用户名: 密码: 验证码:
基于棘轮补偿器参数检测的接触网在线监测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着列车运行速度的提高,铁路运行密度的逐步加大,对牵引供电系统安全可靠性的要求也越来越高。接触网是牵引供电系统的重要设备之一,因此提高接触网的可靠性对于电气化铁路运输的可靠运行具有重大意义。由于接触网是露天架设的,没有备用,一旦发生故障将中断行车,扰乱电气化铁路的运输秩序,带来经济损失。对接触网进行在线监测是提高接触网可靠性的重要方法之一,因此有必要对接触网的在线监测技术进行研究。
     基于棘轮补偿器参数检测的接触网在线监测系统检测的内容包括棘轮补偿器的相关参数(包括坠砣位移和摇杆倾角)以及环境参数(包括风速风向、温湿度和降雨量)。状态评估是在线监测的关键技术之一,实现接触网的在线监测的前提是对接触网状态的准确评估。根据棘轮补偿器坠砣的位移和摇杆的倾角的变化,可以推断出接触网的工作状态。在实际运行中,自然界一直存在的风荷载会导致棘轮补偿器的坠砣的位移的变化,为了准确地提取接触网的细微的故障状态以及预测故障趋势,必须对风荷载作用导致的坠砣位移分量进行去除。
     本文首先对棘轮补偿器的运动特性和接触网的风振响应进行了仿真分析,得到了风荷载作用导致的坠砣位移分量。然后提出了去除风荷载作用导致的坠砣位移分量的方法。最后研究了接触网覆冰的在线监测方法。本文主要的研究内容如下:
     1.对牵引供电系统进行了可靠性分析,结果表明牵引供电系统的可靠性很大程度上取决于接触网的可靠性。归纳了接触网的常见的故障类型,分析了各类接触网故障发生的原因。阐述了对接触网进行在线监测的必要性。
     2.为了得到影响棘轮补偿器的传动效率的因素,分别通过理论分析和仿真计算的方法对棘轮补偿器进行了分析。改变补偿绳和棘轮之间摩擦系数对棘轮补偿器进行静态仿真,得到了摩擦系数对补偿张力的影响,可以为棘轮的设计提供理论依据。仿真分析了动态荷载作用下棘轮补偿器的传动效率的变化规律,对比理论分析结果显示两者较为符合,同时得到了利用接触线或承力索下锚处的位移计算坠砣位移的方法。通过监测棘轮补偿器摇杆的倾角可以评估其运行状态,实现对棘轮补偿器性能的在线监测。
     3.为了减小模拟时间,引入基于按时间抽取快速傅立叶变换(DIT-FFT)优化的谐波合成法(WAWS)对接触网的风场进行模拟。考虑接触网结构的空间特性,建立了接触网的三维有限元模型,对比仿真计算和实际的吊弦的长度验证了有限元模型的有效性。在不同角度的风荷载作用下,对单跨接触网的动力学响应进行了仿真,得到了接触线和承力索下锚处的位移的变化规律。为了减小评估时间,推导了下锚处的位移的近似计算公式。对风荷载作用下多跨接触网相邻跨的作用进行分析,得到了多跨接触网的棘轮补偿器的坠砣位移的近似计算方法。
     4.为了验证风荷载作用下坠砣位移的近似计算方法的正确性,在天津-秦皇岛客运专线上进行了接触网风振响应的现场测试。引入基于虚拟观测的FastICA信号分离方法,提出SS-MDP法消除分离信号的不确定性。利用该方法实现了摇杆倾角信号的去噪,根据摇杆倾角信号计算得到补偿张力以及棘轮补偿器的传动效率,分析了棘轮补偿器的运行状态。利用提出的信号分离方法提取出了坠砣位移的风荷载作用的分量,和近似计算方法得到的风荷载作用的分量进行对比,验证了近似计算方法的可用性。在实际的在线监测中,以坠砣位移信号中温度变化导致的分量和风荷载作用的分量作为虚拟观测,利用提出的信号分离方法可以实现坠砣位移信号中这两个分量的去除。现场对异物倒入接触网进行了模拟,对采集数据进行分析验证了本文提出的在线监测方法的可行性。
     5.提出了接触网覆冰的在线监测方法。为了实现覆冰接触网的状态评估,对不同覆冰厚度时的接触网的静态响应进行仿真分析,得到了接触线和承力索下锚处的位移的变化规律。根据相似理论设计了6跨接触网的1/50的小比例模型,对小比例模型进行仿真分析,验证了小比例模型的可用性。利用小比例模型进行了接触网覆冰的模型试验,通过对比试验结果和仿真结果验证了小比例模型的正确性。为了减小估算的时间,考虑多跨接触网的相互作用,推导了覆冰接触网的棘轮补偿器的坠砣的位移的近似计算方法。对小比例模型进行近似计算,将得到的结果和模型试验的结果进行对比,验证了近似计算方法的可用性。
ABSTRACT:With the speeding up of train and the increasing operation density of railway, the requirement for the safety and reliability of traction power supply system is continuously rising. The catenary is one of the key infrastructures in traction power system, so the improvement of the reliability of catenary is of extremely significance for reliable operation of electrified railway transport. Because the catenary is constructed in open air without standby, once the failure occurred will cause interruption of the train operation, disorder the railway transport schedule, and bring in financial loss. Online monitoring of the catenary is an important approach to enhance the reliability of the catenary, so it's necessary to study on online monitoring of the catenary.
     The detection items of online monitoring for the catenary which based on the detection of the parameters of the tension wheel equipment contain related parameters of the tension wheel equipment (including balance weight displacement and swing lever inclination) and environmental parameters (including wind speed and direction, temperature, humidity and rainfall). Condition evaluation is one of the key technologies for online monitoring, accurate evaluation of catenary condition is the premise of online monitoring. Operation condition of the catenary can be evaluated based on the variation of balance weight displacement and swing lever inclination. In practice, windload always exists in nature, which will cause the change of balance weight displacement of tension wheel equipment, so the component of balance weight displacement affected by windload should be removed to extract the failure state and predict the failure trend of the catenary accurately.
     In this dissertation, first the simulations are conducted to analyze the motion characteristics of tension wheel equipment and the response of the catenary under the excitation of wind, the component of balance weight displacement affected by windload is derived. Then the remove method is proposed. Finally the research on online monitoring method of catenary icing is carried out. The main work of this dissertation is summarized as follows:
     1. Reliability analysis of traction power supply system is achieved, and the results show that the reliability of traction power supply system largely depends on the reliability of the catenary. Types of common failure of catenary are concluded, and the reasons for every type of failure are analyzed. The necessity of online monitoring of the catenary is elaborated, a novel online monitoring method which based on the monitor of related parameters of tension wheel equipment is proposed.
     2. In order to achieve the effects on transmission efficiency of tension wheel equipment, theoretical analysis and simulation calculation are used to analyze the tension wheel equipment respectively. Static simulation of tension wheel equipment with variable friction coefficient between compensator rope and wheel is completed, effect of friction coefficient on compensation tension is derived, which can provide theoretical basis for the design of tension wheel equipment. Variation of transmission efficiency of tension wheel equipment under dynamic load is analyzed by simulation, comparison with the theoretical analysis result reflects that both fairly conform to each other, also calculation method of balance weight displacement through contact wire or messenger wire anchorage displacement is deduced. Operation condition of tension wheel equipment can be evaluated by monitoring the swing lever inclination, and then online monitoring of tension wheel equipment performance can be realized.
     3. In order to reduce the simulation time, wind field of the catenary is simulated by DIT-FFT optimized WAWS method. Considering the spatial characteristic of the catenary, three dimensional finite element model of the catenary is built, dropper length of simulation and real are compared with each other, which validates the availability of the finite element model. The dynamic responses of single span catenary which excited by windload with different angles are simulated, the variations of anchorage displacement of contact wire and messenger wire are analyzed. The approximate calculation formulas of anchorage displacement are deduced to reduce the evaluation time. The interaction of adjacent spans in multi-span catenary is analyzed, and approximate calculation formulas of balance weight displacement of tension wheel equipment in multi-span catenary are derived.
     4. In order to validate the accuracy of approximate calculation formulas of balance weight displacement, field test on wind-induced vibration response of the catenary is performed on Tianjin-Qinhuangdao passenger dedicated line. FastICA signal separation method based on virtual observation is introduced, and SS-MDP method is proposed to eliminate the uncertainty of separated signal. Denoise of Swing lever inclination signal is realized by this method, compensation tension and transmission efficiency of tension wheel equipment can be calculated by the swing lever inclination signal, and the operation state of tension wheel equipment is analyzed. The component of windload effect of balance weight displacement is extracted by the proposed signal separation method, and compared with approximate calculation, which verify the availability of approximate calculation. In real online monitoring, using the component of temperature variation and windload effect as virtual observations, the removes of both components from balance weight displacement can be achieved by proposed signal separation method. Foreign matter invasion to the catenary was simulated in field test, the test data was analyzed, which validated the feasibility of the online monitoring method proposed in this dissertation.
     5. Online monitoring method of catenary icing is proposed. In order to realize the condition evaluation of icing catenary, static response of the catenary under different ice thicknesses are simulated, variations of contact wire and messenger wire anchorage displacement are deduced. The1/50scale-model of six-span catenary is designed based on the similarity theory, simulated analysis of small-scale model is carried out to verify the availability of the small-scale model. Model tests of catenary under different ice thicknesses are performed on the small-scale model, the comparison between model test results and finite element simulation results verifies the validity of the small scaled model. Considering the interaction of adjacent spans in multi-span catenary, approximate method of balance weight displacement calculation of tension wheel equipment of icing catenary are derived. Approximate calculation of small scale-model is finished, and the result is compared with model test result, which validates the availability of approximate calculation method.
引文
[1]于万聚.高速电气化铁路接触网,成都:西南交通大学出版社,2003.
    [2]董昭德.接触网,北京:中国铁道出版社,2010.
    [3]林飞,罗君,李志锋.2003,2004年全国电力牵引供电系统故障统计分析.甘肃科技纵横,2006,35(3):27-28
    [4]李凯.京广线电力机车车顶闪络问题分析及对策.机车电传动,2003(6):54,57
    [5]吉鹏霄.接触网,北京:化学工业出版社,2006.
    [6]史冬雪.6C系统保障高铁供电设备安全,世界轨道交通,2012,(9):22-23
    [7]王海杰.浅析接触网断线原因和预防对策.科技情报开发与经济,2010,20(6):195-196
    [8]彭立增,郭富强.接触网风害故障处理—侯月线河口—月山段1997年以来风害引起接触网故障情况及处理分析.西铁科技,2002(2):49-51
    [9]运输局.运输局铁路传真电报,北京:2008
    [10]徐超,杨广英.接触网导线断线分析及改进措施.铁道技术监督,2010(2):19-20
    [11]王睿.接触网设备的电气烧伤问题与防治措施.电气技术,2009(9):83-85
    [12]张宝奇,李喜民.由两次接触网断线事故对主导电回路的再认识.西铁科技,2001(2):34~35
    [13]王瑞红.电气化铁道接触网常见事故分析及对策.科技创新导报,2010(20):96
    [14]吴华兴,耿志文,柴书明,等.三起典型承力索断线故障原因分析与处理.电气化铁道,2005(3):18-19
    [15]钮承新,耿杰.电气化铁路网上断载电力机车自动过分相装置研究与试验.继电器,2001,29(12):55~57
    [16]严新.电力机车车上控制自动过分相的几个问题.机车电传动,2004(2):66~68
    [17]刘孟恺.电力机车过分相暂态过程分析:[硕士学位论文].成都:西南交通大学,2010
    [18]张宝奇.对一起典型的机车带电过分相故障的探讨.铁道机车车辆,2012(5):99-100
    [19]毕玉.浅析电力机车自动过分相装置故障对机车运行的影响.内江科技,2012(5):59
    [20]张占乐.浅析电力机车主断路器接地故障引起接触网断线的原因及预防措施.郑铁科技通讯,2004(1):40~41
    [21]李雪,吴俊勇,杨媛,等.高速铁路接触网悬挂系统维修计划的优化研究.铁道学报,2010,32(2):24-30
    [22]袁明杰.接触网弓网故障及其防范措施.铁道技术监督,2006(8):12-14
    [23]王景春.接触网设备事故原因分析及预防措施的探讨.露天采矿技术,2006(B09):35~37
    [24]张红霞.电气化铁路接触网故障分析及防范措施.科技资讯,2012(15):119
    [25]卫永刚.接触网补偿装置定滑轮存在问题及解决方案.电气化铁道,2010(2):41-42
    [26]危福根.山区电气化铁路水害后的接触网抢修.海峡科学,2009(5):60-62
    [27]赖志强,陈龙福.电气化铁路接触网锚柱折断事故抢修预案的探讨.上海铁道科技,2003(3):14-15
    [28]兰州供电段党群办.火车站供电段开展接触网、电力设备全面巡视检查专项活动,火车站网:2010
    [29]高江虹,伏昕.京沪高铁首遇滑铁卢接触网谜团待解,21世纪网:2012
    [30]何敏.高铁磨合期故障频发非孤例供电系统故障最常见,中新网:2011
    [31]白天玉.接触网风载故障的探讨.铁道机车车辆,2002(1):49-51
    [32]曹树森,秦剑,柯坚,等.接触网抗风可靠性研究现状及展望.世界科技研究与发展,2010(4):491-493
    [33]贺亚卿.大风情况下接触网——受电弓故障分析.内蒙古科技与经济,2004(18):57~58
    [34]郭金平,姜汉登.电气化铁路接触网的防风改造.中国铁路,2001(9):38-39
    [35]邵全东.接触网覆冰除冰方法分析与探讨.金田,2012(1):381-382
    [36]王勇喆.考虑恶劣天气影响的铁路牵引供电系统风险评估:[硕士学位论文].北京:北京交通大学,2010
    [37]甄磊.浅析接触网覆冰现象的危害以及应对措施.电气化铁道,2011,22(3):30~32
    [38]张安洪.雪灾对接触网覆冰及其影响的探讨.电气化铁道,2008(3):32~33
    [39]贯通日本.接触网结冰,断电停车,贯通日本资讯:2008
    [40]董昭德.对接触网基本特性的再认识.长春:中国铁道学会2010年高速铁路接触网系统新技术研讨会论文集.2010:165-171.
    [41]班瑞平.接触网线索舞动现象的研究.铁道机车车辆,2004,24(1):64-66
    [42]袁军宝.山东雨雪天气致胶济铁路部分列车晚点或停运,新华网:2010
    [43]王昌长,李福祺,高胜友,电力设备的在线监测与故障诊断,北京:清华大学出版社,2006.
    [44]李延晶.关于电气化铁路接触网管理和状态修系统的研究.黑龙江科技信息,2011(11):16
    [45]胡晓悦.接触网及其状态修管理系统的研究:[硕士学位论文].成都:西南交通大学,2009
    [46]杨平权,王修文.接触网实施状态修应注意的几个问题.铁道机车车辆,2003,23(5):68-70
    [47]孟祥奎,吴积钦.受电弓和接触网运行状态定点监测装置.电气化铁道,2010(2):32-34
    [48]Institute K R R. Online Catenary Condition Monitoring System,2007
    [49]Kim D, Park Y, Lee S B, et al. Implementation of a network-based online monitoring system for substation power facilities in Urban Rail Transit, Telecommunications Energy Conference,2009. INTELEC 2009.31st International. IEEE,2009:1-3.
    [50]张曙光.京津城际高速铁路系统调试技术,北京:中国铁道出版社,2008.
    [51]乔立升,吴积钦,徐可佳.无线组网技术在接触网振动试验系统中的应用.现代电子技术,2009,32(1):33~35
    [52]铁信数据中心.链形悬挂接触网监视装置.中国铁路,2009(3):78
    [53]Welch G, Graham G. CATENARY SAFETY MONITORING SYSTEM AND METHOD, USA, US20120319850,2012.12.20
    [54]吴昌博,周洪,鲁觉,等.接触网应力实时检测及断线事故预警系统.微计算机信息,2009(19):102~103,157
    [55]段传宗,孙登峰.铁路接触网防断线预警指示器.中国,实用新型,201020285688,2011.2.9
    [56]Theune N, Bosselmann T, Kaiser J, et al. Online temperature monitoring of overhead contact line at the new German high-speed rail line Cologne-Rhine/Main:Power Supply, Energy Management and Catenary Problems. Pilo E. Southampton:WIT Press,2010:87-94
    [57]Park Y, Cho Y H, Lee K. Development of an FPGA-based Online Condition Monitoring System for Railway Catenary Application:WCRR2008,2008,900-904
    [58]司刚全,曹晖,张彦斌等.电气化铁路接触网线夹过热故障智能诊断方法及在线监测系统.中国,实用新型,CN102589612A,2012.7.18
    [59]路婷婷.基于ZigBee技术的在线监测系统的研究:[硕士学位论文].北京:北京交通大学,2011
    [60]赵砚青,刘国永.电气化铁路接触网温度在线监测系统.中国,实用新型,CN101452628,2009.6.10
    [61]朱金涞.接触网线夹温度的在线监测:[硕士学位论文].成都:西南交通大学,2012
    [62]江杰.接触网风偏量检测系统设计与实现:[硕士论文学位论文].长沙:中南大学,2009
    [63]Shao J, Laux S J, Trainor B J, et al. Nowcasts of temperature and ice on overhead railway transmission wires. Meteorological Applications,2003,10(2):123-133
    [64]Szafranski Z. Winter and Railways - Study, Paris:2011
    [65]常本瑞樹,原田智,夫户真也,等.凰·雪·霜から岛架线を守る.RRR,2012,69(11):20-23
    [66]孙轩.电气化铁路接触网防冰融冰技术研究:[硕士学位论文].成都:西南交通大学,2012
    [67]汤文斌.模拟大气环境下铁路接触网覆冰融冰实验研究:[硕士学位论文].长沙:长沙理工大学,2009
    [68]黄新波,李文静,刘家兵.一种电气化铁路接触网覆冰在线监测系统.中国,实用新型,CN102721373A,2012.10.10
    [69]徐微.哈大高铁突破三大技术难题,长春晚报:2012
    [70]中华人民共和国铁道部.TB/T 2075.38-2002.电气化铁路接触网零部件第38部分:补偿棘轮.2002.05.17
    [71]杨广英.几种常用接触网补偿装置的补偿性能对比.铁道技术监督,2008,36(2):39~40
    [72]阙明,潘英.客运专线接触网下锚补偿装置探讨.铁道标准设计,2005(6):105-107
    [73]Dolling A. Erhohung der Belastung der Oberleitung:[Dissertation]. Dresden:Technischen Universitat Dresden,2007
    [74]宝鸡保德利电气设备有限责任公司技术文件.补偿滑轮及棘轮产品安装使用手册:宝鸡:2011
    [75]孙北奇,廖林清,谢明,等.V带传动中轴向压力的研究.重庆工学院学报(自然科学版),2007,21(6):24-28
    [76]张鹏.高速电梯悬挂系统动态性能的理论与实验研究:[博士学位论文].上海:上海交通大学,2007
    [77]白国良.荷载与结构设计方法,北京:高等教育出版社,2003.
    [78]任月明.风雨激励下输电塔线体系的动力响应分析:[硕士学位论文].大连:大连理工大学,2007
    [79]吴家岚.高速铁路接触网风致响应分析:[硕士学位论文].成都:西南交通大学,2011
    [80]王之宏.风荷载的模拟研究.建筑结构学报,1994,15(1):44~52
    [81]张相庭.结构风压和风振计算,上海:同济大学出版社,1985.
    [82]梁估.斜拉网格结构的风振响应分析:[硕士学位论文].浙江:浙江大学,2005
    [83]黄本才.结构抗风分析原理及应用,上海:同济大学出版社,2001.
    [84]甘凤林,杨振伟,代晓光.基于谐波合成法的输电塔线体系风致响应分析.电网技术,2009,33(18):186-190
    [85]李锦华,李春祥.超高层建筑脉动风速场模拟的改进谐波合成法.振动与冲击,2009, 27(12):151~156
    [86]马麟,刘健新,韩万水.基于改进谐波合成法的杭州湾跨海大桥风场模拟研究.郑州大学学报:工学版,2008,29(1):56-60
    [87]Kovacs I, Svensson H S, Jordet E. Analytical aerodynamic investigation of cable-stayed Helgeland bridge. Journal of Structural Engineering,1992,118(1):147-168
    [88]Yamazaki F, Shinozuka M. Digital generation of non-Gaussian stochastic fields. Journal of Engineering Mechanics,1988,114(7):1183-1197
    [89]中华人民共和国住房和城乡建设部.GB 50009-2012.建筑结构荷载规范.中国建筑科学研究院会,2012
    [90]白泉,朱浮声,康玉梅.风速时程数值模拟研究.辽宁科技学院学报,2006,8(1):1-6
    [91]Irvine H M, Caughey T K. The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1974, 341(1626):299-315
    [92]任伟新,陈刚.由基频计算拉索拉力的实用公式.土木工程学报,2005,38(11):26-31
    [93]Lopez-Garcia O, Carnicero A, Torres V. Computation of the initial equilibrium of railway overheads based on the catenary equation. Engineering structures,2006,28(10):1387-1394
    [94]Metrikine A V, Bosch A L. Dynamic response of a two-level catenary to a moving load. Journal of sound and vibration,2006,292(3):676-693
    [95]李瑞平,周宁,梅桂明,等.初始平衡状态的接触网有限元模型.西南交通大学学报,2009,44(5):732~737
    [96]卫仙凤.双弓作用下弓网耦合系统的动态模拟分析:[硕士学位论文].天津:天津大学,2010
    [97]刘怡.接触网动应力研究:[硕士学位论文].成都:西南交通大学,2003
    [98]Achkire Y. Active tendon control of cable-stayed bridges:[Dissertation]. Belgium:Universit'e Libre de Bruxelles,1997
    [99]林晓娜.柔性悬挂接触网的静态找形分析:[硕士学位论文].天津:天津大学,2008
    [100]徐献阳.车辆排气系统的振动模态分析及优化:[硕士学位论文].上海:上海交通大学,2008
    [101]曹树森.电气化铁路接触网体系环境荷载下动力可靠性研究:[博士学位论文].成都:西南交通大学,2011
    [102]Stickland M T, Scanlon T J, Craighead I A, et al. An investigation into the mechanical damping characteristics of catenary contact wires and their effect on aerodynamic galloping instability. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2003,217(2):63-71
    [103]中华人民共和国铁道部.TB 10009-2005.铁路电力牵引供电设计规范.2005
    [104]邵天晓.架空送电线路的电线力学计算,北京:水利电力出版社,1987.
    [105]李荣帅.高速电气化铁路接触网风效应研究:[硕十学位论文].上海:同济大学,2009
    [106]Avila-Sanchez S, Meseguer J, Lopez-Garcia O. Turbulence intensity on catenary contact wires due to parapets placed on a double track bridge. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(10):504-511
    [107]马克瓦尔特.接触网,北京:中国铁路出版社,1986.
    [108]刘开国.荷载缓和体系的非线性分析.建筑钢结构进展,2008,9(6):39~41
    [109]张建明,林亚平,吴宏斌,等.独立成分分析的研究进展.系统仿真学报,2006,18(4):992-1001
    [110]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on,1999,10(3):626-634
    [111]杨福生,洪波.独立分量分析的原理与应用,北京:清华大学出版社有限公司,2006.
    [112]焦卫东.基于独立分量分析的旋转机械故障诊断方法研究:[博士学位论文].杭州:浙江大学,2003
    [113]徐小红,高隽,范之国.盲信号分离中信号源数目估计方法研究.合肥工业大学学报:自然科学版,2008,31(1):1-4
    [114]焦卫东,杨世锡,吴昭同.基于独立分量分析的噪声消除技术研究.浙江大学学报:工学版,2004,38(7):872-876
    [115]Matsuoka K. Minimal distortion principle for blind source separation. SICE 2002. Proceedings of the 41st SICE Annual Conference. IEEE,2002:2138-2143.
    [116]徐妮妮,侯正信.全相位半带滤波器及其应用.天津大学学报,2005,38(3):206-211
    [117]刘泽洪.直流输电线路覆冰与防护,北京:中国电力出版社,2012.
    [118]刘和云.架空导线覆冰防冰的理论与应用,北京:中国铁道出版社,2001.
    [119]Imai I. Studies on ice accretion. Researches on Snow and Ice,1953,3(1):35-44
    [120]Makkonen L. Modeling of ice accretion on wires. Journal of Applied Meteorology,1984(23): 929-939
    [121]Savadjiev K, Farzaneh M. Modeling of icing and ice shedding on overhead power lines based on statistical analysis of meteorological data. Power Delivery, IEEE Transactions on,2004,19(2): 715-721
    [122]徐青松,候炜,王孟龙.架空输电线路覆冰实时监测方案探讨.浙江电力,2007,26(3):9-12
    [123]黄新波,孙钦东,程荣贵,等.导线覆冰的力学分析与覆冰在线监测系统.电力系统自动化,2007,31(14):98~101
    [124]黄新波,孙钦东,丁建国.基于GSMSMS的输电线路覆冰在线监测系统.电力自动化设备,2008,28(5):72~76
    [125]孟遂民,康渭铧,杨踢,等.基于MATLAB的导线舞动仿真正交试验设计.南方电网技术,2012,5(5):65~68
    [126]李之光.相似与模化:理论及应用,北京:国防工业出版社,1982.
    [127]Souza AM L. The behavior of transmission lines under high winds:[Dissertation]. London, Ontario:The University of Western Ontario,1996
    [128]刘元会,常安定.按时间抽取的FFT矩阵形式的研究.纺织高校基础科学学报,2009,21(4):389-392
    [129]荣瑜,朱恩.一种高性能FFT蝶形运算单元的设计.东南大学学报:自然科学版,2007,37(4):565~568
    [130]刘大勇.基于索网找形的接触网吊弦长度计算方法研究:[硕士学位论文].成都:西南交通大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700