用户名: 密码: 验证码:
铁路轨道不平顺数据挖掘及其时间序列趋势预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路轨道状态的优劣直接决定列车运行是否安全。轨道的平顺性不仅是衡量轨道状态的重要指标,也是评价列车运行品质的基础。在轨道不平顺存在的情况下,轻则列车必须限速运行,重则会造成列车倾覆。因此,研究轨道不平顺变化的规律,掌握变化的趋势,防患于未然,无疑是铁路工务部门所迫切需要的。本文正是在这样的背景下,通过对轨道不平顺数据的研究和分析,挖掘轨道不平顺数据中隐含的规律,建立数学模型对未来趋势进行预测,最终为铁路工务各相关部门业务提供数据及状态变化模型上的支持,服务于铁路运输安全。
     在轨道不平顺数据分析研究阶段,论文首先系统地对轨道不平顺数据特点进行分析,针对数据质量存在的问题,提出基于数据挖掘思想,具体操作上采用聚类分析方法进行异常数据识别,提出基于趋势相似性的数据偏移校正算法、基于异常度的局部异常值识别及消噪算法,对数据进行预处理。其次,提出采用小波分解与重构的方法对轨道不平顺时间序列进行分解与重构,为轨道不平顺预测建模奠定数据基础。最后,由于轨道几何不平顺数据反映轨道状态变化的动态特征,是一种典型的时态数据,论文通过数据挖掘概念及算法研究,对轨道不平顺序列进行聚类分析,发现轨道不平顺序列模式特征。在具体研究中,论文对原始数据、标准差数据、标准差小波分解数据和标准差近似序列数据进行聚类的实例分析,挖掘轨道不平顺序列模式特征,发现并描述了数据变化的趋势。
     在轨道状态预测分析阶段,论文首先针对轨道状态变化的惯性特征,由于轨道状态具有记忆效应,轨道最新的检测状态与最近的上一次检测状态具有相似性,相邻时间检测状态具有相似趋势性。宏观上看,轨道状态变化在轨道整个生命周期内呈现非线性变化,但是在微观上,短时间内,如果进行频繁轨道检测,就会发现短相邻时间内轨道状态变化可以近似为线性特征。基于此假设,并结合轨道不平顺时间序列数据的非等时距特征,论文提出基于非等时距短期历史趋势的时间序列分段线性递推模型(PLRMSHT)。同时,为提高PLRMSHT模型的预测精度,对模型产生的残差项采用基于傅立叶三角变换的方法进行残差修正拟合,实例分析证明残差修正后的PLRMSHT具有较好的预测精度,模型取得了满意结果。其次,由于小波变换可以通过对时间(空间)频率的局部化分析和伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分。小波的这个特征能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。因此,论文提出基于小波分解-重构的思想对轨道不平顺时间序列进行细分,分别对小波分解得到的细节信号、近似信号寻找最佳拟合预测模型。具体研究中,针对经过残差修正的ARIMA预测模型比原始ARIMA预测模型具有更高的预测精度,但残差修正过程不仅增加了模型的计算量和复杂度而且也不能反映其变化的本质的不足,本文提出基于小波分解-重构的分段线性-ARMA递推模型(PL-ARMARWDR)。通过小波分解变换,低频近似序列更加平缓顺滑,趋势性更加明显,高频细节序列更加平稳。模型中,低频近似序列采用线性递推模型,高频细节序列采用ARMA模型。由于轨道状态变化在实际上并不呈现线性变化趋势,其变化趋势是非线性的,研究表明轨道不平顺变化更符合指数趋势变化。由于灰色模型是一种采用指数函数近似的模型,因此论文提出基于小波分解-重构的分段灰色-ARMA递推模型(PG-ARMARWDR)。在模型中,低频近似序列采用灰色递推模型,高频细节序列采用ARMA模型。由于神经网络模型作为一种重要的非线性建模方法有着广泛的应用,神经网络模型可以近似任何非线性过程,因此论文提出基于小波分解-重构的分段神经网络-ARMA递推模型(PANN-ARMARWDR)。在模型中,低频近似序列采用神经网络递推模型,高频细节序列采用ARMA模型。经过“分解—建模—重构”过程,所提出的模型实现了轨道不平顺状态趋势变化的精确预测。
     在本文结尾,论文通过实例对四种预测模型的预测精度进行分析,预测精度指标MSE和MAPE显示所提出模型都属于高精度预测,模型都取得了满意的结果,同时对模型的适用情况也进行比较和分析。
Track condition is directly related to the safe operation of trains. Track irregularity is not only an important indicator of track condition, but also the basis for measuring the quality of train operation. Where there is track irregularity, speed limit should be paid attention, and worst of all, overturning might occur. As a result, it is urgent for railway departments to study the law of track irregularity changes so as to master trends of track state changes and to take prevention measures. In this context, this doctoral dissertation analyses track irregularity data, explores the underlined rules of track irregularity, predicts future trends and ultimately, it provides support to relevant railway departments in models about data and track state changes, to ensure safety of railway transportation.
     During the track irregularity data analysis, this doctoral dissertation first analyzes the characteristics of track irregularity data systematically based on data mining, employs clustering method to recognize abnormal data, proposes data variation calibration algorithm based on trends similarity, and algorithm of partial abnormal data recognition and noise elimination based on abnormality, preprocesses data. Next, wavelet decomposition and reconstruction model is proposed, so as to lay the data base for modeling for track irregularity time series. Finally, since track irregularity data reflects the dynamic characteristics of track state changes, it is an important temporal data. This doctoral dissertation conducts clustering analysis on track irregularity sequence and discovers pattern features with the application of data mining and algorithms. In concrete research, it conducts case analysis of data clustering based on the original data, standard deviation data, and standard deviation data after wavelet decomposition, similar standard deviation sequence, and finally discovers the trend in data changes.
     During the track state prediction analysis, this doctoral dissertation first focuses on the inertia characteristics of the track state changes. Since track state has a memory effect, latest track state and the nearest previous state shares similarity, and the inspection state of the adjacent time points has a similar trend. From the macro perspective, the track state presents nonlinear changes throughout the whole life cycle of the track, but from the micro perspective, in a short time, track state changes at adjacent time will be close to linear features. Based on this assumption, combined with the non-isochronous features of track irregularity time series data, this paper proposes Piecewise Linear Recursive Model based on Short-term Historical Trends model (PLRMSHT). Also, to improve the prediction accuracy of PLRMSHT, residual correction is conducted based on Fourier delta transformation. Through case studies, models have achieved satisfactory results. Next, since wavelet transform can refine signal (function) in multiple aspects gradually through local analysis and stretching and panning on space (time) frequency, and ultimately realize time subdivision at high frequency points and frequency subdivision at low frequency points. This feature can adapt to signal analysis of time-frequency, and can focus on every detail of signal, and can divide the function into a series of simple basis functions. As a result, it is of significance both in theory and in practice. Therefore, based on wavelet decomposition-reconstruction, the thesis divides track irregularity time series, and finds the best fit forecast model to the details signal and the approximate signal of the wavelet decomposition. During concrete research, ARIMA forecast model after residual correction is of higher accuracy compared to the original ARIMA forecast model, but the correction itself increases the amount and complexity of computing, and can not reflect the inadequacy of changes. This thesis proposes Piecewise Linear-ARMA Recursive based on Wavelet Decomposition and Reconstruction model (PL-ARMARWDR). After wavelet decomposition and transformation, the low-frequency approximation sequence will be smoother, and its trend will be more obvious, and the high-frequency detail sequence will be more stable. In the model, the low-frequency approximation sequence uses linear recursive model and high-frequency detail sequence uses ARM A model. Since track status change is not a linear trend, in fact, the trend is nonlinear. Studies have shown that it more in line with exponential trends of track irregularity changes. Because the gray model is an exponential function approximation model, the thesis proposes Piecewise Gray-ARMA Recursive based on Wavelet Decomposition and Reconstruction model (PG-ARMARWDR). As an important non-linear modeling method, neural network model has been widely used. Because neural network model can be approximated by any non-linear process, so this thesis proposes Piecewise ANN-ARMA Recursive based on Wavelet Decomposition and Reconstruction model (PANN-ARMARWDR). In the model, the low-frequency approximation sequences uses recursive neural network model, and high-frequency detail sequence uses ARM A model. After the decomposition-modeling-recon structuring process, the proposed models have realized accurate prediction on trends of track irregularity state changes.
     In the final part of this doctoral dissertation, the accuracy of four prediction models are analyzed by examples, and MSE and MAPE are used as forecasting accuracy index and the results show that all models belong to high-precision prediction, and the proposed models have achieved satisfactory results. Also, the applicability of all models are also compared and analyzed.
引文
[1]http://news.china.com.cnytxt/2013-01/17/content_27712460.htm
    [2]夏学文.建立铁路轨道水平不平顺功率谱密度的时间序列方法,数理统计与应用概率,1995,4:55-61.
    [3]左言言,常庆斌,耿烽,杨建.轨道高低不平顺激励下的车体振动仿真,江苏大学学报(自然科学版),2011,6:647-651.
    [4]谢世浩,夏学文.时序分析在确立铁路轨道谱中若干问题的研究,应用概率统计,1992,8(3):324-330.
    [5]钱雪军.轨道不平顺的时域模拟法.铁道学报,2000,22(4):94-98.
    [6]刘寅华,李芾,黄运华.轨道不平顺数值模拟方法,交通运输工程学报,2006,6(1):29-33.
    [7]蒋海波,罗世辉,董仲美.Blaekman-Tukey法的轨道不平顺数值模拟,中国测试技术,2006,32(4):97-100.
    [8]王开云,翟婉明,蔡成标.左右轨道不平顺功率谱转换中心线功率谱的方法,交通运输工程学报,2002,2(3):27-29.
    [9]张洁,林建辉.轨道不平顺非均匀采样信号分析,振动与冲击,2011,30(2):134-137.
    [10]陈春俊,张洁,林建辉.轨道不平顺信号的鲁棒参数估计与谱分析,中国铁道科学,2005,26(3):73-76.
    [11]陈宪麦,王澜,杨凤春,柴雪松,吴旺青.用于铁路轨道不平顺预测的综合因子法,中国铁道科学,2006,27(6):27-31.
    [12]陈宪麦,王澜,陶夏新,崔高航,杨凤春,柴雪松,吴旺青.我国干线铁路轨道平顺性评判方法的研究,中国铁道科学,2008,29(4):21-27.
    [13]陈宪麦,王澜,陶夏新,崔高航.基于小波分析理论的轨道不平顺分析,铁道工程学报,2008(1):57-61.
    [14]陈宪麦,杨凤春,吴旺青,柴雪松.秦沈客运专线轨道谱评判方法的研究,铁道学报,2006,28(4):84-88.
    [15]陈宪麦,王澜,杨凤春.无碴轨道谱的初步分析,铁道建筑,2006(12):87-90.
    [16]杨文忠,练松良,刘扬.轨道不平顺功率谱拟合分析方法.同济大学学报(自然科学版),2006,34(3):363-367.
    [17]黄俊飞,练松良,宗德明,胡伟强.轨道随机不平顺与车辆动力响应的相 干分析,同济大学学报,2003,31(1):16-20.
    [18]何永春,王午生.铁路轨道高低不平顺的预测及其应用,上海铁道大学学报,1999,20(2):64-70.
    [19]高建敏,翟婉明,徐涌.铁路有砟轨道下沉及高低不平顺发展预测研究[学位论文],成都,西南交通大学,2008.
    [20]高建敏,翟婉明,徐涌,陈东生.基于概率分布的轨道不平顺发展统计预测,铁道科学与工程学报,2006,3(6):55-60.
    [21]李明华,李立林,何晓源.高速铁路轨道不平顺幅值控制研究,铁道工程学报,2009(9):26-30.
    [22]刘扬.轨道不平顺与车轨动力响应之问的关系分析,石家庄铁道学院学报(自然科学版),2009,22(1):33-37.
    [23]许玉德,吴纪才.利用线性预测模型分析轨道不平顺发展,石家庄铁道学院学报,2005,18(1):6-9.
    [24]许玉德,李海峰,周宇.铁路轨道高低不平顺的预测方法,同济大学学报(自然科学版),2003,31(3):291-295.
    [25]王建西,李海锋,许玉德.基于概率分布推移变化的铁路轨道几何状态评价与预测方法,中国铁道科学,2008,29(5):31-34.
    [26]隋国栋,李海锋,许玉德.轨道几何状态检测数据里程校正算法研究,交通信息与安全,2009,27(6):18-20.
    [27]姚湘静.基于轨道检测数据的上海地铁1号线状态评价,山西建筑,2010,36(29):287-288.
    [28]芮小平,刘仍奎,涂霞蔚,廖军洪,王敏.基于轨道检测数据的轨道状态评定方法研究,中国安全科学学报,2007,17(4):166-171.
    [29]芮小平,张彦敏.一种预测轨检车TQI值的等维递补方法,数学的实践与认识,2009,18:25-29.
    [30]戴国华,董宝田,李明辉,谢彬.铁路数据资源整合的分析与设计,铁路计算机应用,2009,18(11):7-10.
    [31]蔡国强,贾利民,吕晓艳,刘春煌.基于决策树的轨道交通安全评估方法及其应用,自然科学进展,2007,17(11):1538-1543.
    [32]叶茂瑞,莫善军,黄凯,梁栋.铁路工务安全信息集成方法研究,铁道运输与经济,2007,29(7):39-42.
    [33]于正水.基于云计算的铁路信息系统数据中心的研究,铁路计算机应用,2011,20(1):23-25.
    [34]Anders Johansson, Jens C.O. Nielsen. Rail corrugation growth-Influence of powered wheel sets with wheel tread irregularities, wear,2007,262(11): 1296-1307.
    [35]Anders Johansson. Out-of-round railway wheels-assessment of wheel tread irregularities in train traffic, Journal of Sound and Vibration,2006,293(3): 795-806.
    [36]Michael J.M.M. Steenbergen. Quantification of dynamic wheel-rail contact forces at short rail irregularities and application to measured rail welds, Journal of Sound and Vibration,2008,312(4):606-629.
    [37]C.J. Bowe, T.P. Mullarkey. Wheel-rail contact elements incorporating irregularities, Advances in Engineering Software,2005,36(11):827-837.
    [38]Semih Sezer, Ali Erdem Atalay. Dynamic modeling and fuzzy logic control of vibrations of a railway vehicle for different track irregularities, Simulation Modelling Practice and Theory,2011,19(9):1873-1894.
    [39]Per Gullers, Lars Andersson, Roger Lunde'n. High-frequency vertical wheel-rail contact forces—Field measurements and influence of track irregularities, Wear,2008,265(9):1472-1478.
    [40]Michal Majka, Michael Hartnett. Dynamic response of bridges to moving trains:A study on effects of random track irregularities and bridge skewness, Computers and Structures,2009,87(19):1233-1252.
    [41]Peter X.-K. Song,R. Keith Freeland,Atanu Biswas,Shulin Zhang.Statistical analysis of discrete-valued time series using categorical ARMA models, Computational Statistics& Data Analysis,2013,57(1):112-124.
    [42]O. Valenzuela, I. Rojas, F. Rojas, H. Pomares, L.J. Herrera, A. Guillen, L. Marquez, M. Pasadas. Hybridization of intelligent techniques and ARIMA models for time series prediction, Fuzzy Sets and Systems,2008,159(7): 821-845.
    [43]Mehdi Khashei, Mehdi Bijari, Gholam Ali Raissi Ardali. Improvement of Auto-Regressive Integrated Moving Average models using Fuzzy logic and Artificial Neural Networks (ANNs), Neurocomputing,2009,72(4):956-967.
    [44]S.D. Balkin, J.K. Ord. Automatic neural network modeling for univariate time series, International Journal of Forecasting,2000,16(4):509-515.
    [45]Y. Chen, B. Yang, J. Dong, A. Abraham, Time-series forecasting using flexible neural tree model, Information Sciences 2005,174 (3-4):219-235.
    [46]F. Giordano, M. La Rocca, C. Perna. Forecasting nonlinear time series with neural network sieve bootstrap, Computational Statistics and Data Analysis, 2007,51(8):3871-3884.
    [47]Y Chen, B Yang, J Dong. Time series prediction using a local linear wavelet neural network. Neurocomputing,2006,69(4):449-465.
    [48]X Deng, X Wang. Incremental learning of dynamic fuzzy neural networks for accurate system modeling, Fuzzy Sets Syst,2009,160(7):972-987.
    [49]Wim Wiegerinck, Miroslav Mirchev, Willem Burgers, Frank Selten. Supermodeling Dynamics and Learning Mechanisms, Understanding Complex Systems,2013:227-255.
    [50]Ratnadip Adhikari, R. K. Agrawal.A Homogeneous Ensemble of Artificial Neural Networks for Time Series Forecasting, International Journal of Computer Applications,2011,32 (7):1-8.
    [51]D Chen, W Han.Prediction of multivariate chaotic time series via radial basis function neural network, Complexity,2013,18(4):55-66.
    [52]Carlos H. Fajardo Toro, Silvana Gomez Meire, Juan F. Galvez, Florentino Fdez-Riverola. A hybrid artificial intelligence model for river flow forecasting, Applied Soft Computing,2013,13(8):3449-3458.
    [53]Pradipta Biswas, Gokcen Aslan Aydemir, Pat Langdon, Simon Godsill. Intent Recognition Using Neural Networks and Kalman Filters, Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data Lecture Notes in Computer Science,2013,7947:112-123.
    [54]E Pisoni, M Farina, C Carnevale, L Piroddi. Forecasting peak air pollution levels using NARX models. Engineering Applications of Artificial Intelligence, 2009,22(4):593-602.
    [55]V.L. Berardi, GP. Zhang. An empirical investigation of bias and variance in time series forecasting:modeling considerations and error evaluation, IEEE Transactions on Neural Networks,2003,14 (3):668-679.
    [56]S.D. Balkin, J.K. Ord. Automatic neural network modeling for univariate time series, International Journal of Forecasting,2000,16(4):509-515.
    [57]K. Nam, T. Schaefer. Forecasting international airline passenger traffic using neural networks, Logistics and Transportation,1995,31 (3):239-251.
    [58]S. Kang. an Investigation of the Use of Feed forward Neural Networks for Forecasting, Ph.D. Thesis, Kent State University,1991.
    [59]Yanling SHAO, Yubin GAO, and Zhongshan LI.The m-competition indices of symmetric primitive digraphs with loops, Electronic Journal of Linear Algebra, 2012,23:457-472.
    [60]ACB Mancuso, L Werner. Review of combining forecasts approaches. Independent Journal of Management& Production,2013,4(1):248-277.
    [61]Wilpen L. Gorr, Matthew J.Schneider.Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis, International Journal of Forecasting,2013,29(2):274-281.
    [62]Zhi-Jun Fu,Wen-Fang Xie,Wei-Dong Luo.Robust on-line nonlinear systems identification using multilayer dynamic neural networks with two-time scales,Neurocomputing,2013,113(3):16-26.
    [63]I.Kaastra, M.Boyd. Designing a neural network for forecasting financial and economic timeseries, Neurocomputing,1996,10(3):215-236.
    [64]Y Bodyanskiy, S Popov. Neural network approach to forecasting of quasi periodic financial time series, Eur.J.Oper.Res,2006,175(3):1357-1366.
    [65]C Gaganis, F Pasiouras, M Doumpos. Probabilistic neural networks for the identification of qualified audit opinions, Expert Systems with Applications, 2007,32(1):114-124.
    [66]Sun, G, Donga, X.,& Xu, G Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier, Neurocomputing,2006,69(4):387-402.
    [67]B. Karthikeyan, S. Gopal, M. Vimala. Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs, Expert Systems with Applications,2005,29(4):953-963.
    [68]C X Xue, X Y Zhang, M C Liu, Z D Hu, B T Fan. Study of probabilistic neural networks to classify the active compounds in medicinal plants, Journal of Pharmaceutical and Biomedical Analysis,2005,38(3):497-507.
    [69]AS Chen, MT Leung, H Daouk. Application of neural networks to an emerging financial market:Forecasting and trading the Taiwan Stock Index, Computers& Operations Research,2003,30(6):901-923.
    [70]DA Axinte. Approach into the use of probabilistic neural networks for automated classification of tool malfunctions in broaching. International Journal of Machine Tools& Manufacture,2006,46(12):1445-1448.
    [71]M Hajmeer, I Basheer. A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data, Journal of Microbiological Methods,2002,51(2):217-226.
    [72]CM Tam, TKL Tong, TCT Lau, KK Chan. Diagnosis of prestressed concrete pile defects using probabilistic neural networks. Engineering Structures,2004, 26(8):1155-1162.
    [73]Shan YC, Zhao RH, Xu GW, Liebich HM, Zhang YK. Application of probabilistic neural network in the clinical diagnosis of cancers based on clinical chemistry data. Analytica Chimica Acta,2002,471(1):77-86.
    [74]FA Al-Omari, O Al-Jarrah. Handwritten Indian numerals recognition system using probabilistic neural networks. Advanced Engineering Informatics,2004, 18(1):9-16.
    [75]D Kim, DH Kim, S Chang. Application of probabilistic neural network to design breakwater armor blocks. Ocean Engineering,2008,35:294-300.
    [76]D Srinivasan, X Jin, RL Cheu. Adaptive neural network models for automatic incident detection on freeways, Neurocomputing,2005,64:473-496.
    [77]L Shang, DS Huang, JX Du, CH Zheng. Palm print recognition using fast ICAalgorithm and radial basis probabilistic neural network, Neurocomputing, 2006,69:1782-1786.
    [78]Mehdi Khashei, Mehdi Bijari. A new class of hybrid models for time series forecasting, Expert Systems with Applications,2012,39(4):4344-4357.
    [79]CC Nwobi-Okoye, IE Umeonyiagu, CG Nwankwo.predicting the compressive strength of concretes made with granite from eastern nigeria using artificial neural networks,Nigerian Journal of Technology,2013,32(1):13-21.
    [80]Callen JL, Kwan CCY, YIP PCY, Yuan YF. Neural network forecasting of quarterly accounting earnings, International Journal of Forecasting 1996,4(12): 475-82.
    [81]M. Khashei. Forecasting the Isfahan Steel Company production price in Tehran Metals Exchange using artificial neural networks (ANNs), Master of Science Thesis, Isfahan University of Technology,2005.
    [82]Mehdi Khashei, Seyed Reza Hejazi, Mehdi Bijari. A new hybrid artificial neural networks and fuzzy regression model for time series forecasting, Fuzzy Sets and Systems,2008,159(7):769-786.
    [83]Der-Chiang, Che-Jung Chang, Chien-Chih Chen, Wen-Chih Chen. Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case, Omega,2012,40(6):767-773.
    [84]N Xiong. Evolutionary learning of rule premises for fuzzy modeling, IntJ.Syst. Sci,2001,32(9):1109-1118.
    [85]Paul S, Kumar S. Subsethood-product fuzzy neural inference system (SuPFuNIS), IEEE Trans.Neural Networks,2002,13(3):578-599.
    [86]Rong H J, Sundararajan N, Huang G B, et al. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst.2006,157(9):1260-1275.
    [87]Herrera L J, Pomares H, Rojas I, et al. Multigrid-based fuzzy systems for time series prediction:CATS competition. Neurocomputing 2007,70(13): 2410-2425.
    [88]Sugiarto I, Natarajan S. Parameter estimation using least square method for MIMO Takagi-Sugeno neuro-fozzy in time series forecasting, J.Tek.Elektro, 2007,7 (2):82-87.
    [89]Zounemat-Kermani M, Teshnehlab M. Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl.Soft Comput.2008,8(2): 928-936.
    [90]S.M. Chen, C.C. Hsu. A new method to forecast enrollments using fuzzy time series, Appl. Sci. Eng.2004,2(3):234-244.
    [91]C.H. Leon, A. Liu, W.S. Chen. Pattern discovery of fuzzy time series for financial prediction, IEEE Trans. Knowl. Data Eng,2006,18(5):613-625.
    [92]S.M. Chen, J.R. Hwang, Temperature prediction using fuzzy time series, IEEE Trans. Systems Man Cybernet B,2000,30 (2):263-275.
    [93]M. Versaci, F.C. Morabito, Fuzzy time series approach for disruption prediction in Tokamak reactors, IEEE Trans. Magnetics,2003,39(3): 1503-1506.
    [94]Erol Egrioglu,Cagdas Hakan Aladag,Ufuk Yolcu.Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks, Expert Systems with Applications,2013,40(3):854-857.
    [95]K. Huarng. Heuristic models of fuzzy time series for forecasting, Fuzzy Sets and Systems,2001,123(3):369-386.
    [96]S.M. Chen. Forecasting enrollments based on high-order fuzzy time series, Cybernet Systems,2002,33(1):1-16.
    [97]K. Huarng, H.-K.Yu, an N-th order heuristic fuzzy time series model for TAIEX forecasting, Internat. J. Fuzzy Systems,2003,5 (4):247-253.
    [98]S.M. Chen, N.Y. Chung. Forecasting enrollments using high-order fuzzy time series and genetic algorithms, Internat. J. Intell. Syst,2006,21(5):485-501.
    [99]Shyi-Ming Chen,Pei-Yuan Kao.TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines, Information Sciences,2013,247(20):62-71.
    [100]K. Huarng. Effective lengths of intervals to improve forecasting in fuzzy time series, Fuzzy Sets and Systems,2001,123(3):387-394.
    [101]Veronique Genre, Geoff Kenny, Aidan Meyler, Allan Timmermann. Combining expert forecasts:Can anything beat the simple average? International Journal of Forecasting,2013,29(1):108-121.
    [102]J.S. Armstrong, Combining forecasts, in:J. Scott Armstrong (Ed.), Principles of Forecasting:A Handbook for Researchers and Practitioners, Kluwer Academic Publishers, New York,2001.
    [103]F. Tseng, G. Tzeng, H.C. Yu, B.J.C. Yuana, Fuzzy ARIMA model for forecasting the foreign exchange market, Fuzzy Sets and Systems,2001,118: 9-19.
    [104]K. Huarng, T.H.K.Yu. The application of neural networks to forecast fuzzy time series, Phys. A,2006,363(2):481-491.
    [105]H.K.Yu. Weighted fuzzy time-series models for TAIEX forecasting, Phys. A, 2005,349(3):609-624.
    [106]W.Y. Goh, C.P. Lim, K.K. Peh. Predicting drug dissolution profiles with an ensemble of boosted neural networks:a time series approach, IEEE Transactions on Neural Networks 2003,14 (2):459-463.
    [107]M.C. Medeiros, A. Veiga. A hybrid linear-neural model for time series forecasting, IEEE Transaction on Neural Networks,2000,11(6):1402-1412.
    [108]G Armano, M. Marchesi, A. Murru. A hybrid genetic-neural architecture for stock indexes forecasting, Information Sciences,2005,170 (1):3-33.
    [109]G.P. Zhang. Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing,2003,50:159-175.
    [110]F.M.Tseng, H.C.Yu, GH.Tzeng. Combining neural network model with seasonal time series ARIMA model, Technol.Forecast.Soc.Change,2002, 72(69):71-87.
    [111]D.S.K.Karunasinghe, S.Y.Liong. Chaotic time series prediction with a global model:artificial neural network, Journal of Hydrology,2006,323(1):92-105.
    [112]M.J.Aitkenhead, A.J.S.McDonald, J.J.Dawson, GCouper, R.P.Smart, M.Billett, D. Hope, S.Palmer. A novel method for training neural networks for time-series prediction in environmental systems, Ecol.Model.2003,162(1): 87-95.
    [113]S.BuHamra, N.Smaoui, M.Gabr. The Box-Jenkins analysis and neural networks:Prediction and time series modeling, Appl.Math.Model.2003, 27(10):805-815.
    [114]H.Niska, T.Hiltunen, A.Karppinen, J.Ruuskanen, M.Kolehmainen. Evolving the neural network model forforecasting air pollution time series, Eng.Appl. Artif. Intell.2004,17(2):159-167.
    [115]G.P.Zhang, M.Qi. Neural network forecasting for seasonal and trend time series, Eur.J.Operat.Res.2005,160(2):501-514.
    [116]K.J.Kim. Financial time series forecasting using support vector machines, Neurocomputing,2003,55(1):307-319.
    [117]Zhang, G P. Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing,2003,50:159-175.
    [118]Ince, H.,& Trafalis, T. A hybrid model for exchange rate prediction. Decision Support Systems,2006,42(2):1054-1062.
    [119]Chang, P., Liu, C.,& Wang, Y. A hybrid model by clustering and evolving fuzzy rules for sales decision supports in printed circuit board industry. Decision Support Systems,2006,42(3):1254-1269.
    [120]Huarng, K.,& Yu, T. H. K. The application of neural networks to forecast fuzzy time series. Physica A,2006,363(2):481-491.
    [121]Pai, C.S.Lin. A hybrid ARIMA and support vector machines model in stock price forecasting, Omega,2005,33(6):497-505.
    [122]K.Y.Chen, C.H.Wang. A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan, Expert Systems with Applications.2007,32(1):254-264.
    [123]Z.J.Zhou, C.H.Hu. An effective hybrid approach based on grey and ARMA for forecasting gyrodrift, Chaos, Solitons& Fractals,2008,35(3):525-529.
    [124]L.Yu, S.Wang, K.K.Lai. A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates, Comput.Oper.Res. 2005,32(10):2523-2541.
    [125]H.Kim, K.Shin. A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets, Appl.Soft Comput. 2007,7(2):569-576.
    [126]S.Pellegrini, E.Ruiz, A.Espasa. Prediction intervals in conditionally heteroscedastic time series with stochastic components, International Institute of Forecasters,2011,27(2):308-319.
    [127]H.K.Cigizoglu, M. Alp. Generalized regression neural network in modeling river sediment yield, Advances in Engineering Software,2006,37(2):63-68.
    [128]M.Shiblee, P.K.Kalra, B.Chandra. Time series prediction with multilayer perceptron (MLP):a new generalized error based approach, Lecture Notes in Computer Science,2009,5507:37-44.
    [129]D.N.Kumar, K.S.Raju, T.Sathish. River flow forecasting using recurrent neural networks, Water Resources Management,2004,18(2):143-161.
    [130]X.Yu, J.Zhang. A comparison of Hybrid ARMA-Elman models with single models for forecasting interest rates, Proceedings of the Second International Symposium on Intelligent Information Technology Application,2008, 2:985-989.
    [131]V.Barrile, M.Cacciola, S.D'Amico, A.Greco, F.C.Morabito, F.Parrillo. Radial basis function neural networks to foresee aftershocks in seismic sequences related to large earthquakes, Lecture Notes in Computer Science,2006,4233: 909-916.
    [132]J.P.Pabico, E.R.E.Mojica, J.R.L.Micor. Design of homogenous ensemble for splice-site identification in human sequences, in:Proceedings of the Tenth International Conference on Molecular System Biology, University of the Philippines Diliman,25-28February,2008:60-62.
    [133]Z.Shen, F.Kong. Optimizing weights by genetic algorithm for neural network ensemble, Lecture Notes in Computer Science,2004,3173:323-331.
    [134]C.Tsai, Y.Lin, D.C.Yen, Y.Chen. Predicting stock returns by classifier ensembles, Applied Soft Computing,2011,11(2):2452-2459.
    [135]Tsoumakas G, Angelis L, Vlahavas I. Selective fusion of heterogeneous classifiers. Intelligent Data Analysis,2005,9(6):511-525.
    [136]Z.Zhang, C.Shi, S.Zhang, Z.Shi. Stock time series forecasting using support vector machines employing analyst recommendations, Lecture Notes in Computer Science,2006,3973:452-457.
    [137]徐雪琪,李金昌.基于统计视角的数据挖掘研究[学位论文],杭州,浙江 工商大学,2007.
    [138]尹健华,廖继旺,刘云芳.基于小波变换的噪声消除算法研究,现代电子技术,2007,30(15):144-146.
    [139]Ingrid Daubechies. Ten Lectures on Wavelets.Society for Industrial and Applied Mathematics,1992.
    [140]Amara Graps. An introduction to wavelets. IEEE Computational Science and Engineering,1995,2(2):1-18.
    [141]Tak-chung Fu. A review on time series data mining, Engineering Applications of Artificial Intelligence,2011,24(1):164-181.
    [142]David J. Hand. Principles of Data Mining, Drug Safety,2007,30(7):621-622.
    [143]吴学雁,黄道平.金融时间序列模式挖掘方法的研究[学位论文],广州,华南理工大学,2010.
    [144]杜奕,卢德唐.时间序列挖掘相关算法研究及应用[学位论文],合肥,中国科学技术大学,2007.
    [145]Berndt D., Clifford J.Using dynamic time warping to find Patterns in time series.AAAI-94 workshoP on Knowledge Discovery in Databases. AAAI Press, 1994:229-248.
    [146]Pavlidis, X, Horowitz, S., Segmentation of Plane Curves, IEEE Transactions on Computers, Vol.C-23, No.8August,1974.
    [147]王达,荣冈.时间序列数据挖掘研究与应用[学位论文],杭州,浙江大学,2004.
    [148]Keogh E, et al. An online algorithm for segmenting time series. Proceedings of the IEEE International Conference on Data Mining.2001:289-296.
    [149]E.Keogh, K.Chakrabarti, M.Pazzani, P.Mehrotra. Dimensionality reduction for fast similarity search in large time series databases, Journal of knowledge and information systems,2001,3(3):263-286.
    [150]J.Lin, E.Keogh, S.Lonardi, J.P.Lanlford, D.M, Nystrom. A symbolic representation of time series, with implications for streaming algorithms, Proc of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery,2003:2-11.
    [151]E.Keogh,K.Chakrabarti,M.Pazzani.Locally adaptive dimensionality reduction for indexing large time series databases, Proceedings of ACM SIGMOD Conference on Management of Data,Santa Barbara,USA,2001.ACM Press,2001.151-162
    [152]李爱国,覃征.大规模时间序列数据库降维及相似搜索,计算机学报,2005,28(9):1467-1474.
    [153]黄超,朱扬勇.基于回归系数的时间序列维约简与相似性查找,模式识别与人工智能,2006,19(1):52-57.
    [154]黄超,朱扬勇.基于特征分析的金融时间序列挖掘若干关键问题研究[学位论文],上海,复旦大学,2005.
    [155]Lin J, Keogh E, Lonardi S, et al. A symbolic resentation of time series,with implications for streaming algorithms.Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Diseovery. Sandiego, ACM Press,2003:2-11.
    [156]Christos F M, Ranganathan, Manolopoulos Y. Fast subsequence matching in time-series databases. Proceedings of ACM SIGMOD.1994:419-429.
    [157]Agrawal R.Faloutsos C.Swami A.Emcient similarity search in sequence databases. Proceedings of the 4th International Conference on Foundations ofData Organization and Algorithms.1993:69-84.
    [158]Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases, Proceedingsofthe 4th International Conference of Foundations of Data Organization and Algorithms (FODO), Chicago, Illinois,1993, Springer Verlag:69-84.
    [159]Rafiei D.Mendelzon.Efficient retrieval of similar time sequences using DFT, Proceedings of the 5th International Conference on Foundations of Data Organizations and Algorithms, Kobe,1998:9-25.
    [160]Chan K.Fu W. Efficient time series matching by wavelets.Proceedings of the 15th IEEE International Conference on Data Engineering,1999.
    [161]Chart K A, W Fu. Efficient time series matching by wavelets,Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney,1999: 126-133.
    [162]Wu Y L, Agrawal D, El Abbadi A. A comparison of DFT and DWT based similarity search in time series databases. Proceedings of the Ninth International Conference on Information Knowledge Management CIKN 2000, 2000.
    [163]Keogh E. Data mining and machine learning in time series database, Proc of the 5th Industrial Conference on Data Mining (ICDM).Leipzig, [Sn],2005.
    [164]崔振,任亚洲,王瑞.基于DCT的时序数据相似性搜索,计算机应用, 2007,27(5):1232-1234.
    [165]Agrawal R.et al.Fast Similarity Search in the Presence of Noise, Scaling and Translation in Time Series Databases. Proceedings of the 21th International Conference on VLDB.1995:490-501.
    [166]E.Keogh, S.Lonardi, A.C.Ratanamahatana.Towards Parameter-Free Data Mining.in:S.Evangelos, J.Han, U.M.Fayyad eds., Proceedings of the 10th ACM Knowledge Discovery in Database (KDD), Seattle, WA.USA.2004. ACM Press,2004:206-215.
    [167]J.Lin, E.Keogh, S.Londardi, et al. A Symbolic Representation of Time Series, with Implications for Streaming Algorithms, in:J.Z.Mohammed, A.C.Charu eds., Proceedings of the 8th ACM SIGMOD workshop on Research(DMKD), San Diego,CA,USA.2003.ACM Press,2003:55-68.
    [168]C.S.Perng, H.Wang, S.Zhang, et al. Landmark:A new model for similarity-based pattern querying in time series database. In:D.C.Young, ed., Proceedings of the 16th International Conference on Data Engineering (ICDE). San Diego, USA,2000.IEEE Computer Society Press,2000:33-42.
    [169]K.B.Pratt, E.Fink.Search for Patterns in Compressed Time Series.in: International Journal of Image and Graphics,2001,2(1):89-106.
    [170]A.L.Olivera, JP.M.Silva.Efficient algorithms for the inference of minimum size DFAs.Machine Learning,2001,44(7):93-119.
    [171]Xi Y. comparison of option pricing between arma-garch and garch-m models (Thesis format:Monograph) [Dissertation]. The University of Western Ontario, 2013.
    [172]魏歌.工作流互操作问题元模型研究,计算技术与自动化,2005,24(4):90-92.
    [173]潘定,沈钧毅.时态数据挖掘的相似性发现技术,软件学报,2007,18(2):246-258.
    [174]Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. In:David BL, ed. Proc. of the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, FODO'93. Chicago:Springer-Verlag,1993: 69-84.
    [175]J.R.quinlan. Induction of decision trees, Machine learning,1986:1:81-106.
    [176]张荣明,章云.时序数据挖掘中的相似性和趋势预测研究[学位论文],广州,广东工业大学,2009.
    [177]CJ Perry, AB Barron. Neural mechanisms of reward in insects, Annual review of entomology,2013,58,543-562.
    [178]Su Y, Huang Y, Zhou D. twi-clarans algorithm based on grid structure, Jisuanji Yingyong yu Ruanjian,2013,30(3):287-290.
    [179]姜园,张朝阳,仇佩亮,周东方.用于数据挖掘的聚类算法,电子与信息学报,2005,27(4):655-662.
    [180]T.Zhang, R.Ramarkrishnan, M.Livny. BIRCH:An efficient data clustering method for very large databases.Proc.of ACM SIGMOD, Montreal Canada, June,1996:103-114.
    [181]S.Guha,R.Rastogi,K.Shim.CURE:An efficient clustering algorithm for large databases,Proc.of ACM SIGMOD,Seattle,WA,1998:73-84.
    [182]G.Karypis, E.H.Han, V.Kumar. CHAMELEON:a hierarchical clustering algorithm using dynamic modeling.COMPUTER,1999,32:68-75.
    [183]Lotfi F H, Jahanshahloo G R, Givehchi S, et al. Using DEA-neural network approach to solve binary classification problems. Journal of Data Envelopment Analysis and Decision Science,2013,2013:1-12.
    [184]Karpenka N V, Feroz F, Hobson M P. A simple and robust method for automated photometric classification of supernovae using neural networks. Monthly Notices of the Royal Astronomical Society,2013,429(2):1278-1285.
    [185]Karpenka N V, Feroz F, Hobson M P. A simple and robust method for automated photometric classification of supernovae using neural networks. Monthly Notices of the Royal Astronomical Society,2013,429(2):1278-1285.
    [186]Mallot H A. Artificial Neural Networks, Computational Neuroscience, Springer International Publishing,2013:83-112.
    [187]Gupta N. Artificial Neural Network, Network and Complex Systems,2013, 3(1):24-28.
    [188]Kasiviswanathan K S, Sudheer K P. Quantification of the predictive uncertainty of artificial neural network based river flow forecast models, Stochastic Environmental Research and Risk Assessment,2013,27(1): 137-146.
    [189]Avanaki M, Laissue P P, Eom T J, et al. Speckle reduction using an artificial neural network algorithm, Applied optics,2013,52(21):5050-5057.
    [190]Hashimoto J, Bai J, Kubo A, et al. Simultaneous dual-isotope imaging based on an artificial neural network for evaluating myocardial perfusion and fatty acid metabolism. Journal of Nuclear Cardiology,2013:1-10.
    [191]Pascale S, Parisi S, Mancini A, et al. Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy),Computational Science and Its Applications-ICCSA 2013. Springer Berlin Heidelberg,2013:473-488.
    [192]Ming-Tao W, Yong Y. The Research on Stock Price Forecast Model Based on Data Mining of BP Neural Networks,Intelligent System Design and Engineering Applications (ISDEA),2013 Third International Conference on. IEEE,2013:1526-1529.
    [193]Carlucci D, Renna P, Schiuma G. Evaluating service quality dimensions as antecedents to outpatient satisfaction using back propagation neural network. Health care management science,2013,16(1):37-44.
    [194]Buscema M. Supervised Artificial Neural Networks:Backpropagation Neural Networks, Intelligent Data Mining in Law Enforcement Analytics. Springer Netherlands,2013:119-135.
    [195]苏博,刘鲁,杨方廷.基于灰色关联分析的神经网络模型,系统工程理论与实践,2008,9:98-103.
    [196]申慧,刘知贵,李春菊.基于BP神经网络的交通流量预测设计,西南科技大学学报,2008,23(2):72-75,87.
    [197]陈兴权,王解先,谷川.基于主成分分析的BP神经网络在形变预测中的应用,大地测量与地球动力学,2008,28(3):72-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700