用户名: 密码: 验证码:
新型仿棉共聚酯和纤维的制备及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花具有良好的吸湿性、柔软的手感、易染色和不易产生静电等性能,因此棉织物既舒适又环保。棉纤维是纺织和服装工业的重要原料。但是我国棉花供需矛盾相当突出,求远大于供,每年都要从国外进口大量的棉花。聚对苯二甲酸乙二醇酯(PET)具有强度高、热性能好等优点,但其手感硬,吸湿性低,可染性差。现在我国的聚酯行业存在产品结构单一,聚酯产能过剩等问题。在此背景下,基于PET的新型仿棉共聚酯和纤维的研发,可以有效利用我国聚酯过剩的产能,提高PET产品的附加值。若能形成对棉花的一定规模的替代,可一定程度上缓解国内棉花的供需矛盾,因此,本课题的研究具有一定的实用价值和重要意义。
     本文通过大量的实验筛选出合成仿棉共聚酯的第三、第四和第五单体。第三单体为间苯二甲酸乙二醇酯-5-磺酸钠(SIPE);第四单体用聚乙二醇(PEG),且PEG的数均分子量Mn分别选用2000、4000和6000;第五单体是1,2-丙二醇(1,2-PDO)。确定了合成共聚酯的催化剂、投料顺序、醇酸比、反应温度、反应时间和真空度等关键工艺条件。在1L和10L的聚合装置中,采用直接酯化法,成功合成了所有系列的样品。通过核磁共振氢谱(1H-NMR),对共聚酯的化学结构进行了表征。实验结果表明,绝大部分的SIPE、PEG和1,2-PDO,都成功地嵌入聚合物的大分子链中;而且各自的投料比与其在共聚物中的实际含量基本一致。还对所有样品的特性粘度[n]进行了测试,结果显示,所有样品的特性粘度值大小适中。
     利用一维广角X射线衍射(1D-WAXD),分析了共聚酯的晶体结构。嵌入了第四单体PEG和第五单体1,2-PDO后,共聚酯的晶体结构和PET的晶体结构几乎完全相同,说明引入PEG和1,2-PDO,没有引起晶体结构的变化。随着PEG质量比和1,2-PDO摩尔比的增加,共聚酯的结晶度在总体上不断降低。当PEG的质量比相同(以10%为例),而数均分子量降低时,结晶度在不断减小。还通过部分样品加热拉伸后的二维广角X射线衍射(2D-WAXD)和二维小角X射线散射(2D-SAXS),研究取向度的变化规律。结果表明,刚开始沿轴向的应变适度变大时,2D-WAXD的衍射条纹和2D-SAXS的散射条纹都会逐渐增强,分子链的取向度提高;当应变增加到一定程度,再继续增加时,二维WAXD的衍射条纹和二维SAXS的散射条纹,总体上反而都变弱,说明分子链的取向度降低了。从一维WAXD和SAXS曲线的推算出的晶粒尺寸、结晶度和长周期等晶体参数的变化规律与上面类似。
     利用差示扫描量热法(DSC),研究了共聚酯的热性能。随着PEG和1,2-PDO含量的增加,样品的玻璃化转变温度(Tg)、冷结晶温度(Tcc)和熔点(Tm)总体上呈下降态势。当PEG的质量百分比相同(以10%为例),PEG的数均分子量降低时,Tg、Tcc和Tm不断下降。采用Jeziorny法,分析部分样品的非等温结晶动力学,发现共聚酯的结晶过程比Avrami模型要复杂;当数均分子量相同时,随着第四单体PEG6000含量的增加,半结晶周期t1/2的值减小,冷结晶速率增快。还利用Mo法,对部分样品在不同升温速率下的非等温结晶动力学进行研究。发现升温速率提高时,冷结晶温度(Tcc)升高;随着相对结晶度的增加,F(T)值变大,而α值却近似于一个常数。
     通过热重分析仪(TGA),详细研究了共聚酯的热稳定性。氮气中,TGA曲线出现一个热失重平台;空气里,TGA曲线都有两个热失重平台。在氮气和空气里,随着PEG和1,2-PDO含量的增加,热降解温度均下降。空气中的热降解比氮气中的热降解更容易发生。当PEG的质量百分比相同时(如10%),在氮气和空气里,随着PEG的数均分子量的降低,共聚酯热稳定性变差。随着升温速率提高,在氮气和空气中,TGA和dTGA曲线均向高温方向移动。利用Friedman法研究了热降解动力学。在氮气中,当升温速率相同(以10k/min为例),而改性组份PEG6000的质量百分数变化时,Ln(da/dt)对1/T曲线和Ln(1-a)对1/T曲线的线性关系较好。而且PEG6000含量增加时,热降解活化能(E)变低,表明共聚酯的热稳定性变差;热降解反应级数(n)下降,说明热降解速率加快。还发现,在氮气中对同一个样品,当升温速率变化时,Ln(da/dt)和Ln(1-a)对1/T曲线的线性关系较好。E、n、频率因子(Z)等热降解参数随升温速率等测试条件的变化而变化。此外,通过特性粘度的变化,对热稳定性能进行了分析。研究发现,PEG和1,2-PDO的含量越高,烘燥温度越高,烘燥时间越长,则特性粘度下降越快,说明热降解越容易发生。
     通过静态接触角(contact angle)的测试,详细研究了共聚酯的亲水性能。随着第四单体PEG和第五单体1,2-PDO含量的增大,接触角逐渐地减小,共聚酯的亲水性增强。PEG的质量比相同时(如10%),当PEG分子量降低,样品的接触角变小,亲水性增强。
     选择部分共聚酯切片进行熔融纺丝,制备成仿棉纤维。确定了干燥温度、纺丝温度和速度、牵伸倍数等主要工艺参数。利用缕纱测长仪,结合称重法,推算出纤维的纤度。通过WAXD法测试纤维结晶度,结果显示,当第五单体1,2-PDO含量增加时,结晶度变小。采用WAXD法和声波传播法测定了纤维取向度,随着1,2-PDO含量增加,纤维取向因子(fs)和取向度下降。利用电子单纱强力测试仪,测试了纤维力学性能,发现当1,2-PDO摩尔百分数增加,断裂强度和初始模量总体上呈减小趋势,但断裂伸长率却增大。回潮率的测试结果表明,1,2-PDO的含量增大,纤维的回潮率变大,吸湿性能提高。沸水收缩率的测试结果显示,1,2-PDO的含量越大,纤维的沸水收缩率越大。利用接触冷暖感测定仪,分析了仿棉织物的接触舒适性,发现所有仿棉织物的Qmax值比普通PET织物的Qmax值小。而且随着1,2-PDO的摩尔百分数的不断增加,仿棉织物的Qmax值总体上呈下降趋势,这表明1,2-PDO的引入使得仿棉织物的接触舒适性变好。
Cotton possesses many superior properties such as good hygroscopicity, soft handling, easy dyeability and antistatic ability. Therefore, cotton fabrics are comfortable and environmental. Cotton fiber is a kind of crucial material in textile and fashion industries. However, the contradiction between supply and demand of cotton are very serious in China, the demand is much greater than the supply. In order to solve the above contradiction of cotton, China has to import a large number of cotton from other countries every year. Poly(ethylene terephthalate)(PET) has a lot of advantages such as high strength and excellent thermal property. However, disadvantages of PET are also obvious such as rigid handle, low moisture regain and poor dyeability. Nowadays, there are many problems in Chinese polyester industry. For example, the structure of products is too simple, and the supply of polyester is surplus. On this background, studies on the new cotton-like copolyester and its fiber can effectively consume surplus polyester products, and enhance the added value of PET. When modified PET fibers can replace some parts of cotton, it can partly relieve the contradiction between supply and demand of domestic cotton. Therefore, the studies have some practical value and significance in this thesis.
     On the basis of abundant experiments, the third, fourth and fifth comonomers are eventually chosen. The third comonomer is sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate (SIPE). The fourth is poly(ethylene glycol)(PEG), and the number average molecular weight(Mn) is2000,4000and6000, respectively. The fifth unit is1,2-propanediol (1,2-PDO). The key technological conditions were ascertained in the esterification and polycondensation process such as the catalyst, feed order, feed ratio, temperature, time and vacuum. All samples were successfully synthesized with direct esterification method in the11and101reactor. Their chemical structures were characterized by nuclear magnetic resonance (1H-NMR). Experimental results showed that overwhelming units have been incorporated into molecular chains. The actual molar ratio of all comonomers was basically consistent with the correlative feed ratio. The intrinsic viscosity of all specimens was measured in detail. The results showed that the intrinsic viscosity value of all samples was moderate.
     Taking advantage of1D wide angle X-ray diffraction (1D WAXD), the crystal structure of copolyesters was explored. After incorporation with PEG and1,2-PDO units, the crystalline structure of copolyesters was nearly identical to the PET homopolymer. It indicated that PEG and1,2-PDO comonomers did not changed the crystal structure. The crystallinity of samples lessened gradually with the increase of PEG and1,2-PDO content. The crystallinity of copolyesters gradually lowered with the decrease of the molecular weight of PEG when the weight percent of PEG was identical (such as10%). Through2D Wide angle X-ray diffraction (2D WAXD) and2D small angle X-ray scattering (2D SAXS), we studied the variation tendency of orientation degree of copolyesters. Before measurements, all specimens were first heated and stretched into different strains along axial direction. At the beginning, the intensity of diffraction and scattering streaks both became stronger when the strain increased. It indicated that the degree of orientation enlarged. Interestingly, after the strain reached a certain value, diffraction and scattering streaks both became weaker when the strain continued to increase. It showed the degree of orientation reduced. The crystal size, crystallinity and long period calculated from ID WAXD and ID SAXS curves owned the similar variation tendency.
     From differential scanning calorimetry (DSC) measurement, thermal properties were systematically investigated. With the increase of PEG and1,2-PDO percentage, the glass-transition temperature (Tg), the cold-crystallization temperature (Tcc) and the melting temperature (Tm) all decreased gradually. When the weight ratio of PEG was same (such as10%), Tg, Tcc and Tm gradually reduced with the fall of the molecular weight of PEG The non-isothermal kinetics of part of samples was analyzed by Jeziorny method. Results showed that the crystallization process of copolyesters were more complicated than the Avrami model. When the number average molecular weight was identical, as the ratio of PEG6000unit increased, the semicrystalline time (t1/n) decreased, and the cold-crystallization rate improved. The non-isothermal kinetics under different heating rate was studied by Mo method. Tcc of samples enhanced as the heating rate increased. With the increase of crystallinity, the value of F(T) became bigger, but value of a was almost a constant.
     Thermal stability was investigated in detail by thermogravimetric analysis (TGA) measurement. TGA curves under nitrogen atmosphere were all found to have only one weight-loss stage. While TGA curves under oxygen atmosphere had two weight-loss stages. Under nitrogen and oxygen atmosphere, the degradation temperature all gradually reduced with the increase of PEG and1,2-PDO ratio. The thermal degradation under oxygen atmosphere was easier to occur than that under nitrogen atmosphere. Thermal stability both became worse with decreasing the molecular weight of feed PEG units under nitrogen and oxygen atmosphere. The TGA and dTG curves all seemed to shift towards higher temperature side as the heating rate increased under nitrogen and oxygen atmosphere. Thermal degradation kinetics was studied by Friedman method. Under nitrogen atmosphere, when heating rate is identical (such as10k/min), as the weight ratio of PEG6000unit changed, the curves of Ln(da/dt) vs.1/T and Ln(1-α) vs.1/T both presented linear relationship. Moreover, with the increase of PEG6000content, thermal degradation activation energy (E) became lower, the order of thermal degradation reaction (n) decreased, the thermal degradation rate increased. Under nitrogen atmosphere, for the same sample, as the heating rate changed, the curves of Ln(dα/dt) vs.1/T and Ln(1-α) vs.1/T all exhibited good linear relationship. Thermal degradation kinetics parameters such as E, n and frequency factor (Z) were greatly affected by heating rate. Thermal stability was also analyzed by the intrinsic viscosity variation. When the content of PEG and1,2-PDO were more, the drying temperature was higher and the drying time was longer, then the intrinsic viscosity decreased quickly. It indicated the thermal degradation was easier to happen.
     By means of contact angle measurements, the hydrophilicity of copolyesters was studied in detail. With the increase of weight ratio of PEG and molar ratio of1,2-PDO, all contact angle values gradually became smaller, and the hydrophilicity of samples were better. When the weight percent of PEG was identical (such as10%), the values of contact angle were detected to gradually reduce as the number average molecular weight of feed PEG units lowered, indicating that the hydrophilicity of samples was enhanced.
     Some copolyester chips were spun into cotton-like fibers by melt spinning method. Spinning technological parameters were determined such as drying temperature, spinning temperature and rate, draw ratio. By measuring reel and weight method, linear density of fibers was calculated. The crystallinity of fibers was studied by wide angle X-ray diffraction (WAXD). Results showed that the crystallinity decreased with the increase of content of1,2-PDO. By means of WAXD and acoustic wave propagation method, the degree of orientation of fibers was explored. It was found that the orientation factor (fs) and degree of orientation both lowered as the1,2-PDO content increased. The mechanical properties of fibers were measured by electronic single yarn strength tester. Experiments indicated that when molar ratio of1,2-PDO unit increased, The breaking tenacity and initial modulus were gradually reduced, yet elongation at break enhanced. The moisture regain of cotton-like fibers was tested. Results exhibited the increase of1,2-PDO content improved their moisture regain and hygroscopicity. The boiling water shrinkage of fibers was measured. The results indicated that the shrinkage increased with the increase of content of1,2-PDO. Making use of contact cool and warm feeling tester, the contact comfort of cotton-like fabrics was analyzed. It was found the Qmax value of cotton-like fabrics was smaller than that of PET fabrics. Moreover, the Qmax value of cotton-like fabrics gradually decreased when the molar ratio of1,2-PDO unit enhanced. The Results indicated the contact comfort of cotton-like fabrics became better with the incorporation of1,2-PDO comonomer.
引文
[1]陈九妹.化纤产能增加价格下滑[N].中国纺织报,2013,6(6):5-6.
    [2]李利军.“超仿棉”来袭[N].中国纺织报,2013,4(7):1-2.
    [3]于伟东.纺织材料学[M].北京:中国纺织出版社.2006:15-17.
    [4]姚穆,周锦芳,黄淑珍等.纺织材料学[M].北京:纺织工业出版社.1997:322-325.
    [5]王琛,严玉蓉.高分子材料改性[M].北京:中国纺织出版社.2007:6-20.
    [6]Kiziltas A, Gardner DJ, Han Y, Yang HS. Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites[J]. Journal of Thermal Analysis and Calorimetry.2011,103(1):163-170.
    [7]Tang S, Xin Z. Structural effects of ionomers on the morphology, isothermal crystallization kinetics and melting behaviors of PET/ionomers[J]. Polymer.2009, 50(4):1054-1061.
    [8]Bech L, Meylheuc T, Lepoittevin B, Roger P. Chemical surface modification of poly(ethylene terephthalate) fibers by aminolysis and grafting of carbohydrates [J]. Journal of Polymer Science Part A:Polymer Chemistry.2007,45(11):2172-2183.
    [9]Wei GF, Wang LY, Chen GK, Gu LX. Synthesis and characterization of poly(ethylene-co-trimethylene terephthalate)s[J]. Journal of Applied Polymer Science.2006,100(2):1511-1521.
    [10]Kint DPR, Munoz Guerra S. Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization[J]. Polymer International.2003,52(3):321-336.
    [11]Bouma K, Regelink M, Gaymans RJ. Crystallization of poly(ethylene terephthalate) modified with codiols[J]. Journal of Applied Polymer Science. 2001,80(14):2676-2682.
    [12]Zhou C, Zhang HW, Jiang Y, Wang WJ, Yu Q. Grafting of polyacrylamide from poly(ethylene terephthalate) films[J]. Journal of Applied Polymer Science.2011, 121(3):1254-1261.
    [13]Akkaya A, Pazarlioglu NK. Microbial modification of polyethylene terephthalate fabric[J]. Journal of Applied Polymer Science.2011,121(2):690-695.
    [14]Tsenoglou CJ, Kiliaris P, Papaspyrides CD. Assessing the variable molecular architecture of poly(ethylene terephthalate) under reactive modification by melt and dilute solution rheology[J]. Macromolecular Materials and Engineering. 2011,296(7):630-636.
    [15]Dadashian F, Montazer M, Ferdowsi S. Lipases improve the grafting of poly(ethylene terephthalate) fabrics with acrylic acid[J]. Journal of Applied Polymer Science.2010,116(1):203-209.
    [16]Inagaki N, Narushim K, Tuchida N, Miyazaki K. Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces[J]. Journal of Polymer Science Part B:Polymer Physics.2004,42(20):3727-3240.
    [17]Dadsetan M, Mirzadeh H, Sharifi-Sanjani N. Surface modification of polyethylene terephthalate film by CO2 laser-induced graft copolymerization of acrylamide[J]. Journal of Applied Polymer Science.2000,76(3):401-407.
    [18]罗伯特,戴维斯,小查尔斯.改性的亲水聚酯[P].CN1036781A.1989.
    [19]松村由隆等.吸湿性共聚聚酯及用其制造的吸湿性纤维[P].CNP1135494A.1996.
    [20]Nichols C S, Humelsine B M. Polyester modified with polyethylene glycol and pentaerythritol[P]. WO0012793(Al).2000.
    [21]Branum J B, Nichols C S. Polyethylene glycol modified polyester fibers[P]. US2002019508(Al).2002.
    [22]Nichols C S, Branum J B, Carnes K J. Polyethylene glycol modified polyester fibers and method for making the same[P]. WO02072933(Al).2003.
    [23]Naruse Y, Sasaki T. Polyester fiber and production method of polyester composition[P]. US2003088012(Al).2003.
    [24]Ruzek Ivo Edward. Polypropylene glycol modified polyester fibers[P]. WO2005019301(Al).2005.
    [25]成娟,李旭,本田圭介.具有优异吸湿性能的聚对苯二甲酸丙二醇树脂及生产方法[P].CNP101058634A.2007.
    [26]Hye Rim K, Wha Soon S. Lipase treatment to improve hydrophilicity of polyester fabrics [J]. International Journal of Clothing Science and Technology. 2010,22(1):25-34.
    [27]朱敏.准分子激光引发PET材料表面接枝提高表面亲水性[学位论文].东华大学,2006.
    [28]唐永良.改性涤纶研究进展[J].合成纤维工业,2006,29(2):53-55.
    [29]杨娟,李旭,本田圭介.连续生产吸湿性聚酯的方法和设备[P].CNP101041712A.2006.
    [30]王华平等.一种吸湿排汗聚酯纤维[P].CNP1932095A.2007.
    [31]辛婷芬.一种吸湿排汗纤维生产方法[P].CNP101195929A.2008.
    [32]王锐,张大省等.用于制备高吸湿和高排湿聚酯织物的聚合物母粒及其合成方法[P].CNP101104729A.2008.
    [33]胡智文等.一种高吸湿改性聚酯纤维的制造方法[P].CNP101613891A.2009.
    [34]刘晓洪等.丙烯酸接枝改性PET纤维的结构与性能[J].合成纤维工业,2009,32(6):11-14.
    [35]王朝生,陈向玲等.一种仿棉涤纶短纤及其制备方法[P].CNP101831727A,2010.
    [36]王朝生,陈向玲等.一种含有羊毛的仿棉涤纶短纤及其制备方法[P].CNP101805939A,2010.
    [37]Maycumber, S.G. Daily News Record.1999,29(9):10.
    [38]Seganov I, Schultz JM, Fakirov S. Effect of diethylene glycol content and annealing temperature on the structure and properties of poly(ethylene-terephtha-late)[J]. Journal of Applied Polymer Science.1986,32(2):3371-3392.
    [39]Lee MS, Lee M, Wakida T, Saito M, Yamashiro T, Nishi K, et al. Ozone-gas treatment of cationic dyeable polyester and poly(butylene terephthalate) fibers [J]. Journal of Applied Polymer Science.2007,104(4):2423-2429.
    [40]Eisenberg A, Hird B, Moore RB. A new multiplet-cluster model for the morphology of random ionomers[J]. Macromolecules.1990,23(18):4098-4107.
    [41]Pal SK, Gandhi RS, Kothari VK. Effect of comonomer on structure and properties of textured cationic dyeable polyester [J]. Journal of Applied Polymer Science.1996,61(3):401-406.
    [42]Liu L, Cheng L, Yu J, Xie H. Evaluation of the availability of easy cationic dyeable copolyester fibers as electrostatic flocking piles[J]. Journal of Applied Polymer Science.2011,120(1):195-201.
    [43]Hsiao KJ, Kuo JL, Tang JW, Chen LT. Physics and kinetics of alkaline hydrolysis of cationic dyeable poly(ethylene terephthalate) (CDPET) and polyethylene glycol (PEG)-modified CDPET polymers:Effects of dimethyl 5-sulfoisophthala-te sodium salt/PEG content and the number-average molecular weight of the PEG[J]. Journal of Applied Polymer Science.2005,98(2):550-556.
    [44]Zhao ML, Liu Y, Li FX, Wang XL, Gao Y, Yu JY. Thermal properties of MECDP copolyesters[J]. Thermal Science.2012,16 (5):1456-1459.
    [45]Murty S.Tanikella. Acid-dyeable fibers of polyester modified with tetramethyl piperidine polyether glycols[P]. US4001190(A).1977.
    [46]Kint D P R, Munoz Guerra S. Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization[J]. Polymer International.2003,52(3):321-336.
    [47]韩长青,姚江伟.分散染料易染聚酯纤维的改性技术[J].聚酯工业,2000,23(4):46-49.
    [48]Nevrekar N B. Dies in preparation of polyester for carrier-free dyeing[J]. Colourage.1993,40(11):15-20.
    [49]Skafidas D S. Property-composition dependence of poly(ethylene terephthalate)/ poly(ether ester) blends[J]. Polymer.2000,38(5):1057-1064.
    [50]郭宪英.HCDP共聚酯合成及结构与性能研究[学位论文].东华大学,2002.
    [51]Guo XY, Gu LX, Feng XX. The glass transition, crystallization, and melting characteristics of a class of polyester ionomers[J]. Journal of Applied Polymer Science.2002,86(14):3660-3666.
    [52]马晓光,顾利霞等.改性聚酯异形中空微孔纤维性能研究[J].高分子学报.2005,(3):442-446.
    [53]顾利霞等.带侧链的脂肪族二元醇改性的共聚酯切片及其制备[P].CNP101613466A.2009.
    [54]Bin C. Isothermal crystallization and melting behavior of 2-methyl-1,3-propane-diol substituted sulfonated poly(ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science.2010,117(4):2454-2463.
    [55]刘伯林,白玲.一种酸性可染聚酯和该酸性可染聚酯及其纤维的制备方法[P].CNP101450990A.2009.
    [56]钟婧,俞建勇,刘丽芳等.常压阳离子染料易染共聚酯纤维ECDP的微观结构与性能[J].东华大学学报,2010,36(3):11-14.
    [57]钱樟宝,曹欣羊等.全消光涤纶FDY生产技术[J].纺织学报,2007,28(8):26-30.
    [58]石井正树.仿棉聚酯长丝织物及其制备方法[P].CN101200830A.2008.
    [59]石井正树.超棉感聚酯长丝织物及其制备方法[P].CN101418488A.2009.
    [60]谢建强,曹双存.新型蜂窝状微孔结构功能性涤纶改性短纤维及其制备方法[P].CNP1858310A.2006.
    [61]施楣梧.纺织品用抗静电纤维、导电纤维的回顾和展望[J].毛纺科技,2000,(6):5-10.
    [62]中岛卓.抗静电性芯鞘型聚酯超细假捻加工纱及其制备方法以及含有该抗静电性芯鞘型聚酯超细假捻加工纱的抗静电疏水性织物[P].CN101535539A.2009.
    [63]太田雅巳.Polyester nanofiber[P]. JP2010018927(A).2010.
    [64]S J Toomey, H P Gies. UVR protection offered by shadecloths and polycarbonates[J]. Radiation Protection in Australia.1995,13(2):50-54.
    [65]Zhang ZT, Chen L, Ji JM. Antibacterial properties of cotton fabrics treated with Chitosan[J]. Textile Research Journal.2003,73(12):1103-1106.
    [66]中岛卓.Antistatic ultrafine fibers and method for producing the same[P]. WO2010061594(Al).2010.
    [67]郭玉海.PET纤维高性能化的研究[学位论文].四川大学,2001.
    [68]Guo YH, Zhang JC, Shi MW. Surface graft copolymeration of AA onto corona treated PET fabric[J]. Journal of Applied Polymer Science.1999,73:1161-1164.
    [69]Driggars. Print-receptive, pill-resistant, knitted fleece fabric[P]. US6439002. 2002.
    [70]Caldwell. Methods for reducing pilling of towels[P]. US6051034.2000.
    [71]Wan AL, Yu WD. Effect of wool fiber modified by ecologically acceptable ozone-assisted treatment on the pilling of knit fabrics[J]. Textile Research Journal.2012,82(1):27-36.
    [1]Inagaki N, Narushim K, Tuchida N, Miyazaki K. Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces[J]. Journal of Polymer Science Part B:Polymer Physics.2004,42(20):3727-3240.
    [2]余木火.高分子化学[M].北京:中国纺织出版社.1999:223-224.
    [3]张天骄.新型催化剂合成聚酯和共聚酯的研究[学位论文].四川大学,1999.
    [4]陈克权.PTT的研究、合成、表征和加工以及纤维的结构与性能研究[学位论文].上海交通大学,2003.
    [5]Sung HL, Sung WL. Polymer International.1999,48:861.
    [6]Nozomi H, Ikuo T. Matsatoshi M. Macromolecules Bioscience.2003,3:189.
    [7]张师民.聚酯的生产及应用[M].北京:中国石化出版社.1997:346.
    [8]李发学.成纤用生物降解性聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究[学位论文].东华大学,2006.
    [9]陈军,张素贞.PET终缩聚过程和质量控制方案的研究[J].聚酯工业,1994,7(3):36-45.
    [10]Won JC, Hee JK, Kwan HY. Preparation and barrier properly of Poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst[J]. Journal of Applied Polymer Science:2006.20(100):4875-4879.
    [11]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社.2007:15.
    [12]张倩.高分子近代分析方法[M].四川:四川大学出版社.2010:45-46.
    [13]Finelli L, Fiorini M, Siracusa V, Lotti N, Munari A. Synthesis and characterization of poly(ethylene isophthalate-co-ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science.2004,92(1):186-193.
    [14]Imran M, Kim BK, Han M, Cho BG, Kim DH. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET)[J]. Polymer Degradation and Stability.2010,95(9): 1686-1693.
    [15]Chaouch W, Dieval F, Le Nouen D, Defoin A, Chakfe N, Durand B. 1H-NMR spectroscopic study of the effect of aging vascular prostheses made of poly(ethylene terephthalate) on the macromolecular weight[J]. Journal of Biomedical Materials Research Part A.2009,91 A(3):939-952.
    [16]Yue QF, Wang CX, Zhang LN, Ni Y, Jin YX. Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts[J]. Polymer Degradation and Stability.2011,96(4):399-403.
    [17]Li FX, Xu XJ, Li QB, Yu JY, Cao AM. Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s[J]. Journal of Polymer Science Part B: Polymer Physics,2006,44(12):1635-1644.
    [18]Bin C. Isothermal crystallization and melting behavior of 2-methyl-1,3-Propane-diol substituted sulfonated poly(ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science.2010,117(4):2454-2463.
    [19]方显力.多组分共聚酯结构与性能研究[学位论文].苏州大学,2006.
    [20]董炎明.高分子分析手册[M].北京:中国石化出版社.2004:360-378.
    [21]宋永成.有机化合物结构鉴定与有机波谱学(第二版)[M].北京:科学出版社.2000:85.
    [22]Guo XY, Gu LX, Feng XX. The glass transition, crystallization, and melting characteristics of a class of polyester ionomers[J]. Journal of Applied Polymer Science.2002,86(14):3660-3666.
    [23]Wang ZG, Hsiao BS, Fu BX, Liu L, Yeh F, Sauer BB, et al. Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small angle X-ray scattering. Polymer.2000,41(5):1791-1797.
    [24]Li FX, Luo SL, Yu JY, Cao AM. The Crystallization Behavior and Morphology of Biodegradable Poly(butylene succinate-co-terephthalate) (PBST) Copolyest-ers with High Content of BT Unit[J]. Journal of Applied Polymer Science.2010, 118(2):623-630.
    [25]Wang BJ, Li CY, Hanzlicek J, Cheng S Z D, Geil P H, Grebowicz J, Ho R M. Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales[J]. Polymer.2001,42(16):7171-7180.
    [26]Kint D P R, Munoz Guerra S. Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization[J]. Polymer International.2003,52(3):321-336.
    [27]Yoshioka T, Fujimura T, Manabe NY, Yoshimitsu T, Masaki. Morphological study on three kinds of two-dimensional spherulites of poly(butylene terephthalate) (PBT) [J]. Polymer.2007,48(19):5780-5787.
    [28]Zuo F, Keum JK, Chen X, Hsiao BS, Chen H, Lai SY, et al. The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene[J]. Polymer.2007,48(23): 6867-6880.
    [29]Al-Hussein M, Strobl G. Strain-controlled tensile deformation behavior of isotactic poly(1-butene) and its ethylene copolymers[J]. Macromolecules.2002, 35(22):8515-8520.
    [30]De Rosa C, Auriemma F, de Ballesteros OR. A microscopic insight into the deformation behavior of semicrystalline polymers:The role of phase transitions [J]. Physical Review Letters.2006,96(16):1-4.
    [31]De Rosa C, Auriemma F, De Lucia G. From stiff plastic to elastic polypropylene: Polymorphic transformations during plastic deformation of metallocene-made isotactic polypropylene [J]. Polymer.2005,46(22):9461-9475.
    [32]Kawakami D, Hsiao BS, Burger C. Deformation-induced phase transition and superstructure formation in poly(ethylene terephthalate)[J]. Macromolecules. 2005,38(1):91-103.
    [33]Kawakami D, Hsiao BS, Ran SF. Structural formation of amorphous poly(ethylene terephthalate) during uniaxial deformation above glass temperature[J]. Polymer.2004,45(3):905-918.
    [34]Ran SF, Wang ZG, Burger C. Mesophase as the precursor for strain-induced cry-stallization in amorphous poly(ethylene terephthalate) film[J]. Macromolecules. 2002,35(27):10102-10107.
    [35]Blundell DJ, MacKerron DH, Fuller W. Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation[J]. Polymer.1996,37(15):3303-3311.
    [36]Salem DR. Crystallization kinetics during hot-drawing of poly(ethylene-terephth-alate) film-strain-rate draw-time superposition [J]. Polymer.1992,33(15): 3189-3192.
    [37]Mahendrasingam A, Martin C, Fuller W. Observation of a transient structure prior to strain-induced crystallization in poly(ethylene terephthalate)[J]. Polymer. 2000,41(3):1217-1221.
    [38]Mahendrasingam A, Blundell DJ, Martin C. Influence of temperature and chain orientation on the crystallization of poly(ethylene terephthalate) during fast drawing[J]. Polymer.2000,41(21):7803-7814.
    [39]Mahendrasingam A, Blundell DJ, Wright AK. Observations of structure development during crystallisation of oriented poly(ethylene terephthalate)[J]. Polymer.2003,44(19):5915-5925.
    [40]He Y, Zhu B, Kai WH, Inoue Y. Nanoscale-Confined and Fractional Crystallization of Poly(ethylene oxide) in the Interlamellar Region of Poly(butylene succinate)[J]. Macromolecules.2004,37(9):3337-3345.
    [41]Jiang GS, Huang WF, Li L, Wang X, Pang FJ, Zhang YM, Wang HP.Structure and properties of regenerated cellulose fibers from different technology processes[J]. Carbohydrate Polymers.2012,87(3):2012-2018.
    [1]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社.2001:101-125.
    [2]于伟东,储才元.纺织物理[M].上海:东华大学出版社.2001:261-272.
    [3]Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC[J]. Polymer. 1978,19(10):1142-1144.
    [4]Liu SY, Yu YN, Cui Y, Zhang HF, Mo ZS. Journal of Applied Polymer Science. 1998,70(12):2371-2380.
    [5]Liu TX, Mo ZS, Wang SE, Zhang HF. Polymer Engineering and Science.1997, 37(3):568-575.
    [6]Zhang QX, Zhang ZH, Zhang HF, Mo ZS. Journal of Polymer Science, Part B: Polymer Physics.2002,40(16):1784-1793.
    [7]李鑫,刘润涛,顾利霞.共聚酯PEIT-PEG结构与性能的研究[J].功能高分子学报,2003,16(2):214-218.
    [8]Varma DS, Maheswari A, Gupta V, Varma IK. Poly(ester-ether) fibres[J]. Die Angewandte Makromolekulare Chemie.1980,90(1):23-36.
    [9]Wang C, Zhang Z, Mai K. Preparation, non-isothermal crystallization, and melting behavior of beta-nucleated isotactic polypropylene/poly (ethylene terephthalate) blends[J]. Journal of Thermal Analysis and Calorimetry.2011,106(3):895-903.
    [10]Guo XY, Gu LX, Feng XX. The glass transition, crystallization, and melting characteristics of a class of polyester ionomers[J]. Journal of Applied Polymer Science.2002,86(14):3660-3666.
    [11]陈放,方小兵,张大省.对苯二甲酸酯/聚乙二醇共聚醚酯的热性能研究[J].合成纤维,2011,40(12):10-12.
    [12]Kiyotsukuri T, Masuda T, Tsutsumi N, Sakai W, Nagata M. Poly(ethylene-terephthalate) copolymers with a smaller amount of poly(ethylene glycol)s and poly(butylene glycol)s[J]. Polymer.1995,36(13):2629-2635.
    [13]Zhao ML, Liu Y, Li FX, Wang XL, Gao Y, Yu JY. Thermal properties of MECDP copolyesters[J]. Thermal Science.2012,16 (5):1456-1459.
    [14]王秀华,王伟星,陈连,周永刚,梦继承,姚玉元.阳离子易染共聚酯的热性能研究[J].合成纤维工业,2011,34(1):27-29.
    [15]Hsiao KJ, Kuo JL, Tang JW, Chen LT. Physics and kinetics of alkaline hydrolysis of cationic dyeable poly(ethylene terephthalate) (CDPET) and polyethylene glycol (PEG)-modified CDPET polymers:Effects of dimethyl 5-sulfoisophtha-late sodium salt/PEG content and the number-average molecular weight of the PEG[J]. Journal of Applied Polymer Science.2005,98(2):550-556.
    [16]Kim JY, Park HS, Kim SH. Polymer.2006,47(7):1379-1389.
    [17]Liu XH, Wu QJ. European Polymer Journal.2002,38(7):1383-1389.
    [18]Ozawa T. Thermochimica Acta.1986,100(1):109-118.
    [19]Sajkiewicz P, Carpaneto L, Wasiak A. Polymer.2001,42(12):5365-5370.
    [20]Ozawa T. Polymer.1971,12(3):150-158.
    [21]Eder M, Wlochowicz M. Polymer.1983,24(12):1593-1595.
    [22]Cebe P. Polymer Composites.1988,9(4):271-279.
    [23]Herrero CR, Acosta J L. Polymer Journal.1994,26(7):786-796.
    [24]Liu MY, Zhao QX, Wang YD, Zhang CG, Mo ZS, Cao SK. Polymer.2003,44(8): 2537-2545.
    [25]Przepiorski J, Karolczyk J, Tsumura T, Toyoda M, Inagaki M, Morawski AW. Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate) [J]. Journal of Thermal Analysis and Calorimetry.2012,107:1147-1154.
    [26]Wright J. Thermal degradation of polymers [J]. Soc Chem Ind.1961,13(3):248-249.
    [27]董炎明.高分子分析手册[M].北京:中国石化出版社.2004:456-460.
    [28]Wei G, Hua D, Gu L. Thermal stability of poly(ethylene-co-trimethylene terephthalate)s[J]. Journal of Applied Polymer Science.2006,101:3330-3335.
    [29]Li FX, Xu XJ, Li Q, Li Y, Zhang HY, Yu JY, et al. Thermal degradation and their kinetics of biodegradable poly(butylene succinate-co-butylene terephthate)s under nitrogen and air atmospheres[J]. Polymer Degradation and Stability.2006, 91(8):1685-1693.
    [30]Li XG, Huang MR, Bai H. Kinetics of thermal degradation of liquid-crystalline aromatic polymers[J]. Die Angewandte Makromolekulare Chemie.1998,256(1): 9-19.
    [31]Samperi F, Puglisi C, Alicata R. Thermal degradation of poly(ethylene terephthalate) at the processing temperature [J]. Polymer Degradation and Stability.2004,83(1):3-10.
    [32]Friedman HL. Journal of Polymer Science Part C.1964,6:183.
    [33]Jimenez A, Berenguer V et al. Thermal degradation study of Poly(vinyl chloride): Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science. 1993;50(9):1565-1573.
    [34]Chang WL. Decomposition behavior of polyurethanes via mathematical simulation. Journal of Applied Polymer Science.1994;53(13):1759-1769.
    [35]Freeman ES, Carroll B. The application of thermoanalytical techniques to reaction kinetics-the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. Journal of Physical Chemistry. 1958,62(4):394-397.
    [36]Kissinger HE. Analytical Chemistry.1957,29:1702.
    [37]Li, XG; Huang, MR. Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolyester[J]. Polymer Degradation and Stability.1999,64(1):81-90.
    [38]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature.1964,201(4914):68-69.
    [39]Wen WY, Lin JW. Journal of Applied Polymer Science.1978,22:2285.
    [40]Li FX, Xu XJ, Yu JY, Cao A. The morphological effects upon enzymatic degradation of poly(butylene succinate-co-butylene terephthalate)s (PBST)[J]. Polymer Degradation and Stability.2007,92(6):1053-1060.
    [41]Zhang HW, Du ZY, Jiang Y, Yu Q. Preparation and characterization of grafting polyacrylamide from PET films by SI-ATRP via water-borne system[J]. Journal of Applied Polymer Science.2012,126(6):1941-1955.
    [42]Montarsolo A, Varesano A, Mossotti R, Rombaldoni F, Periolatto M, Mazzuchetti G, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric:A study on the ageing effect[J]. Journal of Applied Polymer Science.2012, 126(4):1385-1393.
    [43]Fang Z, Yang JR, Liu Y, Shao T, Zhang C. Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science.2013,41(6):1627-1634.
    [1]Dadashian F, Montazer M, Ferdowsi S. Lipases improve the grafting of poly(ethylene terephthalate) fabrics with acrylic acid[J]. Journal of Applied Polymer Science.2010,116(1):203-209.
    [2]Inagaki N, Narushim K, Tuchida N, Miyazaki K. Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces[J]. Journal of Polymer Science Part B:Polymer Physics.2004,42(20):3727-3240.
    [3]戴迎春,赵玲,张伟,朱中南.PTA直接缩聚生产聚酯反应过程的分析[J].石油化工:1997.26(12):838-842.
    [4]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社.2007:103-105.
    [5]李发学.成纤用生物降解性聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究[学位论文].东华大学,2006.
    [6]于伟东,储才元.纺织物理[M].上海:东华大学出版社.2001:261-272.
    [7]彭辉.聚酯的特性黏度与聚合度[J].聚酯工业,2004,17(3):3-4.
    [8]Chaouch W, Dieval F, Le Nouen D, Defoin A, Chakfe N, Durand B.'H-NMR spectroscopic study of the effect of aging vascular prostheses made of poly(ethylene terephthalate) on the macromolecular weight[J]. Journal of Biomedical Materials Research Part A.2009,91A(3):939-952.
    [9]Yue QF, Wang CX, Zhang LN, Ni Y, Jin YX. Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts[J]. Polymer Degradation and Stability.2011,96(4):399-403.
    [10]Fakirov S, Gogevo T. Poly(ether/ester)s based on poly(butylene terephthalate) and poly(ethylene glycol) effect of polyether segment length[J]. Makromolekulare Chemie.1990,191:615-624.
    [11]华正江,张兴宏.PBT/PEG型聚醚酯的鉴定[J].化学分析计量,2007,16(5):45-47.
    [12]Audrey A D, Menno B C, Warnerie J. Design of segmented poly (ether ester) materials and structures for the tissue engineering of bone[J]. Journal of Controlled Release.2002,78:175-186.
    [13]张昌辉,翟文举,赵霞.1,2-丙二醇对可生物降解聚丁二酸丁二酯的共聚改 性[J].化学进展,2010,29(2):289-292.
    [14]Bin C. Isothermal crystallization and melting behavior of 2-methyl-1,3-propanediol substituted sulfonated poly(ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science.2010,117(4):2454-2463.
    [15]Li FX, Luo SL, Yu JY, Cao AM. The Crystallization Behavior and Morphology of Biodegradable Poly(butylene succinate-co-terephthalate) (PBST) Copolyest-ers with High Content of BT Unit[J]. Journal of Applied Polymer Science.2010, 118(2):623-630.
    [16]Wang ZG, Hsiao BS, Fu BX, Liu L, Yeh F, Sauer BB, et al. Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small-angle X-ray scattering. Polymer.2000,41(5):1791-1797.
    [17]Guo XY, Gu LX, Feng XX. The glass transition, crystallization, and melting characteristics of a class of polyester ionomers[J]. Journal of Applied Polymer Science.2002,86(14):3660-3666.
    [18]Wang, B. J. Li, C. Y. Hanzlicek, J. Cheng, S. Z. D. Geil, P. H. Grebowicz, J. Ho, R. M. Poly(trimethylene teraphthalate) crystal structure and morphology in diffe-rent length scales[J]. Polymer.2001,42(16):7171-7180.
    [19]Hsiao KJ, Kuo JL, Tang JW, Chen LT. Physics and kinetics of alkaline hydrolysis of cationic dyeable poly(ethylene terephthalate) (CDPET) and polyethylene glycol (PEG)-modified CDPET polymers:Effects of dimethyl 5-sulfoisophtha-late sodium salt/PEG content and the number-average molecular weight of the PEG[J]. Journal of Applied Polymer Science.2005,98(2):550-556.
    [20]Liu L, Cheng L, Yu J, Xie H. Evaluation of the availability of easy cationic dyeable copolyester fibers as electrostatic flocking piles[J]. Journal of Applied Polymer Science.2011,120(1):195-201.
    [21]Kint D P R, Munoz-Guerra S. Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization[J]. Polymer International.2003,52(3):321-336.
    [22]Yoshioka T, Fujimura T, Manabe NY, Yoshimitsu T, Masaki. Morphological study on three kinds of two-dimensional spherulites of poly(butylene terephthalate) (PBT) [J]. Polymer.2007,48(19):5780-5787.
    [23]Zhu B, He Y, Naoko Yoshie, Naoki Asakawa, Yoshio Inoue. Partial Phase Segregation in Strongly Hydrogen-Bonded and Miscible Blends [J]. Macromolecules.2004,37(9):3257-3266.
    [24]Zuo F, Keum JK, Chen X, Hsiao BS, Chen H, Lai SY, et al. The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene[J]. Polymer.2007,48(23): 6867-6880.
    [25]He Y, Zhu B, Kai WH, Inoue Y. Nanoscale-Confined and Fractional Crystallization of Poly(ethylene oxide) in the Interlamellar Region of Poly(butylene succinate)[J]. Macromolecules.2004,37(9):3337-3345.
    [26]AlHussein M, Strobl G. Strain-controlled tensile deformation behavior of isotactic poly(1-butene) and its ethylene copolymers[J]. Macromolecules.2002, 35(22):8515-8520.
    [27]Jiang GS, Yuan Y, Zhang YM, Wang HP. Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased[J]. Cellulose.2012, 19:1075-1083.
    [28]Blundell DJ, Mahendrasingam A, Martin C. Orientation prior to crystallisation during drawing of poly(ethylene terephthalate)[J]. Polymer.2000,41(21): 7793-7802.
    [29]Ran SF, Zong XH, Fang DF. Studies of the mesophase development in polymeric fibers during deformation by synchrotron SAXS/WAXD[J]. Journal of Materials Science.2001,36(13):3071-3077.
    [30]Asano T, Calleja FJB, Flores A. Crystallization of oriented amorphous poly(ethylene terephthalate) as revealed by X-ray diffraction and microhardness[J]. Polymer.1999,40(23):6475-6484.
    [31]Blundell DJ, MacKerron DH, Fuller W. Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation[J]. Polymer.1996,37(15):3303-3311.
    [32]Ran S, Fang D, Zong X. Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques [J]. Polymer.2001,42(4): 1601-1612.
    [1]李发学.成纤用生物降解性聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究[学位论文].东华大学,2006.
    [2]罗胜利,生物可降解聚丁二酸丁二醇-共-对苯二甲酸二甲脂(PBST)纤维的制备及其性能研究[学位论文],东华大学,2010.
    [3]莫志深.一种研究聚合物非等温结晶动力学的方法[J].高分子学报,2008,7:656-660.
    [4]M.L.DiLorenzo, C.Silvestre. Non-isothermal crystallization of Polymers[J]. Progress in Polymer Science.1999,24:917-950.
    [5]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社.2007:106-116.
    [6]武荣瑞,张天骄.成纤聚合物的合成与改性[M].北京:中国石化出版社.2003:195-200.
    [7]孙玉,郑帼.DSC法对阳离子染料可染共聚酯热性能的研究[J].合成纤维工业,2008,31(3):27-30.
    [8]Wunderlich B. Equilibrium melting of flexible linear macromolecules[J]. Polymer English Science.1978,18(5):431-437.
    [9]Kint D P R, Munoz-Guerra S. Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization[J]. Polymer International.2003,52(3):321-336.
    [10]Bin C. Isothermal crystallization and melting behavior of 2-methyl-1,3-propanediol substituted sulfonated poly(ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science.2010,117(4):2454-2463.
    [11]E Ergoz, JG Fatou, L Mandelkem, Moleeular weight dependence of the crystalli-zation kinetics of polyethylene I experimental results[J]. Maeromoleeules. 1972(5):147-157.
    [12]霍金斯WL著,吕世光译.聚合物的稳定化[M].北京:轻工业出版社.1981.
    [13]Nait LK, Colin X, Bergeret A. Kinetic analysis and modelling of PET macromolecular changes during its mechanical recycling by extrusion[J]. Polymer Degradation and Stability.2011,96(2):236-246.
    [14]Zhao ML, Liu Y, Li FX, Wang XL, Gao Y, Yu JY. Thermal properties of MECDP copolyesters. Thermal Science.2012,16(5):1456-1459.
    [15]Nayak S, Labde J, Geedh S, Jaisingh SK, Rao K, Venkatachalam S, et al. Study on Degradation Reactions in Polyethylene Terephthalate Containing 5-sulpho Isophthalyl Moieties[J]. Journal of Applied Polymer Science.2010,118(5): 2791-2800.
    [16]Abate L, Calanna S, Pollicino A. Thermal stability of a novel poly(ether ether ketone ketone) (PK99)[JJ. Polymer Engineering and Science.1996,36(13): 1782-1788.
    [17]Li XG, Huang MR, Guan GH. Molecular-structure of liquid-crystalline copolyesters of vanillic acid,4-hydroxybenzoic acid and poly(ethylene-terephth-alate)[J]. Die Angewandte Makromolekulare Chemie.1996,227:69-85.
    [18]Li XG, Huang MR, Guan GH. Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene terephthalate) by single heating rate methods [J]. Polymer International.1998,46(4):289-297.
    [19]Botelho G, Queiros A, Liberal S. Studies on thermal and thermo-oxidative degradation of poly(ethylene terephthalate) and poly(butylene terephthalate)[J]. Polymer Degradation and Stability.2001,74(1):39-48.
    [20]Holland BJ, Hay JN. Analysis of comonomer content and cyclic oligomers of poly(ethylene terephthalate)[J]. Polymer.2002,43(6):1797-1804.
    [21]Romao W, Franco M F, Corilo Y E. Poly (ethylene terephthalate) thermo-mecha-nical and thermo-oxidative degradation mechanisms[J]. Polymer Degradation and Stability.2009,94(10):1849-1859.
    [22]Liu BY, Li Y. Kim IL. Thermal characterization and thermal degradation of poly(norbornene-2,3-dicarboxylic acid dialkyl esters) synthesized by vinyl addition polymerization[J], Polymer Degradation and Stability.2007,92(3): 871-875.
    [23]S N Tiptipakorn, S Damrongsakkul, S J Ando. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends[J]. Polymer Degradation and Stability.2007,92(7):1267-1270.
    [24]Meng XL, Huang YD, Yu H. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazoleunits[J]. Polymer Degradation and Stability. 2007,92(2):964-967.
    [25]Chang WL. Decomposition behavior of polyurethanes via mathematical simulation. Journal of Applied Polymer Science.1994;53(13):1759-1769.
    [26]Freeman ES, Carroll B. The application of thermoanalytical techniques to reaction kinetics-the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. Journal of Physical Chemistry. 1958,62(4):394-397.
    [27]高重辉,武荣瑞.PET降解性能研究[J].金山油化纤,1988,24(4):15-18.
    [28]王秀华,王伟星,陈连,周永刚,梦继承,姚玉元.阳离子易染共聚酯的热性能研究[J].合成纤维工业,2011,34(1):27-28.
    [29]Montarsolo A, Varesano A, Mossotti R, Rombaldoni F, Periolatto M, Mazzuchetti G, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric:A study on the ageing effect[J]. Journal of Applied Polymer Science.2012, 126(4):1385-1393.
    [30]于伟东.纺织材料学[M].北京:中国纺织出版社.2006:87-95.
    [31]Zhang HW, Du ZY, Jiang Y, Yu Q. Preparation and characterization of grafting polyacrylamide from PET films by SI-ATRP via water-borne system[J]. Journal of Applied Polymer Science.2012,126(6):1941-1955.
    [1]高绪珊,吴大诚等.纤维应用物理学[M].北京:中国纺织出版社,2001.
    [2]罗胜利,生物可降解聚丁二酸丁二醇-共-对苯二甲酸二甲脂(PBST)纤维的制备及其性能研究[学位论文].东华大学,2010.
    [3]夏修成.聚酯切片干燥工艺与流程的优化[J].金山油化纤,1900,23(3):36-39.
    [4]邬国铭,李光.高分子材料加工工艺学[M].北京:中国纺织出版社.2010:22-23.
    [5]郭大成,王文科.聚酯纤维科学与工程[M].北京,中国纺织出版社,2003:20-23.
    [6]Ziabicki A, Kedzierska K. Journal of Applied Polymer Science.1962,6:361.
    [7]张蕊萍.纤维的加工技术与性能测定[J].印染:2002,5(6):32.
    [8]大卫R.萨利姆著.高绪珊,吴大诚译.聚合物纤维结构的形成[M].北京:化学工业出版社,2004.
    [9]吴宏仁,刘福安,谭武红,朴蔚炎,陈时达,张希庆.拉伸工艺对FDY结构、性能的影响[J].合成纤维工业,1989,12(6):10-14.
    [10]陈美玉,孙润军,郝新敏.拉伸倍数对有色涤纶牵伸丝性能的影响规律[J]. 合成纤维工业,2003,26(6):36-38.
    [11]梁冬.拉伸工艺对涤纶FDY结构性能的影响[J].化纤与纺织技术,2006,4:23-25.
    [12]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社.2007:136-140.
    [13]陈稀,黄象安.化学纤维实验教程[M].北京:纺织工业出版社.1988:119-135.
    [14]于伟东,储才元.纺织物理[M].上海:东华大学出版社.2001:47-50.
    [15]黄绍石.苎麻织物接触冷暖感的研究[J].纺织科学研究,1992,3(3):23-27.
    [16]Wang ZG, Hsiao BS, Fu BX, Liu L, Yeh F, Sauer BB, et al. Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small-angle X-ray scattering. Polymer.2000,41(5):1791-1797.
    [17]Wang BJ, Li CY, Hanzlicek J, Cheng SZ, Geil PH, Grebowicz J, Ho RM. Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales[J]. Polymer.2001,42(16):7171-7180.
    [18]Li FX, Xu XJ, Li QB, Yu JY, Cao AM. Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s[J]. Journal of Polymer Science Part B: Polymer Physics.2006,44(12):1635-1644.
    [19]Yoshioka T, Fujimura T, Manabe N, Yokota Y, Tsuji M. Morphological study on three kinds of two-dimensional spherulites of poly(butylene terephthalate) (PBT) [J]. Polymer.2007,48(19):5780-5787.
    [20]Li FX, Luo SL, Yu JY, Cao AM. The Crystallization Behavior and Morphology of Biodegradable Poly(butylene succinate-co-terephthalate) (PBST) Copolyest-ers with High Content of BT Unit[J]. Journal of Applied Polymer Science.2010, 118(2):623-630.
    [21]Bin C. Isothermal crystallization and melting behavior of 2-methyl-1,3-propanediol substituted sulfonated poly(ethylene terephthalate) copolyesters[J]. Journal of Applied Polymer Science.2010,117(4):2454-2463.
    [22]邓澧儒,钱人元.声速法测定纤维的取向度[J].高分子通讯,1964,6(2):117-123.
    [23]徐振森.测定纤维取向度的声速方法[J].合成纤维:1979,1:20-24.
    [24]黄象安,张文中.用声脉冲法测定纤维取向度和模量的研究[J].合成纤维:1981,5:24-28.
    [25]于伟东.纺织材料学[M].北京:中国纺织出版社.2006:99-110.
    [26]Varma DS, Maheswari A, Gupta V, Varma IK. Poly(ester-ether) fibres[J]. Die Angewandte Makromolekulare Chemie.1980,90(1):23-36.
    [27]Guo XY, Gu LX, Feng XX. The glass transition, crystallization, and melting characteristics of a class of polyester ionomers[J]. Journal of Applied Polymer Science.2002,86(14):3660-3666.
    [28]Wang C, Zhang Z, Mai K. Preparation, non-isothermal crystallization, and melting behavior of beta-nucleated isotactic polypropylene/poly (ethylene terephthalate) blends [J]. Journal of Thermal Analysis and Calorimetry.2011, 106(3):895-903.
    [29]Dong QZ, Gu LX. Synthesis of AN-g-casein copolymer in concentrated aqueous solution of sodium thiocyanate and AN-g-casein fiber's structure and property [J]. European Polymer Journal.2002,38(3):511-519.
    [30]Suh J, Spruiell JE, Schwartz SA. Melt spinning and drawing of 2-methyl-1,3-propanediol-substituted poly (ethylene terephthalate) [J]. Journal of Applied Polymer Science.2003,88(11):2598-2606.
    [31]Timm DA, Hsieh YL. The microstructure and macrostructure of sulfonated poly(ethylene terethphalate) fibers [J]. Journal of Polymer Science Part B: Polymer Physics.1993,31(12):1873-1883.
    [32]M Trznadel, M Kryszewski. Thermal Shrinkage Of Oriented Polymers[J]. Polymer Reviews.1992,32(3):259-300.
    [33]Dunn S C, Jefferson A D, Lark R J. Shrinkage behavior of poly(ethylene terephthalate) for a new cementitious shrinkable polymer material system[J]. Journal of Applied Polymer Science.2011,120(5):2516-2526.
    [34]米田守宏.服装材料和冷暖感[J].国外纺织技术(针织、服装分册),1985,21(1):41-45.
    [35]Morihiro Yoneda,徐谷衡.皮肤冷暖感及瞬态导热间关系的理论分析[J].国外纺织技术(针织、服装分册),1988,(1):32-33.
    [36]姚穆,王晓东.论织物接触冷暖感[J].西北纺织工学院学报,2001,15(2):37-41.
    [37]杨晓琴,孙玉钗,孙鹏.织物组织结构与接触冷感关系探讨[J].山东纺织科技,2007,6:51-53.
    [38]王晓东,刘让同,姚穆.接触冷感的仪器测试与穿着实验的研究[J].纺织学报.1991,12(7):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700