time-dependentvariation of maximum and minimum shear-lags ratio for multi-beam concrete T-shapedsection beam bridges exposed to symmetrical underbridge fire is disclosed.
     ②Temperature and stress distribution is studied for underbridge fire model, andtime-dependent curves of key point for every beam is obtained. During the whole process ofextending fire, variation of transverse deflection under dead loads is calculated. At last, thetime-dependent variation of maximum and minimum shear-lags ratio for multi-beam concreteT-shaped section beam bridges exposed to symmetrical underbridge fire is disclosed.
     (6) Based on the burning depth and extending time of fire and temperature distribution ofconcrete, effective height calculation method of section is adopted to put forward thetime-dependent amendment formula of residual stiffness under condition of deck andunderbridge fire model, which the relative deviation estimated is located in acceptedinterval. Then, the residual bearing capacity calculation formula for concrete beam bridge isproposed under condition of each fire model. In addition, thermal conductivity and thicknessof the fire-resistant coat focused on is analyzed to expose time-dependent temperaturedistribution and temperature difference distribution for the concrete T-shaped section beam,and calculation formula of temperature for concrete solid structure is proposed.
引文
[1]阎慧群.高温(火灾)作用后混凝土材料力学性能研究[D].成都:四川大学,2004
    [2] Battelle. Comparative risks of hazardous materials and non-hazardous materials truck shipmentaccidents/incidents. Washington D.C.(USA):Federal Motor Carrier Safety Administration;2004.
    [3] New York State Department of Transportation. Bridge fire incidents in New York State (Privateorrespondence with Prof. M. Garlock). USA: New York State Department of Transportation;2008.
    [4] Bulwa D, Fimrite P. Tanker fire destroys part of MacArthur maze.www.sfgate.com,2007[Accessed29.4.2007.
    [5] Astaneh-Asl A, Noble CR, Son J, Wemhoff AP, Thomas MP, McMichael LD. Fire protection of steelbridges and the case of the MacArthur maze fire collapse.In: Proceedings of the ASCE TCLEE lifelineearthquake engineering in a multihazard environment conference, Oakland (CA),2009. p.1–12.
    [6] Chung P, Wolfe RW, Ostrom T, Hida S, editors. Accelerated bridge construction applications inCalifornia–a lessons learned report. USA: California Department of Transportation (CALTRANS);2008.
    [7]熊学玉,蔡跃,李春祥.预应力混凝土结构火灾研究现状及展望[J].自然灾害学报,2004,13(3):152-156.
    [8]郑文忠,闫凯,王英.预应力混凝土结构抗火研究进展[J].建筑结构学报,2011,32(12):52-61.
    [9]Abram, M. S.,Gustafeero, A. H. Fire Endurance of Concrete Slabs as Influenced by Thickness,Aggregate Type, and Moisture. J.PCA Research and Development Laboratories,1968,10(2):9-24.
    [10]Abram, M.S.,et al. Fire endurance of continuous Reinforced Concrete Beams,Preliminary Report,10`hCongress of the International Association for Bridge and Structural Engineering, PCA,Skokie,1976.
    [11]Gustafeero, A. H., Selvaggio, S. L. Fire Endurance of simply-supported Prestressed ConcreteSlabs.J.Prestressed Concrete Institute,1967,12(1):37-52.
    [12]Lin,T.D.Shear Behavior of Reinforced Concrete Beams During Fires.Research and DevelopmentReport, PCA, Skokie,1985.
    [13]ACI216R-94,Guide for Determining the Fire Endurance of Concrete Elements.Reported byCommittee216,1994.
    [14]ASTM Designation E119-97, Standard Test Methods for Fire Tests of Building Construction andMaterials, ASTM Committee E-5,1998.
    [15]Forsén N E.CONFIRE,Nonlinear analysis of plane reinforced concrete frames exposed tofire.Stockholm:Lund University Publish,1986,1-98.
    [16]Lie TT,Irwin RJ. Method to calculate the fire resistance of reinforced concrete columns withrectangular cross section[J]. ACI Structure Journal,1993;90(1):52–60.
    [17]Terro MJ. Numerical modelling of the behaviour of concrete structures in fie[J].ACI Structural Journal1998;95(3/4):183–93.
    [18]Hertz K D. Additional Documentation for simplified design of fire exposedconcrete columns. In:Procof Inc Conf on Building and energy. Lyngby,1998,85-95.
    [19] British Standards Institution. BS476: method for determination of the fire resistance of elements ofconstruction: part20. BSI; London;1987.
    [20] British Standards Institution. BS5950: structural use of steelwork in buildings: part8: code of practicefor fire resistant design. BSI;London;1990
    [21]宋晓勇.钢筋混凝土柱抗火性能分析与研究[D].长沙:湖南大学,2004
    [22] Ashton L A. The fire-resistance of prestressed concrete floors[J].Civil Engineering and Public WorksReview,1951,46(545):843–845;(546):940-943.
    [23] Ashton L A,Bates S C C. The fire resistance of prestressed concrete beams[J]. Proceeding Institute ofCivil Engineering,1960,16(9):15-38.
    [24] Ashton L A,Bates S C C. The fire resistance of prestressed concrete beams[J].Journal of the ACI,1968,32(11):9-24.
    [25] Gustaferro A H,Carlson C C. An interpretation of results of tests of prestressed concrete buildingcomponents[J]. Journal of the PCI,1962,7(5):14-43.
    [26] Gustaferro A H,Selvagio S L.Fire endurance of simply supported prestressed concrete slabs[J].Journalof the PCI,1967,12(1):37-54.
    [27] Gustaferro A H. Fire resistant of post-tensioned structures[J].The Journal of the PCI,1973,18(2):38-63.
    [28] Gustaferro A H. Design of prestressed concrete for fire resistance[J].The Journal of the PCI,1973,18(6):102-116.
    [29] Joseph T R,Son I. Report on unbonded post-tensioned prestressed,reinforced concrete flat platefloor with expanded shale aggregate[J].Journal of the ACI,1968,13(2):45-56.
    [30] Abrams MS, Gustaferro A H. Fire endurance of prestressed concrete units coated with spray-applied insulation[J].Journal of the PCI,1972,17(1):102-116.
    [31] Abrams M S,Cruz C R. The behaviors at high temperature of strand for prestressed concrete[J].Journal of the PCA Research and Development Laboratories,1961,3(3):8-19.
    [32] Krishnamoorthy S,England GL,Yu CW. The behavior of prestressed concrete portal frames asinfluenced by creep and temperature[J].Magazine of Concrete Research,1971,23(74):23-36.
    [33] Bresler B,Iding R H. Fire response of prestressed concrete members[R].Fire Safety of ConcreteStructures,ACI SP–80,Detroit,1983.69-113.
    [34]Franssen J M,Kodur V K R,Mason J.USER’S MANUAL FOR SAFIR2001free,A computer programfor analysis of structures submitted to the fire.Brussels:University of Liége Publish,2000,1-120.
    [35]Dotreppe J C, Franssen J M, Vanderzeypen Y. Calculation method for design of reinforced concretecolumns under fire conditions[J].ACI Structural Journal,1999,96(2):9-18.
    [36]Gustaferro AH,Abrams MS,Salse EAB. Fire-resistance of prestressed concrete beams studyC: structural behavior during fire test. Portland Cement Associations research anddevelopment bulletin,1971.
    [37]Lin TD,Ellingwood B,Piet O. Flexural and shear behavior of reinforced concrete beamsduring fire test. Portland Cement Associations research and development bulletin, report noNBSGCR-87-536, Center for Fire Research, National Bureau of Standards, Washington,1998.
    [38]International Organization for Standardization. Fire resistance test on elements of buildingconstruction. ISO/834,1975.
    [39]Mustapha KN. Parametric study of the behavior of reinforced concrete columns in fire. PhDthesis,Aston University,1994.
    [40]Huang Z, Platten A. Non-linear finite element analysis of planar reinforced concretemembers subjected to fires. ACI Struct J1997,94(3):272–282.
    [41]Wickstro m UA. Computer program for temperature analysis of structures exposed to fire.Report no79-2. Lund Sweden: Lund Institute of Technology,1979.
    [42]Huang Z,Platten A,Roberts J. Non-linear finite element model to predict temperaturehistories within reinforced concrete in fires[J].Build Environment,1996,31(2):109–118.
    [43]Bazant ZP,Kaplan MF. Concrete at high temperature: material properties and mathematicalmodels. London: Longman Group Limited,1996.
    [44]Gawin D, Majorana C, Pesavanto F, et al. A fully coupling multiphase model ofhigro-thermo-mechanical behavior of concreteat high temperature. In: Computationalmechanics,new trends and applications. Barcelona,Spain:CIMNE,1998.1–19.
    [45]Hong Huang, Ryozo Ooka, Naian Liu,et al.Experimental study of fire growth in a reduced-scalecompartment under different approaching external wind conditions[J].Fire Safety Journal,2009,44(3):311-321.
    [46]ENV. Eurocode2,design of concrete structures,part1–2:general rules—structural fire design.ENV1992-1-2,1995.
    [47]Bathe KJ. Finite element procedures. New Jersey,USA: Prentice-Hall;1996.
    [48]Jing-Feng Wang, Lin-Hai Han, Brian Uy.Behaviour of flush end plate joints to concrete-filled steeltubular columns[J].Journal of Constructional Steel Research,2009,65(4):925-939.
    [49]Zhen-Hai Qian, Kang-Hai Tan.Deflection behaviour of plate girders loaded in shear at elevatedtemperatures[J].Journal of Constructional Steel Research,2009,65(4):991-1000.
    [50]Mari A. Numerical simulation of the segmental constructions of three-dimensional concreteframes[J].Engineering Structure,2000,22(6):585–596.
    [51]Albert N. Noumowe, Rafat Siddique, G. Debicki.Permeability of high-performance concrete subjectedto elevated temperature (600℃)[J].Construction and Building Materials,2009,23(5):1855-1861.
    [52]Kai Kang.Assessment of a model development for window glass breakage due to fire exposure in afield model[J].Fire Safety Journal,2009,44(3):415-424.
    [53]M.B. Dwaikat, V.K.R. Kodur Hydrothermal model for predicting fire-induced spalling in concretestructural systems[J].Fire Safety Journal,2009,44(3):425-434.
    [54]Hongxia Yu, I.W. Burgess, J.B. Davison, et al.Tying capacity of web cleat connections in fire, Part1:Test and finite element simulation[J].Engineering Structures,2009,31(3):651-663.
    [55]Colin G. Bailey, Ehab Ellobody.Fire tests on bonded post-tensioned concrete slabs[J].EngineeringStructures,,2009,31(3):686-696.
    [56]Raed M. Samra. New Analysis for Creep Behavior in Concrete Columns[J].Journal ofstructure engineering,1995,121(3):399-407.
    [57]Chin-Tsung Liu, Jong-Shin Huang. Fire performance of highly flowable reactive powderconcrete[J]. Construction and Building Materials,2009,23(5):2072-2079.
    [58]Zdenek P. Bazant,Gianluca Cusatis et al. Temperature Effect on Concrete Creep Modeled byMicroprestress-Solidification Theory[J]. Journal of Engineering Mechanics,2004,130(6):691-699.
    [59]A.M.Hasofer,I. Thomas. Analysis of fatalities and injuries in building fire statistics[J].FireSafety Journal,2006,41(1):2–14.
    [60]Lin Y S. Estimations of the probability of fire occurrences in buildings[J].Fire SafetyJournal,2005,40(8):728–735.
    [61]Ellingwood B,Lin TD. Flexure and shear behavior of concrete beams during fires[J]. J StructEng-ASCE1991;117(2):440–58.
    [62]M. Arockiasamy,P.E.,M. Sivakumar. Time-Dependent Behavior of Continuous CompositeIntegral Abutment Bridges[J]. Practice Periodical on Structural Design and Construction,2005,10(3):161-170.
    [63]Metin H. The effects of high temperature on compressive and flexural strengths of ordinaryand high-performance concrete[J].Journal of Fire Safety,2006,41(2):155-163.
    [64]Samantha F, Magdalena C, Christina H, et al. Thermal and structural behaviour of afull-scale composite building subject to a severe compartment fire[J].Journal of FireSafety,2007,42(3):183-199.
    [65]Tan K H, Yao Y. Fire resistance of four-face heated reinforced concrete columns[J].ASCE Journal ofStructural Engineering,2003,129(9):1220-1229.
    [66] Kodur V K R,Dwaikat M B. Effect of fire induced spalling on the response of reinforced concretebeams [J]. International Journal of Concrete Structures and Materials,2008,2(2):71-81.
    [67] Majorana C E,Salomoni V A,Mazzuccoa G,et al. An approach for modelling concrete spalling infinite strains [J].athematics and Computers in Simulation,2010,80(8):1694-1712.
    [68] Zheng W Z,Hou X M,Shi D S,et al. Experimental study on concrete spalling in prestressed slabssubjected to fire[J].Fire Safety Journal,2010,45(5):283-297.
    [69] Zhang Y X,Bradford M A. Nonlinear analysis of moderately thick reinforced concrete slabs atelevated temperatures using a rectangular layered plate element with Timoshenko beam functions [J].EngineeringStructures,2007,29(10):2751-2761.
    [70] Zhang Y X, Kim K S. Two simple and efficient displacement-based quadrilateral elements for theanalysis of composite laminated plates[J]. International Journal for Numerical Methods inEngineering,2004,61(11):1771-1796.
    [71] Zhang Y X,Kim K S. A simple displacement based3-node triangular element for linear andgeometrically nonlinear analysis of composite plates[J].Computer Methods in Applied Mechanics andEngineering,2005,194(4):607-632.
    [72] Zhang Y X,Kim K S. Two simple displacement-based geometrically nonlinear laminated compositequadrilateral plate finite elements[J].Composite Structures,2006,72(3):301-310.
    [73] Lau A, Anson M. Effect of high temperatures on high performance steel fiber reinforcedconcrete[J].Cement and Concrete Research,2006,36(9):1698-1707.
    [74] Bailey C G,Ellobody E.Fire tests on unbonded posttensioned one-way concrete slab [J].Magazine ofConcrete Research,2009,61(1):67-76.
    [75] Ellobody E, Bailey C G. Modelling of unbonded posttensioned concrete slabs under fireconditions[J].Fire Safety Journal,2009,44(2):159-167.
    [76] BS8110-2Code of practive for special circumstances[S].London:British Standards Institution,1985.
    [77] Huang Z H,Burgess I W,Plank R J. Nonlinear analysis of reinforced concrete slabs subjected tofire[J]. ACI Structural Journal,1999,96(1):127-135.
    [78] Huang Z H, Burgess I W, Plank R J. Modelling membrane action of concrete slabs in compositebuildings in fire I: theoretical development[J]. Journal of Structural Engineering,ASCE,2003,129(8):1093-1102.
    [79] Huang Z H,Burgess I W,Plank R J. Modelling membrane action of concrete slabs in compositebuildings in fire II: validations[J]. Journal of Structural Engineering,ASCE,2003,129(8):1103-1112.
    [80] Huang Z H,Burgess I W,Plank R J. Behaviour of reinforced concrete structures in fire[C]//The4thInternational Workshop on Structures in Fire. Aveiro:University of Aveiro,2006:561-572.
    [81] Kodur V K R,Dwaikat M B. A numerical model for predicting the fire resistance of concretebeams[J].Cement Concrete Composites,2008,30(5):431-443
    [82] Dwaikat M B,Kodur V K R. A numerical approach for modeling the fire induced restraint effects inreinforced concrete beams [J]. Fire Safety Journal,2008,43(4):291-307.
    [83] Kodur V K R,Dwaikat M B. Performance-based fire safety design of reinforced concrete beams[J].Journal of Fire Protection Engineering,2007,17(4):293-320.
    [84] Kodur V K R,Dwaikat M B. Effect of fire induced spalling on the response of reinforced concretebeams [J]. International Journal of Concrete Structures and Materials,2008,2(2):71-81.
    [85] Majorana C E,Salomoni V A,Mazzuccoa G,et al. An approach for modelling concrete spalling infinite strains [J].athematics and Computers in Simulation,2010,80(8):1694-1712.
    [86]陆洲导.钢筋混凝土梁对火灾反应研究[D].上海:同济大学,1989.
    [87]吕彤光.高温下钢筋的强度和变形试验研究[D].北京:清华大学,1996.
    [88]李华东.高温下钢筋混凝土压弯构件的试验研究[D].北京:清华大学,1999
    [89]余志武,王中强,史召锋.高温后新Ⅲ级钢筋力学性能的试验研究[J].建筑结构学报,2005,26(2):112-116.
    [90]朋改非,李斌,马强.火灾高温下高性能混凝土的裂纹扩展与爆裂的关系[J].混凝土,2001,(7):15-18.
    [91]李敏,钱春香,王珩,等高性能混凝土火灾条件下抗爆裂性能的研究[J].工业建筑,2001,31(10):47-49,79.
    [92]蒋首超.钢-混凝土组合楼盖抗火性能理论与试验研究[D].上海:同济大学,2001.
    [93]柳献,袁勇,叶光,等.高性能混凝土高温微观结构演化研究[J].同济大学学报:自然科学版,2008,36(11):1473-1479.
    [94]何振军,宋玉普.高温后高强高性能混凝土双轴压力学性能[J].力学学报,2008,40(3):364-374.
    [95] Lau A, Anson M. Effect of high temperatures on high performance steel fiber reinforcedconcrete[J].Cement and Concrete Research,2006,36(9):1698-1707.
    [96]肖建庄,王平.掺聚丙烯纤维高性能混凝土高温后的抗压性能[J].建筑材料学报,2004,7(3):281-285.
    [97] Wu B,Lam S S E,Liu Q,et al. Creep behavior of high-strength concrete with polyp ropylene fibersat elevated temperatures [J]. ACI Materials Journal,2010,107(2):176-184.
    [98] Zheng W Z,Hou X M,Shi D S,et al. Experimental study on concrete spalling in prestressed slabssubjected to fire[J].Fire Safety Journal,2010,45(5):283-297.
    [99]徐泽晶.火灾后钢筋混凝土结构的材料特性、寿命预估和加固研究[D].大连:大连理工大学,2005.
    [100]董毓利,李晓东.同跨受火时两层两跨组合钢跨架抗火性能的试验研究[J].建筑结构学报,2007,28(5):14-23.
    [101]李刚,陆洲导,许立新.无粘结预应力混凝土框架火灾下的温度反应分析[J].四川科学研究,2004,30(1):4-6.
    [102]余志武,丁发兴.圆钢管混凝土偏压柱的力学性能[J].中国公路学报,2008,21(1):40-46.
    [103]韩林海,杨华,霍静思,等.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究[J].工程力学,2002,19(5):78-86.
    [104]韩林海,杨华,霍静思,等.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究[J].工程力学,2002,19(5):78-86.
    [105]王银志.考虑结构整体性能的组合梁抗火性能研究[D].上海:同济大学,2006,9.
    [106]吕天启.高温后混凝土静置性能的试验研究及已有建筑物的防灾安全评估[D].大连:大连理工大学,2002.
    [107]肖建庄,谢猛,潘其健.高性能混凝土框架火灾反应与抗火性能研究[J].建筑结构学报,2004,25(4):1-7.
    [108]陆洲导,朱伯龙.一种预测钢筋混凝土梁耐火时间的方法[J]建筑结构学报,1997,18(1):41-48.
    [109] JGJ92—2004无粘结预应力混凝土结构技术规程[S].北京:中国建筑工业出版社,2004.
    [110]李刚,陆洲导,许立新.无粘结预应力混凝土框架火灾下的温度反应分析[J].四川科学研究,2004,30(1):4-6.
    [111]徐玉野.钢筋混凝土异形柱抗火性能研究[D].广州:华南理工大学,2006,11
    [112]吴波,徐玉野.钢筋混凝土T形柱的耐火极限研究[J].土木工程学报,2007,40(3):30-34.
    [113]吴波,徐玉野.钢筋混凝土异形柱高温下力学性能的数值模拟[J].土木工程学报,2006,39(12):48-53.
    [114]吴波,徐玉野.钢筋混凝土T形柱的耐火极限研究[J].土木工程学报,2007,40(3):30-34.
    [115]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003.
    [116]吴波,徐玉野.高温下钢筋混凝土异形柱的试验研究[J].建筑结构学报,2007,28(5):24-31.
    [117]吴波,洪洲.钢筋混凝土简支梁的耐火极限[J].华南理工大学学报(自然科学版),2006,34(7):82-87.
    [118]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42-49.
    [119]Walda F, L. Silva S D, Moore D B, et al. Experimental behaviour of a steel structure undernatural fire[J].Journal of Fire Safety,2006,41(7):509-522.
    [120]Xiao J ZH, Falkner H. On residual strength of high-performance concrete with and withoutpolypropylene fibres at elevated temperatures[J].Journal of Fire Safety,2006,41(7):115-121.
    [121]董毓利,李晓东.同跨受火时两层两跨组合钢框架抗火性能的试验研究[J].建筑结构学报,2007,28(5):14-23.
    [122]Wililiams B K. Fire performance of FRP-strengthened reinforced concrete flexuralmembers[D].Canada: Queen’s University,2004,6.
    [123]Bisby L A.Fire behaviour of fibre-reinforced polymer (FRP) reinforced or confinedconcrete[D].Canada: Queen’s University,2003,4.
    [124]ECCS.European recommendations for the fire safety of steel structure,1983.
    [125]D.A.Crozer,M.B.Wong. Elastic plastic ananysis of steel frames at elevated temperatures13thAustralian conference on mechanics of structures and materials, Universtiy ofWollongong,1997.
    [126]CEN.DAFT ENV1993. Eurocode3: Design of steel structures.1995,7.
    [127]BSI. Structure use of steelwork in building,part8:Code of practice for fire resistancedesign,1990.
    [128]Daniel D C, Antonio R M. Nonlinear analysis of reinforced concrete cross-sections exposedto fire[J]. Journal of Fire Safety,2007,42(2):139-149.
    [129]Zhou Ch N. Nonlinear finite element analysis of reinforced concrete structures subjected totransient thermal loads[D].Canada:University of Toronto,2004.
    [130]查晓雄,钟善桐.钢筋混凝土受压构件防火性能的非线性分析[J].哈尔滨工业大学学报,2002,34(3):289-293.
    [131]查晓雄,王晓璐,谢先义. GFRP筋混凝土梁耐火性能的试验研究[J].防灾减灾工程学报,2012,32(1):50-55
    [132] SAAFI M.Effect of fire On FRP reinforced concrete members[J].Composite Structure,2002,58:11-20.
    [133]LAWSON R M.Fire engineering design of steel and composite buildings[J].J.Construct Steel Res,2001,57(5):1233-1247.
    [134]韩玉来,王振清,王永军,等.火灾场钢筋混凝土简支梁抗弯性能分析[J].海军工程大学学报,2007,19(1):76-80.
    [135]李国强,郭士雄,周昊圣.火灾下钢结构建筑楼板的薄膜效应模型验证及实用方法[J].建筑结构学报,2007,28(5),48-53.
    [136]GB50016—2006建筑设计防火规范[S].北京:中国计划出版社,2006.
    [137]GB50045—1995高层民用建筑设计防火规范[S].北京:中国计划出版社,1995.
    [138]刘永军,王光远,王冬,等.火灾下空心混凝土楼板内温度场分析模型及算法[J].防灾减灾工程学报,2012,32(增刊):20-24
    [139]王景玄,张鹏鹏,王文达.考虑火灾全过程的钢管混凝土组合框架力学性能初步研究[J].防灾减灾工程学报,2012,32(1):84-88
    [140]魏德敏,高晓楠,张海燕.受火钢筋混凝土柱三维温度场的数值模拟[J].防灾减灾工程学报,2012,32(增刊):55-58
    [141]宁波,刘永军.隧道结构抗火研究进展及趋势[J].防灾减灾工程学报,2012,32(增刊):112-116
    [142]邓京京.再生混凝土简支梁抗火性能实验研究[D].北京:北京建筑工程学院,2012
    [143]黄运标.再生混凝土高温性能研究[J].上海:同济大学,2006.
    [144]陈筱妹.考虑柱端时变侧移的约束混凝土柱耐火性能研究[D].广州:华南理工大学,2012
    [145]陆洲导,刘媛,余江滔,等.火灾中植筋连接构件的抗火性能试验研究[J].防灾减灾工程学报,2012,32(6):686-692
    [146]陆洲导,廖杰洪,余江滔.火灾后混凝土结构损伤检测方法研究与探讨[J].防灾减灾工程学报,2012,32(增刊):36-39
    [147]黄素芬.混凝土结构在火灾中的可靠度分析[D].昆明:昆明理工大学,2012
    [148]王全凤,邱毅,徐玉野,等.HRBF500级钢筋混凝土梁受火后力学性能试验研究[J].建筑结构学报,2012,33(2):50-55
    [149]鞠竹,王振清,李晓霁,等.高温下GFRP筋和混凝土粘结性能的实验研究[J].哈尔滨工程大学学报,2012,33(11):1351-1357
    [150]李荣涛.混凝土结构火灾爆裂危险性评估研究[J].自然灾害学报,2012,21(1):204-210
    [151]王国辉,项凯,李慧,等.火灾后钢筋混凝土梁抗剪承载力[J].消防理论研究,2012,31(6):558-561
    [152]王文达,郭智峰,张鹏鹏.火灾后钢筋混凝土柱外包钢管加固性能数值模拟[J].自然灾害学报,2012,21(3):204-210
    [153]王子毅,韩阳,王威.火灾后混凝土损伤综合评价的分形-插值模型[J].混凝土,2012,(2):44-47
    [154]刘焕磊,李新,李堂飞.火灾作用下钢筋混凝土梁温度场的有限元分析[J].安徽建筑,2012,(1):206-207
    [155]熊伟,李耀庄,严加宝.火灾作用下钢筋混凝土梁温度场数值模拟及试验验证[J].中南大学学报(自然科学版),2012,43(7):2838-2843
    [156]王广勇,武志鑫,张东明,王娜.平面框架结构耐火性能对比研究[J].消防技术与产品信息,2012,(12):102-104
    [157]李俊华,唐跃锋,刘明哲,于长海,萧寒.外包钢加固火灾后钢筋混凝土柱的试验研究[J].工程力学,2012,29(5):166-173
    [158]杨志年,董毓利,吕俊利,等.整体结构中钢筋混凝土双向板火灾试验研究[J].建筑结构学报,2012,33(9):96-103
    [159]唐贵和,吴波.带板钢筋混凝土简支梁的耐火极限增大系数[J].防灾减灾工程学报,2012,32(6):693-699
    [160]唐贵和,黄金林.钢筋混凝土双向板耐火性能研究[J].中南大学学报(自然科学版),2012,43(7):2828-2832
    [161]吕学涛,杨华,张素梅.三面受火的方钢管混凝土柱耐火极限[J].自然灾害学报,2012,21(3):198-203
    [162]高伟华,毛小勇.三面受火型钢混凝土柱耐火性能有限元分析[J].四川建筑科学研究,2012,38(2):198-203
    [163]项凯,王国辉,陈辰,等.受火冷却后钢筋混凝土梁斜截面抗剪承载力分析[J].四川建筑科学研究,2012,38(5):56-61
    [164]范进,吕志涛.高温(火灾)下预应力钢丝性能的试验研究[J].建筑技术,2001(12):833-834.
    [165]范进.高温后预应力钢绞线性能的试验研究[J].南京理工大学学报,2004,28(2):86-189.
    [166]王俊,蔡跃,黄鼎业.预应力钢筋高温蠕变试验研究及有限元分析应用[J].土木工程学报,2004,37(11):1-6.
    [167]蔡跃,黄鼎业,熊学玉.预应力混凝土结构材料高温下的力学性能及模型[J].四川建筑,2003,29(4):82-84.
    [168]熊学玉,蔡跃,黄鼎业.火灾下预应力混凝土结构极限承载力计算方法[J].自然灾害学报,2005,14(2):147-154.
    [169]陈礼刚,袁建东,李晓东,等.高温下预应力钢丝的应力应变关系[J].重庆建筑大学学报,2006,28(4):47-50.
    [170]陈礼刚,高立堂.不同温度-应力途径下预应力钢丝的强度试验研究[J].建筑结构,2007,37(6):99-102.
    [171]袁爱民,董毓利,戴航,等.预应力混凝土连续板不同跨受火火灾行为[J].哈尔滨工业大学学报,2008,40(10):1633-1638.
    [172]袁爱民,董毓利,李延和.无粘结预应力混凝土板火灾试验构件设计[J].青岛理工大学学报,2005,26(1):14-18.
    [173]高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板边跨受火试验研究[J].建筑结构学报,2004,25(2):118-123.
    [174]周焕廷,李国强,蒋首超.高温下钢绞线材料力学性能的试验研究[J].四川大学学报:工程科学版,2008,40(9):106-110.
    [175]郑文忠,张昊宇,胡琼.考虑温度-时间路径的高强钢丝应变及应力计算方法[J].建筑材料学报,2007,10(3):288-294.
    [176]郑文忠,许名鑫,王英.钢筋混凝土及预应力混凝土材料抗火性能[J].哈尔滨建筑大学学报,2002,35(4):6-10.
    [177]郑文忠,侯晓萌,陈伟宏.火灾后预应力混凝土简支板力学性能试验[J].哈尔滨工业大学学报,2011,43(2):8-13.
    [178]郑文忠,陈伟宏,侯晓萌.火灾后配筋混凝土梁受力性能试验与分析[J].哈尔滨工业大学学报,2008,40(12):1861-1867.
    [179]郑文忠,闰凯,欧阳志为,王英.高温后足尺有粘结预应力混凝土梁板力学性能研究[J].防灾减灾工程学报,2012,32(1):8-17
    [180]张昊宇,郑文忠.1860级低松弛钢绞线高温下力学性能[J].哈尔滨工业大学学报,2007,39(6):861-865.
    [181]许名鑫,郑文忠.火灾下预应力混凝土梁板非线性分析[J].哈尔滨工业大学学报,2006,38(4):558-562.
    [182]袁广林,李庆涛,吕志涛,等.高温下无粘结预应力混凝土中钢绞线预应力的损失[J].河海大学学报:自然科学版,2006,34(1):88-91.
    [183]袁广林,黄方意,吕志涛.高温(火灾)对无粘结部分预应力混凝土梁抗弯性能的影响[J].建筑结构,2007,37(1):105-108.
    [184]袁广林,黄方意,吕志涛.高温后无粘结预应力混凝土梁抗弯承载能力[J].中国矿业大学学报,2006,35(7):441-446.
    [185]李明,朱永江,王正霖.高温下预应力筋和非预应力筋的力学性能[J].重庆建筑大学学报,1999(4):73-77.
    [186]王中强,余志武.高温下无粘结预应力混凝土受弯构件的非线性有限元分析[J].土木工程学报,2011,44(2):42-49.
    [187]许清风,韩重庆,全威,等.预应力混凝土空心板耐火极限的试验研究[J].建筑结构,2012,42(11):111-113.
    [188]韩重庆,陈振龙,许清风,等.钢筋网细石混凝土加固受火后预应力混凝土空心板的试验研究[J].四川大学学报(工程科学版),2012,44(6):61-66.
    [189]刘学春,张爱林,谢伟伟,等.大跨度索穹顶结构抗火性能分析[J].建筑结构学报,2012,33(4):31-39.
    [190]魏亚,区达光.后张无粘结预应力混凝土简支板抗火分析[J].防灾减灾工程学报,2012,32(1):18-26.
    [191]傅传国,王玉镯,于德帅,等.火灾作用下预应力型钢混凝土简支梁承载性能试验研究[J].防灾减灾工程学报,2012,32(1):1-7
    [192]王国辉,项凯.某预应力混凝土桥梁火灾损伤评估[J].消防理论研究,2012,31(3):219-223
    [193]商圣强.火灾作用下预应力型钢混凝土梁承载性能试验研究与理论分析[D].济南:山东建筑大学,2012.
    [194]李雷.火灾高温作用下预应力型钢混凝土简支梁耐火性能全过程分析[D].济南:山东建筑大学,2012
    [195]李士波.火灾作用下预应力型钢混凝土梁承载性能试验研究与理论分析[D].济南:山东建筑大学,2012
    [196]王智.高温后预应力混凝土受弯构件受力性能研究析[D].长沙:长沙理工大学,2012
    [197]石玲莉,张奔牛,王家林,等.高家花园大桥箱梁内火灾有限元模拟分析[J].重庆交通大学学报:自然科学版,2012,30(6):1290-1293
    [198]张岗,张鹏,郭琦,等.钢筋混凝土T梁火灾高温时变效应研究[J].水利与建筑工程学报,2008,6(2):36-40.
    [199]张岗,贺拴海,宋一凡,等.钢筋混凝土梁桥火灾高温安全评价[J].安全与环境学报,2008,7(3):153-157.
    [200]张岗,贺拴海,宋一凡,等.火灾高温下钢筋混凝土梁桥非线性计算方法[J].西安建筑科技大学学报:自然科学版,2008,40(3):317-322.
    [201]张岗,贺拴海,宋一凡,等.火灾下钢筋混凝土梁桥高温形变分析[J].长安大学学报:自然科学版,2009,29(1):54-58.
    [202]张岗,贺拴海,宋一凡.混凝土薄壁箱梁高温冲击模式及时变效应研究[J].西南科技大学学报:自然科学版,2008,23(2):23-27.
    [203]张岗,谢功元,周勇军,等.混凝土箱梁模型桥极限承载力试验研究[J].武汉理工大学学报:交通科学与工程版,2008,32(5):830-833.
    [204]张岗,贺拴海. PC宽异薄壁箱梁火灾高温场形变分析[J].解放军理工大学学报:自然科学版,2011,12(2):131-136.
    [205]张岗,贺拴海.火荷载作用下预应力混凝土薄壁多室箱梁变形分析[J].长安大学学报:自然科学版,2011,31(1):42-46.
    [206] Maria Garlock,Ignacio Paya-Zaforteza,Venkatesh Kodur,et al.Fire hazard in bridges: Review,assessment and repair strategies[J]. Engineering Structures,2012,35(1):89-98
    [207]吴耀斌.宁德大桥火灾受损检测与加固处理[J].公路与汽运,2011,7(4):214-218.
    [208]郑继光,王兴,刘忠固.意外火灾对预应力混凝土桥梁结构的损伤分析[J].北方交通,2007,(12):54-57.
    [209]朱建明,王晓纯,魏东,等.火灾后混凝土构件的剩余刚度估计[J]工程力学,2011,28(8):193-197.
    [210]曹建洋.火灾后桥梁技术状况的评定陈建夫[J].浙江交通科技,2002,(3):37-38.
    [211]董毓利,许卓军.火灾后混凝土结构的评估与维修[J].安全与环境学报,2002,2(4):34-37.
    [212]王福敏,黄中立.火灾后混凝土桥梁结构残余强度分析与加固措施[J].公路交通科技,2004,21(2):64-66.
    [213]阂明保.建筑物火灾后诊断与处理[M].南京:江苏科学技术出版社,1994.
    [214]孙金香,高伟,译.建筑物综合防火设计[M].天津:天津科技翻译出版公司,1994.
    [215]刘轶.高温下的钢筋性能和结构耐火设计初探[D].重庆:重庆建筑大学,1994.
    [216]李世安.预应力混凝土梁桥高温力学性能分析及灾后评价方法[D].西安:长安大学,2012.
    [217]李国强,吴波,蒋首超.工程结构抗火研究进展与建议[J].建筑钢结构进展,2010,12(5):13-18.
    [218]陆洲导,苏磊.我国混凝土结构火灾(高温)后损伤机理与评估方法的研究进展和发展趋势[J].建筑结构学报(增刊),2009,203-209.
    [219]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [220]王新敏.ANSYS结构分析单元与应用[M].北京:人民交通出版社,2011.
    [220]张岗.流固耦合传热模式的砼桥梁热-力时空效应分析及安全评价[D].西安:长安大学,2009.
    [221]王振波,王向东,徐道远.混凝土结构温度应力仿真分析[J].南京工业大学学报,2002,24(5):20-24.
    [222]张小川.桥梁大体积混凝土温控与防裂[D].成都:西南交通大学,2006,6.
    [223]劳宇.混凝土水化热温度损伤研究[D].南京:河海大学,2006
    [224]杨磊.混凝土坝施工期冷却水管降温及温控优化研究[D].武汉:武汉大学,2005,5.
    [225]贺拴海.高等桥梁结构理论与计算方法[M].北京:人民交通出版社,2005
    [226]时旭东.高温下混凝土杆系结构试验研究和非线性有限元分析[D].北京:清华大学,1992.
    [227]陆洲导.钢筋混凝土梁对火灾反应研究[D].上海:同济大学,1989.
    [228]过镇海.常温和高温下混凝土材料和构件的力学性能[M].北京:清华大学出版社,2005.
    [229]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42-49.
    [230]JTGD62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700