用户名: 密码: 验证码:
基于颗粒物质力学的沥青混合料细观特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对沥青混合料的研究主要集中于借助基于现象学的经验方法和室内试验,常用的连续介质模型适用于密集颗粒系统的准静态条件下分析和研究系统内部的力学特性,该模型并未考虑系统内各组成介质的尺寸效应。因此,基于连续介质方法和模型在分析由复合材料组成的沥青混合料时无法揭示细观结构与宏观性能之间的关系。然而,细观力学方法采用多尺度力学理论研究非均匀介质,并且沥青混合料在材料组成上属于颗粒物质材料,大量的试验测试和数值模拟发现颗粒物质体系具有对外界荷载的敏感性、非线性响应、自组织行为等精细力学特性,与连续介质理论和宏观表象结果存在本质区别。鉴于上述结果,使得借助细观力学方法和颗粒物质力学,构建沥青混合料的细观模型,并用于研究沥青混合料的细观响应有据可循。
     本文以沥青混合料的细观特性为主线,分析了荷载作用下集料、混合料结构的力链分布特征分析,构建沥青混合料数字试件进行间接拉伸试验的数值模拟,分析了沥青混合料细观力学特性的影响因素和试件内部的力链分布;挖掘沥青混合料试件内部结构,测定沥青混合料和砂浆的动态指标,为构建沥青混合料的细观模型提供细观粘弹性参数;监测试件内部的应力、应变随时间的变化,追踪加载过程中各相组分内部颗粒间接触力力链、位移场、速度场的分布随时间的演化,阐释集料与砂浆界面处的相互作用,以及内部组成与外部荷载、变形的关系。
     本文主要研究内容如下:
     (1)借助针对颗粒物质的光弹性应力试验和压痕试验分别检测集料颗粒间的力链,获取力链的分布规律;
     (2)基于离散元方法构建集料、混合料的细观模型,通过数值模拟得到相应的力链场和位移场,并构建沥青混合料数字试件,分析伺服加载条件下沥青混合料细观力学特性的影响因素和试件内部的力链演化;
     (3)以SGC(Superpave旋转压实)成型沥青混合料试件、以静压成型沥青砂浆试件,分别进行简单性能试验(Simple Performance Test,SPT),测定不同温度、频率沥青混合料和沥青砂浆的动态模量和相位角;
     (4)切割SGC成型的沥青混合料试件,对获取的截面图像进行图像处理,把二维图像导入离散元软件中生成沥青混合料的数字试件,对试件施加半正弦荷载进行SPT试验的数值模拟,对比分析模拟结果和试验结果动态模量和相位角的差异,追踪试件内部的力链演化,以及各相组分的位移场和速度场随时间的变化。
     通过对上述内容的研究,可得到如下的结论:
     (1)光弹性应力试验中,颗粒接触处越亮,接触应力越大。对于竖向加载的规则排列的结构,仅形成力的竖向传递路径,错落排列结构的内部颗粒间存在四个传力点,而在水平方向,两种结构基本不存在接触力的传递;
     (2)压痕试验中,接触力力链的概率分布先增大后减小,并出现明显的概率峰值,峰值后的力链分布以负指数形式衰减;
     (3)对于有侧向约束的集料细观结构,力链网络呈左右对称分布,颗粒间仅形成法向接触力,与光弹性应力试验结果一致,上层颗粒Y向位移较大,随着深度的增大位移减小;
     (4)对于无侧向约束的混合料细观结构,规则排列的结构仅产生压力力链,错落排列的结构中产生的接触力主要为压力,拉力区域比较分散,主要位于结构的中下部,呈不对称分布,上层颗粒位移较大,随着深度的增大位移减小;
     (5)沥青性质对沥青混合料细观响应的影响方面,粘结刚度比增大,应力峰值和劈裂强度均增大,配位数变化较小,随着粘结强度比的增大,应力峰值、劈裂强度减小,配位数变化较小,粘结强度比对劈裂强度、配位数和微裂缝的影响大于粘结刚度比;
     (6)集料性质对沥青混合料细观响应的影响方面,摩擦系数越大,峰值应力、劈裂强度越大,配位数减小,产生的微裂缝数增加;
     (7)加载条件对沥青混合料细观响应的影响方面,加载速率增大,应力峰值、劈裂强度增大,配位数减小,颗粒间的接触力变大,接触力力链网络中的强力链传递较大的应力,延伸方向平行于与最大主应力方向,位移主要沿加载方向向两侧移动;
     (8)随着油石比的增加,沥青混合料、沥青砂浆的动态模量减小,相位角增大,随着温度的升高,动态模量减小,相位角增大;
     (9)动态模量和相位角的实测值和模拟值相差不大;
     (10)集料内部的力链表现为压力力链,砂浆和集料/砂浆界面处的力链包含压力和拉力力链,且以压力为主,其中强力链均为压力力链,方向沿竖直方向,弱力链为较小的压力力链和拉力力链,方向分散性较大;
     (11)随着加载时间的增加,集料和砂浆的最大位移逐渐增大,但两者差异较小,砂浆的位移稍大于集料,位移由上至下逐渐减小,加载初始阶段,集料和砂浆的速度均较大,随着时间的延长,速度逐渐增大,但砂浆的速度变化小于集料。
At present, the research of asphalt mixture has focused on the experience methods basedon phenomenology and laboratory tests, and the commonly used continuum model isapplicable to analyze the dense granular systems under quasi-static conditions and researchthe mechanical properties within these systems. But the size effect of component medium inthe systems is not considered by this model. Therefore, the relationship betweenmeso-structure and macroscopic performances cannot be revealed in analyzing asphaltmixture consisting of composite material based on continuum methods and models. However,the mesomechanics method studies an inhomogeneous media with multiscale mechanicaltheory, and asphalt mixture belongs to particulate matter material in material composition, andit is found that particulate matter systems have the loading sensitivity, nonlinear responses andself-organization behaviors from a large number of tests and numerical simulations, there areessential differences between the mesomechanics and continuum theory, macroscopicappearance results. In view of the above results, it provides the evidence in constructing themesomechanical models and studying meso-responses of asphalt mixture by mesomechanicsand particulate matter mechanics.
     Mesoscopic characteristics of asphalt mixture were taken as a mainline in thisdissertation. The distribution characteristics of force chains were analyzed for aggregate andasphalt mixture structures. Digital specimens of asphalt mixture were constructed to simulatethe indirect tensile test numerically and the influence factors of mesomechanics characteristicsof asphalt mixture and distributions of force chains within specimens were analyzed. Internalstructure of asphalt mixture specimen was excavated and dynamic indicators of asphaltmixture and sand mastic were measured to provide the mesoscopic viscoelastic parameters formesomechanical model of asphalt mixture. Stress and strain changes with time weremonitored, and the distribution changes of contact force chains, displacement field andvelocity field with time were traced inside the component particles during loading process,and the interaction at the interfaces between aggregate and sand mastic, and the relationshipbetween internal component and external loading, deformation were interpreted.
     The main research contents are as follows:
     (1) Photoelastic stress test and indentation test for particulate matter were used to detectthe force chains among aggregate particles and obtain the distribution law of force chains;
     (2) Mesoscopoic models of aggregates and asphalt mixture were constructed based ondiscrete element method, and the force chain field and displacement field were obtained bynumerical simulation, and digital specimen of asphalt mixture was constructed to analyze theinfluence factors of mesomechanical properties of asphalt mixture and force chain evolutionwithin specimen under servo-loading conditions;
     (3) Asphalt mixture specimens were prepared by SGC (Superpave Gyratory Compactor)and sand mastic specimens were prepared by static compaction, the dynamic moduli andphase angles of asphalt mixtures and sand mastic were determinated by Simple PerformanceTest (SPT) at different temperatures, frequencies;
     (4) Asphalt mixture specimens prepared by SGC were cut, the cross-sectional imageswere processed by digital picture processing technique, and the two-dimensional image wasimported discrete element software to generate the digital specimen of asphalt mixture.Simple Performance Test was simulated with semi-sinusoidal loading numerically,comparative analysis was taken to achieve the difference of dynamic modulus and phaseangle between simulated results and tested results. Finally, the force chain evolution withinspecimens and the changes of displacement field and velocity field with time were traced.
     The conclusions of this dissertation are follows:
     (1) In photoelastic stress test, the brighter the contacts among particles were, the greaterthe contact force was. Regular array structures under vertical loading only formed the verticaltransmission path of contact force, irregular array structures existed four transmission pointsof contact force among internal particles while the two structures had no transmission ofcontact force in horizontal direction basically;
     (2) In indentation test, the probability distribution of contact force chains increasedfirstly and then decreased, and there existed a significant probability peak value, and thedistribution of force chains decreased in negative exponential over the peak value;
     (3) For the aggregates meso-structures with lateral restraint, the force chain networkshowed a symmetrical distribution and only normal contact force formed among particleswhich was consistent with the results of photoelastic stress test, and the displacements of upper particles along Y direction were greater and decreased with the increase of depth;
     (4) For the aggregates meso-structures without lateral restraint, the regular arraystructures only formed compression force chains, the contact forces in irregular arraystructures were mainly compression forces and tension force area was scattered which mainlylocated in the middle and lower parts and was asymmetrical distribution, and thedisplacements of upper particles were greater and decreased with the increase of depth;
     (5) In the influence of asphalt nature on the meso-responses of asphalt mixture, stresspeak values and splitting strengths increased with the increase of bond stiffness ratio, andcoordination numbers had small changes. Stress peak values and splitting strengths decreasedwith the increase of bond strength ratio, and coordination numbers had small changes, too.The influences of bond strength ratio on splitting strengths, coordination numbers andmicro-cracks were greater than those of bond stiffness ratio;
     (6) In the influence of aggregates on the meso-responses of asphalt mixture, the greaterthe friction coefficients were, the greater the peak stress values and splitting strengths werewhile the smaller the coordination numbers were, and the number of micro-cracks increased;
     (7) In the influence of loading conditions on the meso-responses of asphalt mixture,stress peak values and splitting strengths increased with the increase of loading rate, and thecoordination numbers decreased. Contact forces among particles become larger and the strongforce chains in contact force chains networks transfered greater stress, their extensiondirections were parallel to the maximum principal stress direction, and the displacements weremainly along loading directions and moved to both sides;
     (8) Dynamic moduli of asphalt mixture and sand mastic reduced, phase angles increasedwith the increase of asphalt-aggregate ratio. Dynamic modului reduced while phase anglesincreased with the increase of temperature;
     (9) There was less difference between the measured values and simulated values ofdynamic moduli and phase angles;
     (10) Force chains within aggregates were all compression force chains, force chains ofsand mastic and aggregate/sand mastic interface included compression and tension forcechains, compression force chains dominated and strong force chains were all compressionforce chains which were along the vertical direction, but the weak force chains were smaller compression and tension force chains with larger dispersibility;
     (11) The maximum displacements of aggregates and sand mastic gradually increasedwith the increase of loading time, but the difference was smaller, and the displacements ofsand mastic were slightly larger than those of aggregates. Their displacements decreased fromtop to bottom gradually. The velocities of aggregates and sand mastic were both greater at theinitial stage. In addition, the velocities increased with the increase of time gradually, but thevelocity changes of sand mastic were less than those of aggregates.
引文
[1] Pearson R. M. The application of small nuclear magnetic resonance spectrometers to quality controlmeasurements of asphalt and asphalt-aggregate mixes[R]. SHRP-A-382,1994
    [2] Yue, Z. Q., Bekking W., Morin I. Application of digital image processing to quantitative study ofasphalt concrete microstructure[A]. Transportation Research Record[C]. National Research Council,Washington D. C.,1995,(1492):53-60
    [3] Yue, Z. Q., Morin I. Digital image processing for aggregate orientation in asphalt concrete mixtures[J].Canadian Journal of Civil Engineering,1996,23(2):480-489
    [4] U.S Department of Transportation, etc. Simulation, Imaging and Mechanics of Asphalt Pavement.McLean, Virginia. Turner-Fairbank Highway Research Center.1998
    [5] Masad E. Simulation, Imaging and Mechanics of Asphalt Pavement, FHWA DTFH61-03-X-00026[R]. A Progress Report Submitted to the Pavement Engineering Program of the FederalHighway Administration,2005
    [6] Masad E., Muhunthan B., Shashidhar, N., et al. Aggregate orientation and segregation in asphaltconcrete[J]. Geotechnical Special Publication,1998,(85):69-80
    [7] Masad E., Muhunthan B., Shashidhar N., et al. Quantifying laboratory compaction effects on theinternal structure of asphalt concrete[J]. Transportation Research Record,1999,1681:179-185
    [8] Masad E., Tashman L., Somedavan N. et al. Micromechanics-based analysis of stiffness anisotropy inasphalt mixtures[J]. Journal of Materials in Civil Engineering,2002,14:374-383
    [9] Masad E., Button J. Implications of experimental measurements and analyses of the internal structureof HMA[J]. Transportation Research Record,2004,1891:212-220
    [10] Kuo, C. Y., Rollings R. S., Lynch L. N. Morphological study of coarse aggregates using imageanalysis[J]. Journal of Materials in Civil Engineering,1998,10(3):135-142
    [11] Mora C., Kwan A., Chan H. Particles size distribution analysis of coarse aggregate using digital imageprocessing[J]. Cement and Concrete Research,1998,28(6):921-932
    [12] Kwan A., Mora C., Chan H. Particle shape analysis of coarse aggregate using digital imageprocessing[J]. Cement and Concrete Research,1999,29(9):1403-1410
    [13] Brzezicki J. M., Kasperkiewicz J. Automatic image analysis in evaluation of aggregate shape[J].Journal of Computing in Civil Engineering,1999,13(2):123-128
    [14] Shashidhar N. X-Ray Tomography of Asphalt Concrete[J]. Transportation Research Record,1999,1681:186-192
    [15] Wang L. B., Frost J. D., Shashidhar N. Microstructure study of WesTrack mixes from X-raytomography images[J]. Transportation Research Record: Journal of the Transportation ResearchBoard,2001,1967:85-94
    [16] Wang L.B., Frost J., Mohammad L. et al. Three-dimensional aggregate evaluation using X-raytomography imaging[C]. Transportation Research Record,2002
    [17] Wang L. B., Frost J. D., Lai J. S. Three-dimensional digital representation of granular materialmicrostructure from X-ray tomography imaging[J]. Journal of Computing in Civil Engineering,2004,18(1):28-35
    [18] Zelelew H. M., Papagiannakis A. T., Masad E. Application of digital image processing techniques forasphalt concrete mixture images[A]. The12th International Conference of International Associationfor Computer Methods and Advances in Geomechanics (IACMAG)[C]. Goa, India,2008,119-124
    [19] Sefidmazgi N. R. Defing effective aggregate skeleton in asphalt mixture using digital image[D].Madison: University of Wisconsin,2011
    [20]张婧娜.基于数字图像处理技术的沥青混合料微观结构分析方法研究[D].上海:同济大学,2000
    [21]李智.基于数字图像处理技术的沥青混合料体积组成特性分析[D].哈尔滨:哈尔滨工业大学,2002
    [22]张肖宁,李智,虞将苗.沥青混合料的体积组成及其数字图像处理技术[J].华南理工大学学报(自然科学版),2002,30(11):113-118
    [23]李智,虞将苗,徐伟,等.沥青混合料旋转压实效果的数字图像分析[J].哈尔滨建筑大学学报,2002,35(6):120-124
    [24]李智,徐伟,王绍怀,等.沥青混合料压实状态的数字图像分析[J].岩土工程学报,2002,24(4):451-455
    [25]李智,徐伟,王绍怀,等.不同压实成型沥青混合料的数字图像分析[J].土木工程学报,2003,36(12):68-73
    [26]李智,徐伟,王绍怀,等.沥青混合料数字图像处理技术的方法研究[J].公路交通科技,2003,20(6):13-16
    [27]彭勇,孙立军,董瑞琨.沥青混合料均匀性评价新方法的探讨[J].同济大学学报(自然科学版),2005,33(2):166-169
    [28]彭勇,孙立军.沥青混合料均匀性影响因素的研究[J].同济大学学报(自然科学版),2006,34(1):59-63
    [29]彭勇,孙立军,王元清,等.数字图像处理在沥青混合料均匀性评价中的应用[J].吉林大学学报(工学版),2007,37(2):334-336
    [30]彭勇,孙立军,石永久,等.沥青混合料均匀性与路用性能指标的关系[J].同济大学学报(自然科学版),20008,36(4):488-492
    [31]彭勇,孙立军,石永久,等.沥青混合料均匀性与材料力学性能关系[J].哈尔滨工业大学学报,2009,41(6):1-5
    [32]李智,徐伟,王绍怀,等.沥青混合料数字图像处理技术的方法研究[J].公路交通科技,2003,20(6):13-16
    [33]孙朝云,沙爱民,姚秋玲,等.沥青混合料图像阈值分割算法的实现[J].长安大学学报(自然科学版),2005,25(6):34-38
    [34]孙朝云,姚秋玲,沙爱民,等.沥青混合料数字图像特征提取边缘跟踪算法[J].计算机应用与软件,2007,24(3):156-159
    [35]沙爱民,李亚非,秦雯.基于数字图像处理技术的沥青混合料运动特性[J].长安大学学报(自然科学版),2011,31(6):1-5
    [36]杨浩.沥青混合料的数字图像特征研究[D].哈尔滨:哈尔滨工业大学,2006
    [37]刘敬辉,王端宜.基于数字图像处理的沥青混合料细观力学分析[J].科学技术与工程,2008,8(24):6629-6631
    [38]吴文亮,李智,张肖宁.基于数字图像技术的沥青混合料车辙试验研究[J].公路交通科技,2008,29(6):55-57
    [39]吴文亮,张肖宁,李智.沥青混合料车辙试验中粗颗粒运动轨迹的分析[J].华南理工大学学报(自然科学版),2009,37(11):27-30
    [40]吴文亮,王端宜,张肖宁,等.沥青混合料级配的体视学推测方法[J].中国公路学报,2009,22(5):29-33
    [41]吴文亮,李智,张肖宁.用数字图像处理技术评价沥青混合料均匀性[J].吉林大学学报(工学版),2009,39(4):921-925
    [42]乔英娟.沥青混合料位移场测定与流动性车辙分析[D].大连:大连理工大学,2008
    [43]王端宜,胡迟春,Kutay E.沥青混合料集料微观结构的三维重构与计算[J].建筑材料学报,2011,14(1):41-46
    [44]汪海年,郝培文,吕光印.沥青混合料内部空隙分布特征[J].交通运输工程学报,2009,9(1):6-10
    [45]傅香如,汪海年,郝培文.基于数字图像技术的沥青混合料内部集料分布特征[J].武汉理工大学学报(交通科学与工程版),2010,34(2):289-293
    [46]裴建中,张嘉林,常明丰.矿料级配对多孔沥青混合料空隙分布特性的影响[J].中国公路学报,2010,23(1):1-6
    [47]张倩,孙红红.基于Matlab的沥青混合料内部空隙率测定与分析[J].公路交通科技,2012,29(6):1-5
    [48]袁峻,钱野.粗集料形态特征及其对沥青混合料高温抗剪强度的影响[J].交通运输工程学报,2011,11(4):17-22
    [49]王新飞,黄志义,刘卓,等. Delaunay三角网格的沥青混合料粗集料分布特性[J].浙江大学学报(工学版),2012,46(2):263-268
    [50] Zaghloul S. M., White T. D. Use of three dimensional finite element program for flexiblepavement[A]. Transportation Research Record(TRB)[C]. National Research Council, WashingtonD.C.,1993,1388:60-69
    [51] Huang Y. H. Pavement analysis and design[M]. Prentice Hall, Inc., Englewood Cliffs, N.J.,1993
    [52] Hua J. Finite element modeling and analysis of accelerated pavement testing devices and ruttingphenomenon[D]. Indiana: Purdue University,2000
    [53] Pirabarooban S. Modeling of rutting in asphalt mixes using ABAQUS[D]. Norman: University ofOklahoma,2002
    [54] Pirabarooban S., Zaman M., Tarefder R. A. Evaluation of rutting potential in asphalt mixes usingfinite element modeling[A]. The Transportation Factor2003. Annual Conference and Exhibition ofthe Transportation Association of Canada[C]. Transportation Association of Canada,2323St LaurentBoulevard Ottawa, Ontario K1G4J8Canada,2003,1-17
    [55] Sadd M. H., Dai, Q. L. Simulation of asphalt materials using finite element micromechanical modelwith damage mechanics[J]. Journal of the Transportation Research Board,2003,1832:86-95
    [56] Dai Q. L., Sadd M. H., Parameswaran V., et al. Prediction of damage behaviors in asphalt materialsusing a micromechanical finite-element model and image analysis[J]. Journal of EngineeringMechanics,2005,131(7):668-677
    [57] You Z. P., Dai Q. L., Gurung B. Development and implementation of a finite element model forasphalt mixture to predict compressive complex moduli at low and intermediate temperatures[C].Asphalt Concrete, ASCE,2005,21-28
    [58] Dai Q. L., Sadd M. H., You Z. P. A micromechanical finite element model for linear anddamage-coupled viscoelastic behaviour of asphalt mixture[J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2006,30:1135-1158
    [59] Dai Q. L., You Z. P. Prediction of creep stiffness of asphalt mixture with micromechanicalfinite-element and discrete-element models[J]. Journal of Engineering Mechanics,2007,133(2):163-173
    [60] You Z. P., Dai Q. L. Dynamic complex modulus predictions of hot-mix asphalt using aMicromechanical-based finite element[J]. Canadian Journal of Civil Engineering,2007,34(12):1519-1528
    [61] Dai Q. L., You Z. P. A Three-dimensional micro-frame element network model for damage behaviourasphalt mixtures[A]. Symposium on Pavement Mechanics and Materials2007[C]. ASCE,2008,24-33
    [62] Dai Q. L., You Z. P. Micromechanical finite element models for micro-damage and complexconstitutive behavior of asphalt mixes[A]. Plan, Build, and Manage Transportation Infrastructures inChina Congress2007[C]. ASCE,2008,867-876
    [63] Dai Q. L., You Z. P. Micromechanical finite element framework for predicting viscoelastic propertiesof asphalt mixtures[J]. Materials and Structures,2008,41(6):1025-1037
    [64] Dai Q. L. Prediction of Dynamic Modulus and phase angle of stone-based composites using amicromechanical finite-element approach[J]. Journal of Materials in Civil Engineering,2010,22(6):618-627
    [65] Dai Q. L. Two-and three-dimensional micromechanical viscoelastic finite element modeling ofstone-based materials with X-ray computed tomography images[J]. Construction and BuildingMaterials,2011,25:1102-1114
    [66] Kim Y. R., Allen D. H., Little D. N. Damage-induced modeling of asphalt mixtures throughcomputational micromechabnics and cohesive zone fracture[J]. Journal of Materials in CivilEngineering,2005,17(5):477-484
    [67] Wang Y. P. Digital simulative test of asphalt mixtures using finite element method and X-raytomography images[D]. Virginia: Virginia Polytechnic Institute and State University,2007
    [68] Moa L. T., Huurmana M., Wu S. P, et al. Investigation into stress states in porous asphalt concrete onthe basis of FE-modeling[J]. Finite Elements in Analysis and Design,2007,43:333-343
    [69] Moa L. T., Huurmana M., Wu S. P.2D and3D meso-scale finite element models for ravelling analysisof porous asphalt concrete[J]. Finite Elements in Analysis and Design,2008,44:186-196
    [70] Ahmed N., Ahmed G., Z. Finite element approach to evaluate the resistance to plastic flow in asphaltmixtures[J]. Journal of Engineering and Development,2009,13(2), ISSN1813-7822
    [71] Coleria E., Harveya J. T., Yang K., et al. Development of a micromechanical finite element modelfrom computed tomography images for shear modulus simulation of asphalt mixtures[J]. Constructionand Building Materials,2012,30:783-793
    [72] Ziaei-Rad V., Nouri N., Ziaei-Rad S., et al. A numerical study on mechanical performance of asphaltmixture using a meso-scale finite element model[J]. Finite Elements in Analysis and Design,2012,57:81-91
    [73] Souza L. T., Kim Y. R., Souza F. V., et al. Experimental Testing and Finite-Element Modeling toEvaluate the Effects of Aggregate Angularity on Bituminous Mixture Performance[J]. Journal ofMaterials in Civil Engineering,2012,24(3):249-258
    [74]武建民,李晓军.沥青混合料小梁疲劳试验的有限元模拟[J].长安大学学报(自然科学版),2004,24(1):5-8
    [75]虞将苗,李晓军,王端宜,等.基于计算机层析识别的沥青混合料有限元模型[J].长安大学学报(自然科学版),2006,26(1):16-19
    [76]陈佩林,虞将苗,李晓军,等.基于数字图像处理技术的沥青混合料微观结构有限元分析[J].安徽工业大学学报,2006,23(3):327-330
    [77]杨新华,王习武,陈传尧,等.用图像处理技术实现沥青混合料有限元建模[J].中南公路工程,2005,30(3):5-7
    [78]皮育晖,张久鹏,黄晓明,等.沥青混合料劈裂试验数值模拟[J].公路交通科技,2007,24(8):1-6
    [79]冯俊领,郭忠印,杨群,等.沥青混合料同轴剪切试验方法研究[J].同济大学学报(自然科学版),2008,36(10):1395-1398
    [80]尚晋.不同温度和轮载下沥青混合料车辙数值模拟[D].武汉:华中科技大学,2009
    [81]黄拓.沥青混合料剪切性能试验方法研究[D].长沙:长沙理工大学,2009
    [82]罗辉,朱宏平,陈传尧.预切口沥青混合料小梁疲劳试验与数值研究[J].土木工程学报,2009,42(6):126-132
    [83] Wang J. Y., Qian Z. D.基于细观结构有限元模型的环氧沥青混合料间接拉伸试验研究[J]. Journalof Southeast University (English Edition),2011,27(1):65-69
    [84]姚莉莉,王选仓.沥青混合料劈裂试验的扩展有限元法数值模拟[J].武汉大学学报(工学版),2011,44(6):748-751
    [85] Mansaray A. Y.,黄明.加载模式与夹具对环氧沥青混合料疲劳性能检测的影响[J].重庆交通大学学报,2010,29(6):891-895
    [86]刘福明,王端宜.沥青混合料损伤演化的多尺度模拟[J].中国公路学报,2010,23(2):1-6
    [87]王端宜,吴文亮,张肖宁,等.基于数字图像处理和有限元建模方法的沥青混合料劈裂试验数值模拟[J].吉林大学学报(工学版),2011,41(4):968-973
    [88]刘宇,张肖宁.沥青混合料半圆弯拉强度与间接拉伸强度对比分析[J].公路交通技术,2011,(3):34-37
    [89]陈饶.热态沥青混合料压实过程变形特性研究[D].长沙:长沙理工大学,2006
    [90]郑金阳,陈云鹤,陈志勇,等.热沥青混合料摊铺后基层温度应力瞬态分析[J].力学季刊,2008,29(2):266-271
    [91]乔英娟,陈静云,王哲人,等.考虑沥青混合料泊松比影响的路面结构应力分析[J].吉林大学学报(工学版),2009,39(1):50-55
    [92]赵延庆,谭忆秋,于新.沥青混合料力学性质应力依赖性研究[J].华中科技大学学报(自然科学版),2010,38(10):124-127
    [93]张丽娟,陈页开.重复荷载下沥青混合料变形的粘弹性有限元分析[J].华南理工大学学报(自然科学版),2009,37(11):12-16
    [94]万成.基于X_rayCT和有限元方法的沥青混合料三维重构与数值试验研究[D].广州:华南理工大学,2010
    [95]万成,张肖宁,贺玲凤.基于沥青混合料三维数值试样的非均匀性分析[J].华中科技大学学报(自然科学版),2012,40(2):40-44
    [96] Liu Y. Discrete element methods for asphalt concrete: development and application of user-definingmicrostructural medels and a viscoelastic micromechanical model[D]. Michigan TechnologicalUniversity,2011
    [97] Cundall P. A.. A computer model for simulating progressive large scale movements in bloekysystem[A]. In: Muller Led. Proeeedings of symposium of the International Society of RockMeehanics[C]. Rotterdam: A.A. Balkema,1971:8-12
    [98] Cundall P. A. The measurement and analysis of acceleration in rock slopes[D]. London: University ofLondon,1971
    [99] Maini T, Cundall P. A. Computer modeling of jointed rock mass[M]. AD-A061658,1978
    [100] Cundall P. A. BALL-A program to model granular media using the distinct element method[Z].Technical Note, Advanced Technology Group, Dames&Moore, London,1978
    [101] ITASCA Consulting Group.3DEC—3-D Distinct Element Code[M].1987
    [102] Buttlar W. G., You Z. P.. Discrete element modeling of asphalt concrete: Microfabric approach[J].Journal of Transportation Research Board,2001,1757:111-118
    [103] You Z. P. Development of a micromechanical modeling approach to predict asphalt mixtures stiffnessusing the discrete element method[D]. Urbana-Champaign: University of Illinois,2003
    [104] You Z. P., Buttlar W. G.. Application of microfabric discrete element modeling techniques to predictthe complex modulus of asphalt-aggregate hollow cylinders subjected to internal pressure[A].17thASCE Engineering Mechanics Conference[C]. University of Delaware, Newark,2004,1-9
    [105] You Z. P., Buttlar W. G.. Discrete element modeling to predict the modulus of asphalt concretemixtures[J]. Journal of Materials in Civil Engineering,2004,16(2):140-146
    [106] You Z. P., Buttlar W. G.. Micromechanical modeling approach to predict compressive dynamicmoduli of asphalt mixture using the distinct element method[J]. Journal of Transportation ResearchBoard,2006,1970:73-83
    [107] Liu Y., You Z. P.. Simulation of cyclic loading tests for asphalt mixtures using user defined modelswithin discrete element method[A]. GEOCongress2008: Characterization, Monitoring, And,Modeling of GEOSystems[C]. ASCE,2008,742-750
    [108] Liu Y., You Z. P. Speed up Discrete element simulation of asphalt mixtures with user-written C++codes[A]. Aitfield and Highway Pavements2008[C]. ASCE,2008,65-73
    [109] You Z. P., Adhikari S., Dai Q. L. Three-dimensional discrete element models for asphalt mixtures[J].Journal of Engineering Mechanics,2008,134(12):1053-1063
    [110] Liu Y., Dai Q. L., You Z. P. Viscoelastic model for discrete element simulation of asphalt mixtures[J].Journal of Engineering Mechanics,2009,135(4):324-333
    [111] Liu Y., You Z. P. Visualization and Simulation of asphalt concrete with randomly generatedthree-dimensional models[J]. Journal of Computing in Civil Engineering,2009,23(6):340-347
    [112] You Z. P., Liu Y., Dai Q. L. Three-dimensional microstructural-based discrete element viscoelasticmodeling of creep compliance tests for asphalt mixtures[J]. Journal of Materials in Civil Engineering,Special Issue: Multiscale and Micromechanical Modeling of Asphalt Mixes,2010,79-87
    [113] Adhikari S., You Z. P. The sensitivity of aggregate size within sand mastic to model themicrostructure of asphalt mixture[J]. Journal of Materials in Civil Engineering,2010,doi:10.1061/(ASCE)MT.1943-5533.0000212
    [114] Liu Y., You Z. P. Discrete-element modeling: impacts of aggregate sphericity orientation andangularity on creep stiffness of idealized asphalt mixtures[J]. Journal of Engineering Mechanics,2011,137(4):294-303
    [115] Liu Y., You Z. P. Accelerated discrete element modeling of asphalt-based materials with thefrequency-temperature superposition principle[J]. Journal of Engineering Mechanics,2011,137(5):355-365
    [116] Abbas A. R. Simulation of the micromechanical behavior of asphalt mixtures using the discreteelement method[D]. Washington State University,2004
    [117] Abbas A. R., Papagiannakis A. T., Masad E. A. Micromechanical simulation of asphaltic materialsusing the discrete element method[J]. Proceedings of the R. Lytton Symposium on Mechanics ofFlexible Pavements, Baton Rouge, Louisiana,2005,1-11
    [118] Abbas A. R., Papagiannakis A. T., Masad E. A. Micromechanical Modeling of the ViscoelasticBehavior of Asphalt Mixtures Using the Discrete-Element Method[J]. International Journal ofGeomechanics,2007,7(2):131-139
    [119] Kim H., Buttlar W. G.. Micromechanical Fracture Modeling of Asphalt Mixture Using the DiscreteElement Method[A]. GSP130Advances in Pavement Engineering[C]. ASCE,2005,1-15
    [120] Kim H. Investigation of toughening mechanisms in the fracture of asphalt concrete using theclustered discrete element method[D]. Urbana-Champaign: University of Illinois,2007
    [121] Kim H., Buttlar W. G.. Discrete Fracture Modeling of Asphalt Concrete[J]. International Journal ofSolids and Structures,2009,46(13):2593-2604
    [122] Kim H., Wagoner M. P., Buttlar W. G.. Numerical fracture analysis on the specimen size dependencyof asphalt concrete using a cohesive softening model[J]. Construction and Building Materials,2009,23:2112-2120
    [123] Mahmoud E., Masad E., Nazarian S.. Discrete Element Analysis of the Influences of AggregateProperties and Internal Structure on Fracture in Asphalt Mixture[J]. Journal of Materials in CivilEngineering,2010,22(1):10-20
    [124] Collop A. C., McDowell G. R., Lee Y. W. Modeling dilation in an idealized asphalt mixture usingdiscrete element modeling[J]. Granular Matter,2006,8:175-184
    [125] Zelelew H. M. Simulation of the permanent deformation of asphalt concrete mixtures using discreteelement method[D]. Washington D. C.: Washington State Uinversity,2008
    [126] Chen J. S. Discrete Element Method (DEM) Analyses for Hot-Mix Asphalt (HMA) MixtureCompaction[D]. Knoxville: University of Tennessee,2011
    [127]胡霞光.沥青混合料微观力学分析综述[J].长安大学学报(自然科学版),2005,25(2):6-10
    [128]田莉,刘玉,胡霞光,等.模拟沥青混合料集料的多面体颗粒随机生成算法及程序[J].中国公路学报,2007,20(3):5-10
    [129]田莉,刘玉,王秉纲.沥青混合料三维离散元模型及其重构技术[J].长安大学学报(自然科学版),2007,27(4):23-27
    [130]肖昭然,胡霞光,刘玉.沥青混合料细观结构离散元分析[J].公路,2007,(4):145-148
    [131]王端宜,赵熙.沥青混合料单轴压缩试验的离散元仿真[J].华南理工大学学报(自然科学版),2009,37(7):37-41
    [132]赵熙,王端宜.沥青路面碾压过程的离散元仿真[J].科学技术与工程,2009,9(8):2257-2259
    [133]黄晚清. SMA粗集料骨架结构的细观力学模型研究[D].成都:西南交通大学,2007
    [134]黄晚清,陆阳,何昌轩,等.基于离散单元法的沥青混合料研究初探[J].中南公路工程,2007,32(2):19-22
    [135] Chen J., Huang X. M. Virtual fracture test of asphalt mixture based on discrete element method[J].Journal of SoutheastUniversity (EnglishEdition),2009, l25(4):518-522
    [136]陈俊,黄晓明.基于离散元法的沥青混合料虚拟疲劳试验方法[J].吉林大学学报(工学版),2010,40(2):435-440
    [137]黄宝涛,张敏思,雍军.振动压实下不规则颗粒细观响应的离散元模拟[J].公路交通科技,2009,26(7):7-12
    [138]黄宝涛.振动压实对道路材料空间组构及其力学性能演化的离散元模拟[D].南京:东南大学,2009
    [139] Pei J. Z., Chang M. F.. Study on Permanent Deformation Characteristics of Asphalt Pavement Basedon Discrete Element Method Model[A].9th International Conference of Chinese TransportationProfessionals[C]. ICCTP2009:2171-2178
    [140]裴建中,常明丰,陈拴发,等.沥青混合料间接拉伸试验的数值模拟[J].长安大学学报(自然科学版),2010,30(5):6-10
    [141]常明丰,裴建中,陈拴发.颗粒材料双轴试验离散元数值模拟[J].交通运输工程学报,2010,10(5):1-7
    [142]常明丰,裴建中,陈拴发.粘结颗粒材料双轴试验的数值模拟研究[J].材料导报,2011,25(4):127-130
    [143] Chang M. F., Pei J. Z., Zhang J. P. Influences of mesoscopic parameters on crack resistance ofasphalt mixture[A].11th International Conference of Chinese Transportation Professionals[C]. ICCTP2011,3324-3332
    [144]李蕊,常明丰,李彦伟,石鑫,杜群乐.沥青混合料裂缝扩展过程细观力学模拟[J].交通运输工程学报,2011,11(6):1-9
    [145]王等明.密集颗粒系统的离散单元模型及其宏观力学行为特征的理论研究[D].兰州:兰州大学,2009
    [146]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009
    [147] Dantu P. A contribution to the mechanical and geometrical study of non-cohesive masses[A].Proceedings of the4th International Conference on Soil Mechanics and Foundations Engineering[C].London: Butterworths Scientific Publications,1957,1:144-148
    [148] Bouchaud J. P., Cates M. E., Claudin P.. Stress distribution in granular media and nonlinear waveequation[J]. Journal de Physique I,1995,5(6):639-656
    [149] Edwards S.F., Oakeshott R.B.S. The transmission of stress in an aggregare[J]. Physica D,38:86-92
    [150] Wittmer J. P., Cates M. E., Claudin P.. Stress Propagation and Arching in Static Sandpiles[J].Journal de Physique I,1997,7(1):39-80
    [151] Cates M. E., Wittmer J. P., Bouchaud J. P., et al. Development of stresses in cohesionless pouredsand[J]. Philosophical Transactions of the Royal Society A,1998,356(1747):2535-2560
    [152] Cates M. E., Wittmer J. P., Bouchaud J. P., et al. Jamming, Force Chains and Fragile Matter[J].Physical Review Letters,1998,81(9):1881-1884
    [153] Claudin P., Bouchaud J. P.. Models of stress fluctuations in granular media[J]. Physical Review E,1998,57(4):4441-4456
    [154] Hemmingsson J., Herrmann H. J., Roux S.(Stéphane). Vectorial Cellular Automaton for the Stress inGranular Media[J]. Journal de Physique I,1997,7(2):291-302
    [155] Oron G., Herrmann J. H. Contact forces in regular3D granular pile[J]. Physica A,1999,265(3-4):455-462
    [156] Howell D., Behringer R. P. Stress fluctuations in a2D granular couette experiment: A continuoustransition[J]. Physical Review Letters,1999,82(26):5241-5244
    [157] Blair D. L., Mueggenburg N. W., Marshall A. H., et al. Force distributions in3D granular assemblies:Effects of packing order and inter-particle friction[J]. Physical Review E,2001,63(4),041304:1-9
    [158] Aste T., Di Matteo T., Galleani d’Agliano E. Stress transmission in granular matter[J]. Journal ofPhysics: Condensed Matter,2002,14:2391-2402
    [159] Silbert L. E., G Grest. S., Landry J. W.. Statistics of the contact network in frictional and frictionlespackingss granular[J]. Physical Review E,2002,66(6),061303:1-9
    [160] Majmudar T. S., Behringer R. P.. Contact force measurements and stress-induced anisotropy ingranular materials[J]. Nature,2005,435(23):1079-1082
    [161] Ostojic S.. Statistical Mechanics of Static Granular Matter[D]. Amsterdam: Universiteit vanAmsterdam,2006
    [162] Ostojic S., Somfai E., Nienhuis B.. Scale invariance and universality of force networks in staticgranular matter[J]. Nature,2006,439:828-830
    [163] Zhou J., Long S., Wang Q., et al. Measurement of forces inside a three-dimensional pile offrictionless droplets[J]. Science,2006,312(16):1631-1633
    [164] Lee J. S., Dodds J., Carlos Santamarina J.. Behavior of Rigid-Soft Particle Mixtures[J]. Journal ofMaterials in Civil Engineering,2007,19(2):179-184
    [165] Albarakati W. A. Force chains in granular media and ultrasound impulse propagation in sandspecimen under load[J]. Electronic Journal Technical Acoustics,2007,20:1-5
    [166] Yi C. H., Liu Y., Miao T. D. Force transmission in three-dimensional hexagonal-close-packedgranular arrays with defect submitted to a point load[J]. Granular Matter,2007,9:195-203
    [167] Sanfratello L., Fukushima E., Behringer R. P. Using MR elastography to image the3D force chainstructure of a quasi-static granular assembly[J]. Granular Matter,2009,11(1):1-6
    [168] Tordesillas A., Shi J. Y., Muhlhaus H. B. Noncoaxiality and force chain evolution[J]. InternationalJournal of Engineering Science,2009,47:1386-1404
    [169] Hunt G. W., Tordesillas A., Green S. C., Shi J. Force-chain buckling in granular media: a structuralmechanics perspective[J]. Philosophical Transactions. Series A, Mathematical, Physical, andEngineering Sciences,2010,368(1910):249-62
    [170] Tordesillas A., Shi J. Y., Tshaikiwsky T.. Stress–dilatancy and force chain evolution[J]. InternationalJournal for Numerical and Analytical Methods in Geomechanics,2010,35(2):264-262
    [171]谢晓明,蒋亦民,王焕友,等.颗粒堆密度变化对堆底压力分布的影响[J].物理学报,2003,52(9):2194-2199
    [172]蒋红英,苗天德,鲁进步.二维颗粒堆中力传递的一个概率模型[J].岩土工程学报,2006,28(7):881-886
    [173]苗天德,宜晨虹,齐艳丽,等.集中力作用下球形颗粒六角密排堆积体的传力研究[J].物理学报,2007,56(8):4713-4721
    [174]刘建国,孙其诚,金峰.光弹法检测颗粒物质体系中的力链结构[A].中国力学学会学术大会2009论文集[C].2009
    [175]刘建国,孙其诚,金峰,等.颗粒接触力检测方法评述[J].岩土力学,2009,30(增刊):121-128
    [176] Zhang D., Whiten W. J. The calculation of contact forces between particles using spring anddamping models[J]. Powder Technology,1996,88:59-64
    [177Mastuttis H.G., Luding S., Herrmann H. J.. Discrete element simulations of dense packings and heapsmade of spheriall and non-spherial particles[J]. Powder Technology,2000,109(1-3):278-292
    [178] Snoeijer J. H., Martin van Hecke, Somfai Ella′k, et al. Force and weight distributions in granularmedi Effects of contact geometry[J]. Physical Review E,2003,67,030302,1-4
    [179] Bagi K.. Statistical analysis of contact force components in random granular assemblies[J]. GranularMatter,2003,5:45-54
    [180] Ngan A. H. W. On distribution of contact forces in random granular packings[J]. Physica A,2004,339:207-227
    [181] Wang Y. H., Leung S. C.. Characterization of cemented sand by experimental and numericalinvestigations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(7):992-1004
    [182] Wang Y. H., Xu D. P., Tsui K. Y.. Discrete element modeling of contact creep and aging in sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(9):1407-1411
    [183] Tordesillas A.,Sullivan P. O’, Walker D. M., et al. Evolution of functional connectivity in contactand force chain networks Feature vectors, k-cores and minimal cycles[J]. Comptes Rendus Mecanique,2010,338:556-569
    [184] Tordesillas A., Muthuswamy M.. On the modeling of confined buckling of force chains[J]. Journalof the Mechanics and Physics of Solids,2009,57:706-727
    [185] Rattanadit K., Bobaru F., Promratana K.. Force chains and resonant behavior in bending of agranular layer on an elastic support[J]. Mechanics of Materials,2009,41:691-706
    [186] B aszczuk J.. Force Distribution in Granular Systems with and without Friction[J]. ScientificResearch of the Institute of Mathematics and Computer Science,2009,21-27
    [187] Khattak M. J., You Z. P., Kyatham V. On the Mechanical Modeling of Asphalt Matrix and Hot MixAsphalt Mixtures[A]. Airfield and Highway Pavements[C].2008ASCE,253-266
    [188]孙其诚,王光谦.静态堆积颗粒中的力链分布[J].物理学报,2008,57(8):4667-4674
    [189]孙其诚,王光谦.颗粒流动力学及其离散模型评述[J].力学进展,2008,38(1):87-90
    [190]孙其诚,辛海丽,刘建国,等.颗粒体系中的骨架及力链网络[J].岩土力学,2009,30(增刊):83-87
    [191]辛海丽,孙其诚,刘建国,等.刚性块体压入颗粒体系时的受力及力链演变[J].岩土力学,2009,30(增刊):88-93
    [192]王光谦,孙其诚.颗粒物质及其多尺度结构统计规律[J].工程力学,2009,26(增刊II):1-7
    [193]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009
    [194]刘斯宏,姚仰平,孙其诚,等.基于细观结构的颗粒介质应力应变关系研究[J].科学通报,2009,54(11):1496-1503
    [195]孙其诚,金峰,王光谦.密集颗粒物质的多尺度结构[J].力学与实践,2010,32(1):10-15
    [196]毕忠伟,孙其诚,刘建国,等.点载荷作用下密集颗粒物质的传力特性分析[J].力学与实践,2011,33(1):10-16
    [197]毕忠伟,孙其诚,刘建国,等.双轴压缩下颗粒物质剪切带的形成与发展[J].物理学报,2011,60(3),034502,1-10
    [198]孙其诚,金峰,王光谦,等.二维颗粒体系单轴压缩形成的力链结构[J].物理学报,2010,59(1):30-37
    [199]宜晨虹,慕青松,苗天德.带有点缺陷的二维颗粒系统离散元模拟[J].物理学报,2008,57(6):3636-3640
    [200]宜晨虹,蒋庆宇,幕青松,等.点缺陷对二维颗粒系统力链几何分布的影响[J].兰州大学学报(自然科学版),2009,45(6):101-104
    [201]王等明.密集颗粒系统的离散单元模型及其宏观力学行为特征的理论研究[D].兰州:兰州大学,2009
    [202]蒋军,徐正红,徐凌峰.颗粒体材料中的力链压曲变形[J].浙江大学学报(工学版),2010,44(10):1931-1937
    [203]徐正红.颗粒物质的力链压曲变形及本构模型研究[D].杭州:浙江大学,2011
    [204]黄爱民,安向京,骆力等.数字图像处理与分析基础[M].北京:中国水利水电出版社,2005
    [205]陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社,2005
    [206]王慧琴.数字图像处理[M].北京:北京邮电大学出版社,2006
    [207]李忠民.基于图像处理的沥青混合料检测系统设计研究[D].西安:长安大学,2010
    [208] Itasca Consulting Group Inc.. Particle Flow Code in2Dimensions[Z]. Minneapolis, Minnesota USA,2004
    [209] Christensen D. W., Anderson D. A. Interpretation of dynamic mechanical test data for paving gradeasphalt cements[J]. Journal of the Association of Asphalt Paving Technologists,1992,61:67–116.
    [210] L voll G., M l y K. J., Flekk y E. G.. Force measurements on static granular materials[J]. PhysicalReview E,1999,60:5872-5878
    [211] Liu C. H., Nagel S. R., Schecter D. A, et al. Force fluctuations in bead packs[J]. Science,1995,269(5223):513-515
    [212] Mueth D. M., Jaeger H. M., Nagel S. R. Force distribution in a granular medium[J]. Physical ReviewE,1998,57:3164-3169
    [213] Blair D. L., Mueggenburg N. W., Marshall A. H., et al. Force distributions in3D granular assemblies:Effects of packing order and inter-particle friction[J]. Physical Review E,2001,63(4),041304:1-9
    [214] Mueggenburg N. W., Jaeger H. M., Nagel S. R. Stress transmission through three-dimensionalordered granular arrays[J]. Physical Review E,2002,66(3),031304:1-9
    [215]苗天德,宜晨虹,齐艳丽等.集中力作用下球形颗粒六角密排堆积体的传力研究[J].物理学报,2007,56(8):4713-4721
    [216] Majmudar T. S., Behringer R. P.. Contact force measurements and stress-induced anisotropy ingranular materials[J]. Nature,2005,435(23):1079-1082
    [217]黄福增. MDYB-3有机玻璃静动态力学行为研究[D].西安:西北工业大学,2007
    [218]项贻强,李秋萍,张科乾.古代三折边拱桥的模型设计及试验分析研究[C].中国古桥学术研讨会,2009:204-207
    [219]郑则群,房贞政,陈红媛.空腹式刚架拱桥有机玻璃模型试验[J].工业建筑,2008,38(6):43-48
    [220]江甫.斜交角度对装配式钢筋混凝土简支斜交板桥的影响分析[D].南京:南京航空航天大学,2006
    [221]许崇法.斜拉桥混凝土主梁桥面板模型试验与分析[D].南京:东南大学,2004
    [222] Coppersmith S. N., Liu C. H., Majumdar S., et al. Model for force fluctuations in bead packs[J].Physical Review E,1996,53(5):4673-4685
    [223] Radjai F., Wolf D., Jean M., et al. Bimodal character of stress transmission in granular packings[J].Physical Review Letters,1998,80(1):61-64
    [224]严家伋.道路建筑材料[M].北京:人民交通出版社,2001
    [225]张肖宁.沥青与沥青含量的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [226] ARA, Inc. ERES Consultants Division. Guide for mechanistic-empirical design of new andrehabilitated pavement structures[R]. Final Report to the National Cooperative Highway ResearchProgram, Transportation Research Board, National Research Council,2004,505West UniversityAvenue Champaign, Illinois61820
    [227] Wang D. Y. Wang Z. R., Zhang X. N. Analysis of structural factors that influence thelow-temperature cracking of asphalt pavement. ISCORD,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700