用户名: 密码: 验证码:
气吸振动盘式精密排种装置理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密排种装置是实现精密播种作业的关键设备,其性能优劣直接关系到作物生产的产量和品质。目前,超级稻穴盘育苗精密排种装置还处于探索研究阶段,现有的水稻排种装置大都属机械式,伤种较严重,且每穴播种达3-5粒,难以满足超级稻种植对播种技术的农艺要求(2±1粒/穴,低伤种率),因此,急需开展超级稻穴盘育苗精密排种装置的理论与试验研究。本文以设计的新型气吸振动盘式精密排种装置为研究对象,通过振动理论、计算流体动力学、离散元法、机构学、实验优化等理论,并结合先进的计算机仿真技术深入研究播种过程中排种装置机构运动、振动激励和气力对超级稻种子的作用机理及种群的运动规律、连续播种过程最佳吸种效果的参数组合,提出了精密播种理论,主要研究工作包括:
     (1)采用专业测量仪器对三个品种超级稻芽种基础物理特性参数进行测试和分析,得到芽种的三轴几何尺寸分布概率、千粒重、密度、摩擦系数、休止角、恢复系数和力-位移变化关系,为离散元仿真和排种装置吸种部件设计提供依据。
     (2)运用FLUENT对排种装置气流场进行研究:①分析吸种盘气流场分布规律,得出影响气流场的主要因素为吸孔孔径、真空负压值,得到均匀稳定流场的最佳结构及工作参数;②分析气流场中种子颗粒受力影响因素,得出其主次顺序为种子与吸孔的距离、种子姿态、真空负压值、吸孔孔径;建立种子受力数学模型,分析得出:真空负压值与孔径应合理匹配,小孔径需较大的真空负压值,高度方向的种子最容易被吸附;真空负压值为3~5kpa范围内,吸孔孔径为1.5mm~2.0mm时,吸孔吸附距离范围为0.34mm~1.90mm;③对吸种盘正压气流场进行模拟,得出流量对吸种盘正压气流场影响大,随着流量增加,吸孔口气流流速急剧增大,种子受到气流吹力增大,内板厚度对正压气流场分布和流量几乎无影响;④进行气流场流量测定及种子颗粒吸附试验,试验结果与FLUENT模拟值基本吻合,表明数值模拟结果的正确性。
     (3)进行排种装置的机构运动分析:①采用ADAMS对振动种盘机构运动进行分析,得到机构动力源的变化规律:随着频率和振幅的增大,最大驱动扭矩逐渐增大;②基于机构学理论,研究符合水平调节要求的并联机构,对一平移两转动并联机构进行型综合,设计水平调节机构,获得机构位置关系和精度模型;③建立携种过程种子颗粒受力数学模型,推导带动吸种盘运动的机械手动力学特性要求。随着负压值的增大,机械手临界加速度增加。长度方向吸附的种子最容易发生掉落,机械手设计时应满足长度方向不发生掉落的条件;④建立种子颗粒与吸种盘的碰撞运动数学模型,得出种子颗粒不被碰离吸种盘面板的弹回临界速度与负压值的关系。随着负压值增大,种子颗粒弹回临界速度增加。长度方向碰撞的种子最容易发生弹回掉落,当碰撞弹回速度大于临界弹回速度时,种子将脱离气流场约束并弹离吸孔。
     (4)基于离散元理论,研究振动种盘内种群运动,得出:①单颗粒种子运动具有波动性,受种群颗粒间约束力的相互作用,种群的运动呈规律性变化;②随着振动种盘振动频率和振幅的增加,种群竖直方向平均位移、平均速度和颗粒受力逐渐增大,种群抛掷运动的激烈程度增加,相对空间分布密度逐渐变小,增大频率和振幅能有效增大种群抛掷高度。单层种群抛掷高度、颗粒平均法向力和平均切向力大于其他种层厚度种群,其他种层厚度种群的竖直方向平均位移和平均速度、颗粒间平均受力及种群空间离散程度受种层厚度的影响较小。种子颗粒受到的作用力最大值小于0.03N,得出振动种盘的运动对种子损伤极小;③分析连续播种过程振动种盘内种子逐渐减少的变质量系统种层厚度与振动种盘振动参数的关系,建立排种装置工作参数与吸种距离(吸种盘面板与种层表面之间距离)之间的数学模型。得出影响种群抛掷高度的因素主次顺序为:振动频率、振幅、种层厚度,振动频率与振幅应合理匹配;仿真模拟倾斜状态振动种盘内种群运动,振动种盘倾角越大时种群运动均匀性越差,倾角越小对振动种群空间分布均匀性越有利;④基于CFD-DEM耦合理论,应用FLUENT-EDEM耦合方法仿真模拟了排种装置吸种过程,得出了参数变化规律。
     (5)研制一种新型气吸振动盘式精密排种装置试验台,并开展台架试验。①进行单因素试验和正交试验,着重分析真空负压值、吸孔孔径、振动种盘振动频率、振幅、吸种距离等因素对播种性能指标的影响,得出影响合格率的因素主次顺序为:吸种距离、振动频率、振幅、真空负压值、吸孔孔径;影响重播率的因素主次顺序为:真空负压值、吸孔孔径、吸种距离、振动频率、振幅;影响空穴率的因素主次顺序为:吸种距离、真空负压值、吸孔孔径、振动频率、振幅;吸种距离和频率对播种合格率有显著影响,真空负压值和吸孔孔径对重播率有显著的影响,吸种距离和负压真空值对空穴率有显著影响。②建立排种装置工作参数与播种性能指标之间的数学模型,进行遗传算法的多目标优化,得到最优解:真空负压值3.68kPa,吸孔孔径1.84mm,振动频率10.90Hz,振幅4.09mm,吸种距离3.92mm,并进行试验验证。③对不同品种超级稻进行播种试验,证明排种装置对不同品种超级稻芽种具有较好适应性。采用排种装置对芽种进行播种育苗试验,证明排种装置不损芽。通过对播种后的穴盘进行育苗后发现,该排种装置能满足超级稻种植的育苗要求。试验结果与理论分析相一致,为精密排种装置的设计提供理论依据。
Seeding device is the key equipment to precision seeding, the quality of seeding is related to high quality and high yield directly. Presently, the seeding device of super rice is still at the exploratory stage, the seeding device of rice used wildly are mechanical type, which cause a more serious seeds injury, only meet seeding3-5seeds per hole,and difficultly to meet the super rice planting on seeding agronomic requirements(2±1seeds per hole, little seeds injury). Therefore, study on theory of super rice plug seedling precision seeding device is become a more urgently needed. The research takes new designed vacuum-vibration tray precision seeding device as object, through vibration theory, computational fluid dynamics, discrete element method, mechanism, experimental optimization theory, deeply study mechanism motion, the law of seed group vibration excitation and pneumatic strength to super rice particle in seeding process, combined with advanced computer simulation technology, parameter combination in the continuous seeding process of optimal suction seeds effect, put forward to precision seeding theory, the major research work as follows:
     (1) Make measurement and analysis three types of super rice sprout basic physical parameters change by professional measurement instruments:get three-axis geometry size distribution probability, thousand-grain weight, density, friction coefficient, repose angle, the recovery restitution and force-displacement changing process of super rice sprout. Provided the basis for the discrete element simulation and suction component designing of seeding device.
     (2) Study flow field of seeding device by FLUENT:①Analysis flow field distribution law of suction plate, get main factors which affecting flow field are suction hole's aperture, vacuum negative pressure value, obtain the optimal structure and working parameters of the uniform stability flow field.②Analysis influence factors of seed particle force in flow field, the primary-secondary order is:the distance seed and suction hole, seed attitude, vacuum negative pressure value, suction hole's aperture; set up seed force mathematical model, and then get:vacuum negative pressure value and suction hole's aperture should be reasonable matching, small aperture need larger vacuum negative pressure, height direction of seed is most easily adsorbed; vacuum negative pressure value is in the range of3-5kPa, when suction hole's aperture is1.5mm~2.0mm, suction pore distance range is from0.34mm to1.90mm.③Simulate the suction plate of air flow field, get flow effect to the suction plate air flow, with increasing of flow, with the seed force increasing by air blowing,suction orifice flow velocity increases rapidly, effect of inner plate thickness on the positive pressure air flow distribution and flow is little.④Test flow of field flow and seed particles adsorption, test results and FLUENT simulation results are in good agreement, which shows that the correctness of numerical simulation results.
     (3) Carry out mechanism kinematic analysis of seeding device.①Study on vibration plate motion by ADAMS, get the change of mechanism's power:with the increasing of frequency and amplitude, maximum driving torque increases.②Based on mechanism theory of parallel mechanism, study parallel mechanism with level adjustment requirements, carry out type synthesis of a translation two rotation parallel mechanism, design a horizontal adjusting mechanism, get the relationship between the position and the accuracy model.③Analysis seed particle force and build the seed particle force model, get the dynamic characteristics of suction disc movement requirements. With the increasing of pressure, the critical acceleration of manipulator increases. Seed most easily falling at the length of seed adsorption, manipulator design should satisfy the length direction falling condition that does not occur.④Study on seed particles and suction plate collision movement, establishing collision motion model, get the relationship between seed particles is not touched off the bounce of critical velocity and negative pressure suction panel values. With the pressure increase, the critical velocity of seed particles increase. The length of seed is most likely to occur collision bounce off, when the impact velocity is greater than the critical speed, the seed will be out of flow field constraints and bounce off suction hole.
     (4) Based on the theory of discrete element method, study seed group movement in vibration plate, get:①Movement of the single seed has fluctuation, seed group movement changes regularly without obvious fluctuations, the reason is that the formation of constraint forces between seeds particles.②With the increase of vibration frequency and amplitude of plate, the average displacement of seeds, the average velocity and the particle force of Z direction gradually increases, throwing motion of seeds increase fiercely, relative spatial distribution density becomes smaller gradually, increasing frequency and amplitude can increase throwing height of seeds effectively. Average normal force and average tangential force of single layer thickness, is larger than other kinds of thickness seeds which Z direction average displacement, average velocity and particle force is closed, spatial discrete of seeds is similar. Maximum force of seed particles are less than0.03N, vibration plate has minimal damage to seed.③Study on parameters relationship between thickness and vibration of seeds that seed of variable mass system gradually reduce in seeding process, establish mathematical models between device parameters and suction distance(the distance between the panel and layer surface). The effect order throwing height of seeds is: vibration frequency, amplitude, layer thickness. get vibration frequency and amplitude shoould be reasonable matching; simulation for plate tilt state seeds movement, when the plate angle is large, seeds movement uniformity is worse, tilt angle is smaller, the space vibration of seeds distribution uniformity is more favorable.④Based on the theory of CFD-DEM coupling, simulate suction process of seeding device, get the variation of parameters.
     (5) Designing a new type of vacuum-vibrating tray precision seeding device test bed, carrying out bench test①Single factor test and orthogonal experiment, emphatically analysis vacuum negative pressure value, suction hole's aperture, vibration frequency of plate, amplitude,the suction distance on effects of seeding performance. Get the primary-secondary order of the factors affecting qualified rate are:the suction distance, vibration frequency, amplitude, vacuum negative pressure value, suction hole's aperture Get the primary-secondary order of the factors affecting rebroadcast rate are: vacuum negative pressure value, suction hole's aperture, the suction distance, vibration frequency, amplitude. Get the primary-secondary order of the factors affecting cavity rate are:the suction distance, vacuum negative pressure value, suction hole's aperture, vibration frequency, amplitude. The suction distance and frequency had significant effects on the pass rate of seeding, vacuum negative pressure value and suction hole's aperture had significant effects on rebroadcast rate, the suction distance and vacuum negative pressure value had a significant effects on cavity rate.②Establishing a mathematical model between seeding device parameters and seeding performance index, made multiobjective optimization genetic algorithm, get the optimal solution:vacuum negative pressure value is3.68KPa, suction hole's aperture is1.84mm, vibration frequency is10.90Hz, amplitude is4.09mm, the suction distance is3.92mm, and which verified by experiments.③Through seeding test of different kinds of super rice, which showed that the seeding device has a good adaptability to different varieties of super rice, which are suitable for different varieties of super rice seeding. Through seeding seedling test which showed that the seeding device can meet the requirements of super rice plant. Seeding test by seeding device, statistics after sowing budding condition. The seeding device does not hurt bud, and meet requirements of super rice planting seedling.The results are consistent with theoretical analysis, and provide a theoretical basis for precision seeding device's designing.
引文
[1]袁隆平.超级杂交稻研究[M].上海:上海科学技术出版社,2006.
    [2]程式华,李建.现代中国水稻[M].北京:金盾出版社,2007.
    [3]周建群.水稻栽培方式研究进展[J].湖南农业科学,2009,(2):51-54.
    [4]何文洪,陈惠哲,朱德峰.不同播种量对水稻机插秧苗素质及产量的影响[J].中国稻米,2008,(3):60-62.
    [5]孙涛,商文楠,金学泳,等.不同播种粒数对水稻生育及其产量的影响[J].中国农学通报,2005,21(7):134-137.
    [6]冯淑萍,王成志,王明忠,等.水稻钵盘育苗不同播种密度对产量的影响[J].现代农业科技,2008,(4):119-121.
    [7]周海波,马旭,玉大略,等.2CYL-450型水稻秧盘育秧播种流水线的研制[J].农机化研究,2008(11):95-97.
    [8]马成林.精密播种理论[M].长春:吉林科学技术出版社,1999.
    [9]张波屏.现代种植机械工程[M].北京:机械工业出版社,1997.
    [10]李林.气吸式排种器理论及试验的初步研究[J].农业业机械学报,1979,10(3):56-63.
    [11]周海波,马旭,姚亚利.水稻秧盘育秧播种技术与装备的研究现状及发展趋势[J].农业工程学.2008,24(4):301-305.
    [12]许剑平,谢宇峰,徐涛.国内外播种机械的技术现状及发展趋势[J].农机化研究,2011,(2):234-237.
    [13]李耀明,徐立章,向忠平,等.日本水稻种植机械化技术的最新研究进展[J].农业机械学报,2005,25(11):182-185.
    [14]D. Karayel, A. Ozmerzi. Effect of forward speed and seed spacing on seeding uniformity of a precision vaccum metering unit for melon and cucumber seeds[J]. Journal of the Faculty of Agriculture,2001,14(2):63-67.
    [15]D. Karayel, Z.B. Barut, A. Ozmerzi. Mathematical modelling of vacuum pressure on a precision seeder[J]. Biosystems Engineering,2004,87(4):437-444.
    [16]D. Karayel. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean [J]. Soil and Tillage Research,2009,104:121-125.
    [17]R. C. Singh, G. Singh, D. C. Saraswat. Optimization of design and operational parameters of a pneumatic seed metering device for planting cotton seeds[J]. Biosystems Engineering,2005, 92(4):429-438.
    [18]Arzu. Yazgi, A. Degirmencioglu. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology [J]. Biosystems Engineering, 2007,347-356.
    [19]B. B. Gaikwad, N. P. S. Sirohi. Design of a low-cost pneumatic seeder for nursery plug trays[J]. Biosystems Engineering,2008,99(3):322-329.
    [20]G. V. Prasanna Kumar, Brijesh Srivastava, D. S. Nagesh. Modeling and optimization of parameters of flow rate of paddy rice grains through the horizontal rotating cylindrical drum of drum seeder[J]. computers and electronics in agriculture,2009,26-35.
    [21]M. Anantachar, Prasanna G. V. Kumar, T. Guruswamy. Neural network prediction of performance parameters of an inclined plate seed metering device and its reverse mapping for the determination of optimum design and operational parameters[J]. computers and electronics in agriculture,2010,87-98.
    [22]P. Guarella, A. Pellerano, S. Pascuzzi. Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds[J]. Journal of Agricultural Engineering Research,1996, 64(1):29-36.
    [23]Fallak S. Sial, Sverker P. E. Persson. Vacuum Nozzle Design for Seed Metering[J]. Transactions of the ASAE,1984,27(3):688-696.
    [24]张宝库,郝恒昌,马卫平.XGJP多用型孔轮式高速精密排种器及其改进[J].现代化农业,1989,(6):11-13.
    [25]钟统海,叶世佳,陆桂生,等.4LRZ-10000型流动式容器育苗装播作业线的研制[J].广西林业科技,1991,20,(2):61-64.
    [26]娄秀华,穆浩民.育种小麦精密排种器排种性能的试验研究[J].中国农业大学学报,1999,4(2):50-53.
    [27]李耀明,邱白晶,陈进.气吸振动式水稻播种试验台的振动分析[J].农业机械学报,1998,29(3):43-47.
    [28]李耀明,刘彩玲,陈进.水稻育苗播种装置气力吸种部件的研究[J].农业机械学报,1999,30(6):46-50.
    [29]李耀明.气吸振动式水稻播种试验台的振动分析[J].农业机械学报,1998,29(3):43-47.
    [30]陈进,李耀明.气吸振动式播种试验台内种子运动规律的研究[J].农业机械学报,2002,33(1):47-50.
    [31]刘彩玲,李耀明.水稻育苗精量播种机振动试验的模糊分析[J].江苏理工大学学报,1998,19(5):13-17.
    [32]庞昌乐,鄂卓茂,苏聪英,等.气吸式双层滚筒水稻播种器设计与试验研究[J].农业工程学报,2000,16(5):52-55.
    [33]庞振强,黄建兰,苏聪英.2ZBQ-300型双层滚筒气吸式水稻播种机的设计与试验研究[J].广西农业机械化,2001,(3):2-6.
    [34]李伟堂,方向前,郑金玉,等.2BQ型系列气吸式精密播种机的调整、使用及保养技术[J].现代农业科技,2011,(8):231-232.
    [35]李世平,马旭,谭祖庭.水稻田间育秧播种机的试验研究[J].中国农业工程学会2011年学术年会论文集,重庆,2011-10-20.
    [36]陈进,李耀明,王希强,等.气吸式排种器吸孔气流场的有限元分析[J].农业机械学报,2007,38(9):59-62.
    [37]廖庆喜,李继波,覃国良.气力式油菜精量排种器气流场仿真分析[J].农业机械学报,2009,40(7):78-82.
    [38]张猛,余佳佳,刘晓辉,等.气力集排式油菜精量排种器的排种过程分析[J].华中农业大学学报,2012,31(1):116-120.
    [39]刘彩玲,宋建农,王继承,等.水平吸盘式水稻育秧精密播种装置吸种真空度的研究[J].中国农业大学学报,2009,14(5):121-125.
    [40]王朝辉,袁月明,董润坚,等.超级稻育秧精密播种器内部流场的数值模拟[J].吉林农业大学学报,2009,31(6):781-784.
    [41]李中华,王德成,刘贵林,等.气流分配式排种器CFD模拟与改进[J].农业机械学报,2009,40(3):64-68.
    [42]袁月明,马旭,朱艳华,等.基于高速摄像技术的气吸式排种器投种过程的分析[J].吉林农业大学学报,2008,30(4):617-620.
    [43]袁月明,马旭,董润坚,等.气吸式水稻直播排种器参数设计与优化[J].中国农机化,2012,244(6):78-82.
    [44]齐龙,马旭,周海波.基于机器视觉的超级稻秧盘育秧播种空穴检测技术[J].农业工程学报,2009,25(2):121-125.
    [45]吴海平,王玉顺,安爱琴,等.精密排种器排种质量的机器视觉检测与分析[J].山西农业大学学报,2008,28(3):324-328.
    [46]谢竹青,胡建平.磁吸式精密播种器性能图像检测技术研究[J].计算机应用与软件学报,2009,26(2):177-178.
    [47]王在满,罗锡文,黄世醒,等.型孔式水稻排种轮充种过程的高速摄像分析[J].农业机械学报,2009,12(40):56-60.
    [48]赵湛.气吸振动式精密排种器理论及试验研究[D].江苏:江苏大学,2009.
    [49]夏连明,王相友,耿端阳.倾斜圆台型玉米精密排种器种子破损试验[J].农业机械学报,2012,43(12):67-71.
    [50]吴畏,黄震,汤楚宙.变容量型孔轮式排种器种子适应性研究[J].湖南农业大学学报(自然科学版),2012,38(5):551-554.
    [51]夏红梅,李志伟,牛菊菊,等.气力滚筒式蔬菜穴盘播种机吸排种动力学模型的研究[J].农业工程学报,2008,24(1):141-146.
    [52]夏红梅,李志伟,王红军.基于虚拟样机的气力板式播种机的仿真设计[J].湖南科技学院 学报,2009,30(4):54-57.
    [53]李成华,高玉芝,张本华.气吹式倾斜圆盘排种器排种性能试验[J].农业机械学报,2008,39(10):90-94.
    [54]陆志全,马剑.电磁振动排种器的均匀性试验研究[J].农业科技与装备,2008,180(6):26-29.
    [55]杨望,杨坚,周晓蓉,等.电磁振动排种器振动系统参数的确定[J].农机化研究,2009,(2):47-50.
    [56]王瑞雪,仪垂杰,林海波,等.双吸盘小麦精密排种器参数设计与优化[J].中国农业大学学报,2009,22(3):109-113.
    [57]杨松华,孙裕晶,马成林,等.气力轮式精密排种器参数优化[J].农业工程学报,2008,24(2):116-120.
    [58]谭祖庭,马旭,齐龙,等.振流式精密播种装置种层厚度检测及控制系统研制[J].农业工程学报,2012,28(21):10-16.
    [59]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [60]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [61]徐泳,李艳洁,李红艳.离散元法在农业机械化中应用评述[J].农机化研究,2004,5,26-30.
    [62]杨洋,唐寿高.颗粒流的离散元法模拟及其进展[J].中国粉体技术,2006,27(5):38-43.
    [63]李洪昌,李耀明,唐忠,等.基于EDEM的振动筛分数值模拟与分析[J].农业工程学报,2011,31(5):117-121.
    [64]李洪昌.风筛式清选装置理论及试验研究[D].江苏:江苏大学,2011.
    [65]R. Balevicius, R. Kacianauskas, Z. Mroz, I. Sielamowicz.Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes[J]. Advanced Powder Technology,2011,1:1-9.
    [66]J. LI, C. Webb, S. S. Pandiella, et al. A numerical simulation lation of separation of crop seeds by screening-effect of particle bed depth[J]. Institution of Chemical Engineers TransIChemE, 2002,80(6):109-114.
    [67]Zhao Zhan, Li Yaoming, Chen Jin, et al. Numerica lanalysis and laboratory testing of seed spacing uniformity performance for vacuum-cylinder precision seeder[J]. Biosystems Engineering,2010,106 (4):344-351.
    [68]Joanna Wiacek, Marek Molenda, Jozef Horabik, et al. Influence of grain shape and intergranular friction on material behavior in uniaxial compression:Experimental and DEM modeling[J]. Powder Technology,2012,217:435-442.
    [69]Yanjie Li, Yong Xu, Shengyao Jiang. DEM simulations and experiments of pebbleflow with monosized spheres[J]. Powder Technology,2009,193:312-318.
    [70]Nobuyuki Tagami, Ajit Mujumdar, Masayuki Horio.DEM simulation of polydisperse systems of particles in a fluidized bed[J]. Particuology,2009,7:9-18.
    [71]Yong Xu, Chunhui Xu, Zhe Zhou, et al.2D DEM simulation of particle mixing in rotating drum: A parametric study[J]. Particuology,2010,8:141-149.
    [72]Hongchang Li, Yaoming Li, Fang Gao, et al. CFD-DEM simulation of material motion in air-and-screen cleaning device[J]. Computers and Electronics in Agriculture,2012,88:111-119.
    [73]杨杰程,张宇,刘大有,等.三维风沙运动的CFD-DEM数值模拟[J].中国科学物理学力学天文学,2010,40(7):904-915.
    [74]Alberto Di Renzo, Francesco Paolo Di Maio. Homogeneous and bubbling fluidization regimes in DEM-CFD simulations:Hydrodynamic stability of gas and liquid fluidized beds[J]. Chemical Engineering Science,2007,62:116-130.
    [75]K.W. Chu, B. Wang, A.B. Yu, et al. CFD-DEM simulation of spouting of corn-shaped particles[J]. Particuology,2012,1:1-11.
    [76]K.W. Chu, B. Wang, D.L. Xu, et al. CFD-DEM simulation of the gas-solid flow in a cyclone separator[J]. Chemical Engineering Science,2011,66:834-847.
    [77]Maryam Karimi, Navid Mostoufi, Reza Zarghami, et al. A new method for validation of a CFD-DEM model of gas-solid fluidized bed[J]. International Journal of Multiphase Flow, 2012,47:133-140.
    [78]E. Simsek, B. Brosch, S. Wirtz, et al. Numerical simulation of gratefiring systems using a coupled CFD/discrete element method (DEM)[J]. Powder Technology,2009,193:266-273.
    [79]Xiaole Chen, Wenqi Zhong, Xianguang Zhou, et al. CFD-DEM simulation of particle transport and deposition in pulmonary airway[J]. Powder Technology,2012,228:309-318.
    [80]Emmanuel Nkem Nwose, Chunlei Pei, et al. Modelling die filling with charged particles using DEM/CFD[J]. Particuology,2012,10:229-235.
    [81]李政权,于建群,张尉林,等.内充式排种器工作过程和性能的离散元法仿真分析[J].农业工程学报,2011,27(11):32-36.
    [82]于建群,申燕芳,牛序堂,等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报,2008,24(5):105-109.
    [83]陈进,周韩,赵湛,等.基于EDEM的振动种盘中水稻种群运动规律研究[J].农业机械学报,2011,42(10):79-83.
    [84]孙裕晶,马成林,牛序堂,等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,37(11):45-48.
    [85]危夏.基于AutoCAD二次开发的精密排种器分析设计软件开发研究[D].吉林:吉林大学硕士学位论文,2004
    [86]刘振宇.基于离散元法的精密排种器分析设计软件开发研究[D].吉林:吉林大学硕士学位论文,2004
    [87]胡建平,王奇瑞,邵秀平.永磁体磁吸式排种器充种性能仿真与实验[J].农业机械学报,2010,41(12):35-38.
    [88]胡建平,王勋,闫军朝,等.磁力排种元件磁场分析与结构优选[J].农业机械学报,2011,42(2):67-70.
    [89]李红.精密排种器的数字化设计与工作过程仿真分析[D].吉林:吉林大学硕士学位论文,2004.
    [90]洪占荣.基于CAD_DEM_CFD耦合的气吹式排种器数字化设计方法研究[D].吉林:吉林大学博士学位论文,2010.
    [91]张红生.种子学[M].北京:科学出版社,2010.
    [92]周祖锷.农业物料学[M].北京:农业出版社,1994.
    [93]袁月明.气吸式水稻芽种直播排种器的理论及试验研究[D].吉林:吉林大学博士学位论文,2005.
    [94]吕茂烈.碰撞恢复系数及其测定[J].固体力学学报,1984,3:318-329.
    [95]Tinghua Li, Jiayuan Zhang, Wei Ge. Simple measurement of restitution coefficient of irregular particles[J]. China Particuology,2004,2 (6):274-275.
    [96]G. J. LoCurto, X. Zhang, V. Zakirov, et al. Soybean impacts:experiments and dynamic simulations [J]. Transactions of the ASAE,1997,40 (3):789-794.
    [97]杨明金,杨玲,李庆东.颗粒物料恢复系数简易测量方法及其应用[J].农机化研究,2009,10(10):25-27.
    [98]王成军,李耀明,马履中,等.小麦籽粒碰撞模型中恢复系数的测定[J].农业工程学报,2012,28(11):274-278.
    [99]M. Rozainee, S. P. Ngo, Arshad A. Salema, et al. Computational fluid dynamics modeling of rice husk combustion in a fluidized bed combustor[J]. Powder Technology,2010,201: 331-347
    [100]林兆福.气体动力学[M].北京:北京航空航天大学出版社,1988.
    [101]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [102]孔珑.两相流体力学[M].北京:高等教育出版社,2004.
    [103]李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M].北京:人民邮电出版社,2011.
    [104]朱红钧,林元华,谢龙汉.FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.
    [105]奚德昌,赵钦淼.振动台及振动试验[M].北京:机械.工业出版社,1985.
    [106]谢官模.振动力学[M].北京:国防工业出版社,2007.
    [107]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1985.
    [108]闻邦椿,刘树英,何勃.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001.
    [109]李增刚ADAMS入门详解与实例[M].北京:国防工业出版社.2006.
    [110]赵湛,李耀明,陈进,等.种群空间分布状态对排种器吸种性能的影响[J].江苏大学学报:自然科学版,2009,30(6):559-563.
    [111]Zhen Huang, Jing Wang. Identification of principal screws of 3-DOF parallel manipulators by quadric degeneration[J]. Mechanism and Machine Theory,2001,36(8):893-911.
    [112]Qiong Jin, Ting Li Yang. Overconstraint analysis on spatial 6-link loops [J]. Mechanism and Machine Theory,2002,37(3):267-278.
    [113]高峰.机构学研究现状与发展趋势的思考[J].机械工程学报,2005,41(8):3-17.
    [114]黄真,李秦川.少自由度并联机器人机构的型综合原理[J].中国科学(E辑),2003,33(9):813-819.
    [115]杨廷力.机器人机构拓扑结构学[M].北京:机械工业出版社,2004.
    [116]黄真.高等空间机构学[M].北京:机械工业出版社,2006.
    [117]赵景山,冯之敬,褚福磊.机器人机构自由度分析理论[M].北京:科学出版社,2009.
    [118]赵匀.机械数值分析与综合[M].北京:机械工业出版社,2005.
    [119]郭宗和,牛国栋,孙术华,等.三平移并联机器人机构的精度分析[J].农业机械学报,2006,37(1):145-148.
    [120]徐卫,马履中,郭宗和,等.三平移并联机器人坐标测量机精度研究[J].农业机械学报,2006,37(5):122-124.
    [121]郭惠昕,岳文辉.含间歇平面连杆机构运动精度的稳健性优化设计[J].机械工程学报,2012,48(3):75-81.
    [122]尹小琴,马履中.基于影响系数的并联机器人机构运动分析[J].江苏大学学报(自然科学版),2002,23(7):43-46.
    [123]杨宁,马履中,艾永强,等.两平移一转动并联机构型综合研究[J].机械设计与研究,2005,21(5):29-32.
    [124]董易,高峰,岳义.3-PRR微动操作机器人刚度及工作空间分析[J].机械设计与研究,2011,27(2):15-18.
    [125]吴爱祥,孙业志,刘湘平.散体动力学理论及其应用[M].北京:冶金工业出版社,2002.
    [126]刘聚德.散粒体动力学初探[J].农业业机械学报,1997,28(2):71-75.
    [127]胡国民.颗粒系统的离散元素法分析仿真-离散元素法的工业应用与EDEM软件简介[M].武汉:武汉理工大学出版社,2010.
    [128]王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010.
    [129]中华人民共和国农业部,NY/T 1143-2006播种机质量评价技术规范[S].北京:中国农业出版社,2006.
    [130]吴守一.农业机械学(下册)[M].北京:机械工业出版社,1992.
    [131]中国农业机械化科学研究院.农业机械设计手册上册[M].北京:中国农业科学技术出 版社,2007.
    [132]范超毅,范巍.步进电机的选型与计算[J].机床与液压,2008,36(5):310-313.
    [133]孙长鸣.正交试验在农业科学试验中的应用[M].北京:农业出版社,1978.
    [134]任露泉.试验设计及其优化法[M].北京:科学出版社,2009.
    [135]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T6973-2005,单粒(精密)播种机试验方法[S].北京:中国标准出版社,2006.
    [136]Holland J H. Adaptation in naturation in natural and artificial systems[J]. The University of Michigan Press,1975(1):21-24.
    [137]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [138]霍英杰.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700