用户名: 密码: 验证码:
磷腈化合物的合成及其阻燃性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的阻燃是长期以来科学研究中的重要课题。传统卤素阻燃剂在阻燃过程中会产生有毒物质,为了满足目前对环境保护的要求,阻燃剂的无卤化已成为发展趋势。近年来,含磷阻燃剂因其优异的阻燃性能,逐渐成为研究者的研究热点。环三磷腈化合物是一类由磷、氮原子以单、双键交替键合而成的环状化合物,分子中有三个磷原子,通过在磷原子上连接不同的官能团,得到不同的功能性化合物。磷腈类化合物其结构中的磷、氮元素具有协同阻燃效应,故可得到较好的热稳定性和阻燃性能,而且在热分解时不产生毒性较大的物质,符合人们对阻燃剂低毒、低污染、低腐蚀性的要求。聚酯(PET)和聚氨酯(PU)是两种重要的聚合物,因其优异的综合性能,广泛地用于服装面料、包装材料、工程塑料、电子工业、汽车工业和石油工业等领域。但是PET和PU极易燃烧,限制了其在某些方面的应用,因此开发阻燃PET和阻燃PU尤为重要。对于PET和PU来说,含磷阻燃剂是一类较为有效的阻燃剂,常用的阻燃剂有磷酸酯、氧化磷、有机磷酸盐等。本论文分别用4-硝基苯酚、对羟基苯甲醛取代六氯环三磷腈,合成了两种磷腈阻燃剂,改进了合成方法,对其结构进行了表征;分别研究了两种阻燃剂对PET和PU的阻燃性能影响,探讨了阻燃机理;研究了阻燃剂六(4-硝基苯氧基)环三磷腈(HNCP)和增容剂马来酸酐接枝乙烯-辛烯共聚物(POE-g-MA)对PET的协同抗熔滴作用。
     (1)环三磷腈衍生物的合成及表征
     采用一种新体系制备环三磷腈衍生物,以六氯环三磷腈、4-硝基苯酚或对羟基苯甲醛为原料,K2CO3作缚酸剂,丙酮或四氢呋喃为溶剂,合成六(4-硝基苯氧基)环三磷腈(HNCP)和六(4-醛基苯氧基)环三磷腈(HAPCP),简化了合成过程,缩短了反应时间。研究了六(4-硝基苯氧基)环三磷腈还原制备六(4-氨基苯氧基)环三磷腈(HACP)的反应。采用水合肼作还原剂,Pd/C为催化剂,消除了传统反应中黑色不溶物的影响,提高了产率。通过傅立叶变换红外光谱(FTIR)、核磁共振(NMR)氢谱、磷谱、元素分析(EA)对反应产物进行了结构分析表征。
     (2)环三磷腈阻燃剂在PET中的应用及性能研究
     利用合成的磷腈阻燃剂HNCP和HAPCP分别对PET进行阻燃改性,通过熔融共混法制备阻燃PET复合材料。通过热重分析(TGA)研究了两种阻燃剂对PET热稳定性能的影响,结果表明两种阻燃剂的加入,均可降低PET的起始分解温度和最大降解速率;在氮气和空气气氛中,600℃下,HNCP和HAPCP都可以提高PET的残炭量,HAPCP的成炭效果更优。通过极限氧指数(LOI)、垂直燃烧测试(UL-94)研究了阻燃剂对PET阻燃性能的影响。结果表明:PET/HNCP阻燃复合材料的LOI值最高可达35.1%,通过垂直燃烧实验,UL-94等级达到V-0等级;PET/HAPCP阻燃复合材料的LOI值最高可达34.3%,UL-94测试中仅当HAPCP含量为10wt.%时,可达V-0等级,其余样品均为V-2级,但HAPCP的加入,缩短了PET的余焰和余燃时间。SEM结果表明,HNCP和HAPCP阻燃的PET燃烧后形成的炭层表面平滑致密、内部疏松多孔,这种炭层结构有利于阻碍基材与外界环境之间的物质交换,起到隔热、隔氧的作用,是理想的防护结构。热降解动力学的研究说明,阻燃剂HNCP、HAPCP在降解初期可降低PET的降解活化能,促进PET成炭。在高降解转化率时,阻燃PET的降解活化能比纯PET的高,这是由于阻燃PET在降解前期形成了热稳定性能较高的炭层。
     (3) HNCP和POE-g-MA在PET中的协同抗熔滴作用
     在PET/10wt.%HNCP阻燃复合材料中添加增容剂POE-g-MA,研究了HNCP与POE-g-MA在PET中的协同抗熔滴作用。TGA结果表明,POE-g-MA不能提高PET的热稳定性能和残炭量,而HNCP可以有效地提高PET的热稳定性能并促进PET成炭。因此,HNCP的加入使得PET/10wt.%HNCP/POE-g-MA复合材料的热稳定性能优于纯PETo PET/10wt.%HNCP/POE-g-MA的LOI值最高可达28.3%,当POE-g-MA含量达3wt.%时,阻燃PET熔滴现象消失。DSC测试结果证明, POE-g-MA可改善HNCP与PET的相容性。SEM测试发现,PET/10wt.%HNCP/POE-g-MA复合材料燃烧后炭层的内部孔径较小,且分散均匀。这说明POE-g-MA改善了HNCP与PET的相容性,有利于HNCP在燃烧时形成连续平整的保护炭层,从而提高PET的阻燃性能和抗熔滴性能。HNCP可与POE-g-MA产生协同作用,有效地提高了PET的抗熔滴性能。
     (4)环三磷腈阻燃剂在PU中的应用及性能研究
     分别将HNCP和HAPCP加入到聚氨酯涂膜液中,采用湿法成膜制备了阻燃PU。TGA实验结果表明,在氮气和空气中,HNCP和HAPCP阻燃PU的热稳定性能和成炭能力都得到了提高,并且HAPCP促进PU成炭的效果更为明显。HNCP和HAPCP都可以提高PU的极限氧指数,但阻燃PU的熔滴严重,没有通过垂直燃烧测试,UL-94等级为VTM-2级;续燃和阴燃时间均大大缩短,提高了PU的离火自熄性能。炭渣的FTIR表明,阻燃剂中的磷、氮元素仍留在残渣中。SEM测试显示,两种阻燃PU的炭层表面虽没有孔洞,但不太平滑,这种炭层结构隔热、隔氧效果不够理想,因此阻燃性能没有显著提升。热降解动力学研究发现,阻燃剂HNCP和HAPCP均可在降解前期降低PU的降解活化能;在降解后期,阻燃PU形成稳定性更高的炭层,因此降解活化能要高于纯PU。
The preparation of flame resistant materials has been an important issue in scientific research for a long time. The traditional halogen flame retardants produce toxic gas and smoke as burning. It needs to develop non-halogenated flame retardants to meet the requirements of environmental protection. Over the past decade, there is a sustained research interest on the phosphorus-containing flame retardants which have excellent flame retardant properties. Cyclotriphosphazene is a kind of ring material which contains alternating phosphorus and nitrogen atoms. There are three phosphorus atoms in a cyclophosphazene molecule which are active to be substituted by different nucleophiles. Multifunctional compounds can be obtained by replacing the chlorine groups with various functional substituents. Phosphazenes exhibit good thermal stability and flame retardancy for the synergistic flame retardant effect of phosphorus and nitrogen. Due to less toxic gas and smoke as burning, the phosphazene-based materials are able to fulfill the requirements of flame retardant which have low toxicity, pollution and corrosive. Poly (ethylene terephthalate)(PET) and polyurethane (PU) are two important polymers in modern industry. For the outstanding properties, PET and PU are widely used in various areas such as surface coatings, fibers, electronic industry, automobile industry, petroleum engineering and barrier materials. However, the flammability of PET and PU polymers limit their applications in some special fields. Therefore, it is important to develop flame retardancy of PET and PU. Phosphorus-containing flame retardants are effective to PET and PU, containing phosphate, phosphorus oxide, organic phosphate and so on. In this paper, two kinds of cyclotriphosphazene flame retardants are synthesized via a simple method, and the structure of the flame retardants are investigated. The effects of flame retardants on the thermal and flame retardancy of PET and PU are mainly investigated. And then, the synergic effect of hexakis (4-nitrophenoxy) cyclotriphosphazene (HNCP) and maleic anhydride grafted ethylene-octene copolymer (POE-g-MA) on the anti-dripping of PET is also studied.
     (1) The synthesis and characteristic of cyclotriphosphazene derivatives
     Cyclotriphosphazene derivatives were synthesized in a new system. Hexakis (4-nitrophenoxy) cyclotriphosphazene (HNCP) and hexakis (4-formacylphenoxy) cyclotriphosphazene (HAPCP) were prepared by reacting hexachlorocyclotriphospha zene with4-nitrophenol, p-hydroxybenzaldehyde respectively, using potassium carbonate as acid binding agent, acetone or tetrahydrofuran as solvent. It was simplified the reaction process and shortened the reaction time. It was restudied the reduction of hexakis (4-nitrophenoxy) cyclotriphosphazene to hexakis (4-aminophenoxy) cyclotriphosphazene (HACP). The reduction was catalyzed by Pd/C in tetrahydrofuran, using hydrazine hydrate as reducing agent. This method eliminated the influence of dark insoluble matters and improved the yield. The structures of products were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and element analysis (EA).
     (2) Application of cyclotriphosphazene flame retardants in PET and study of the properties of flame retarded PET
     The cyclotriphosphazene flame retardants HNCP and HAPCP were added into PET to improve its flame retardancy by melt blending. The effects of HNCP and HAPCP on the thermal stability of PET were investigated by TGA. The results revealed that the addition of flame retardants could reduce the initial degradation temperature and the maximum mass loss rate while the char formation of PET was improved by HNCP and HAPCP both in nitrogen and in air atmosphere. The flame retardancy of the flame retarded PET was studied by LOI and vertical burning test (UL-94test). It was found that the LOI value of PET/HNCP was up to35.1%and could pass UL-94V-0. For the PET/HAPCP, the value of LOI was up to34.3%. Although the UL-94grade was V-2except the sample which the content of HAPCP was10wt.%, the afterflame time and the afterglow time were reduced. SEM graphs showed the outer of residue of flame retarded PET after burning appeared smooth and compact but the inner was frothy and swollen. This structure of char layer was an ideal insulation structure. It was helpful to hinder the exchange between the substrate and external environment. The degradation behavior of flame retarded PET was studied by TGA. The results declared that HNCP and HAPCP could reduce the degradation activation energies (E) of flame retarded PET and promote the char formation in the early degradation. While the E of flame retarded PET was higher than that of PET at high degradation conversion degree. It meant that flame retarded PET had a better thermal stability of char formed than PET.
     (3) The synergistic effect of HNCP and POE-g-MA on the improvement of the dripping resistance of PET
     POE-g-MA was added to PET/10wt.%HNCP composite by melt blending. The synergic effect to improve the dripping resistance of PET was investigated. TGA results suggested POE-g-MA had no improvement on the thermal stability and the final char yield of PET while the presence of HNCP would promote charring processes. The thermal stability of PET/10wt.%HNCP/POE-g-MA was better than PET meanwhile the LOI value was up to28.3%. When the loading of POE-g-MA increased to3wt.%, the flame retarded PET achieved a V-0rating with no dripping. DSC illustrated POE-g-MA improved the compatibility between PET and HNCP. It was found that the inner side of the char layer of PET/10wt.%HNCP/POE-g-MA was a frothy internal structure with many uniform microporous cells. That was to say the presence of POE-g-MA increased the compatibility and dispersion between PET and HNCP. It was in favor of forming a more continuous char layer by HNCP which was effective to improve the flame retardancy and anti-dripping of PET in fire. The flame retarded PET with anti-dipping property was obtained by the synergic effect of HNCP and POE-g-MA.
     (4) Application of cyclotriphosphazene flame retardants in PU and study of the properties of flame retarded PU
     The flame retarded PU was prepared by incorporating HNCP and HAPCP into the PU coating solution through wet film forming process, respectively. TGA results showed that the thermal stability and the char formation of PU were enhanced with HNCP and HAPCP both in nitrogen and in air atmosphere. HAPCP was more effective than HNCP on promoting the char formation of PU. Both HNCP and HAPCP could improve the LOI value of PU though they did not pass the vertical burning test and UL-94grade was VTM-2for the heavy dripping. The afterflame time and afterglow time were reduced greatly which meant self-extinguishing property of PU was improved. The FTIR spectra provided evidence that phosphorus and nitrogen elements still remained in the residue of PU after burning. SEM graphs revealed the outer of residue of flame retarded PU after burning was not smooth. It was not an ideal char structure for insulation. So, the flame retardancy properties of PU were not significantly enhanced. In the study of the degradation behavior of flame retarded PU, it was found the degradation activation energies (E) of flame retarded PU were reduced by HNCP and HAPCP at the early degradation stage. E of flame retarded PU increased at high degradation conversion degree in comparison with pure PET due to the formation of char with better thermal stability.
引文
[1]张小燕,卢其勇.阻燃剂的生产状况及发展前景[J].塑料工业,2011,39(4):1-5.
    [2]仲含芳.含磷聚硅氧烷的合成及其在PC/ABS中的应用[D].上海交通大学.2008.
    [3]欧育湘.阻燃剂[M].北京:国防工业出版社,2009.
    [4]彭治汉.材料阻燃新技术新品种[M].北京:化学工业出版社,2004.
    [5]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [6]Levchik S V, Weil E D. Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends [J]. Journal of Fire Sciences,2006,24 (2):137-151.
    [7]Ma H Y, Tong L F, Xu Z B, et at. A novel intumescent flame retardant:synthesis and application in ABS copolymer [J]. Polymer Degradation and Stability,2007,92 (4):720-726.
    [8]Bourbigot S, Le Bras M, Duquesne S, et al. Recent advances for intumescent polymers [J]. Macromolecular Materials and Engineering,2004,289 (6):499-511.
    [9]Davis J. The technology of halogen-free flame retardant additives for polymeric systems [J]. Engineering Plastics,1996,9 (5):403-419.
    [10]Levchik S V, Weil E D. Overview of recent developments in the flame retardancy of polycarbonates [J]. Polymer International,2005,54 (7):981-998.
    [11]Grande J A. Halogen-free, flame-retardant TPU targets wire and cable, mass transit [J]. Modern Plastics,1998,75 (2):95.
    [12]Von Gentzkow W, Huber J, Kapitza H, et al. Halogen-free flame-retardant plastics for electronic applications [J]. Journal of Vinyl and Additive Technology,1997,3 (2):175-178.
    [13]Nass B, Walz R, Wanzke W, et al. Halogen-free flame-retardant for PP [J]. Kunststoffe Plast Europe,1997,87 (8):1000-1002.
    [14]中云飞,杨贵兰.阻燃剂红磷[J].山西化工,1994,(1):29-33.
    [15]鹿海军,马晓燕,颜红侠.磷系阻燃剂研究新进展[J].化工新型材料,2001,28(12):7-10.
    [16]何宽新.有机磷系阻燃剂的作用机理及研究现状[J].科技信息,2008,(22):28.
    [17]黄战光.聚磷酸酯丙烯酸酯低聚物的合成及其阻燃机理研究[D].中国科学技术大学.2007.
    [18]Bourbigot S, Duquesne S. Fire retardant polymers:recent developments and opportunities [J], Journal of Materials Chemistry,2007,17 (22):2283-2300.
    [19]Liu Y, Wang Q. Synthesis ofin situ encapsulated intumescent flame retardant and the flame retardancy in polypropylene [J]. Polymer Composites,2007,28 (2):163-167.
    [20]Ma Z L, Gao J G, Bai L G. Studies of polypropylene-intumescent flame-retardant composites based on etched polypropylene as a coupling agent [J]. Journal of Applied Polymer Science,2004, 92(3):1388-1391.
    [21]Price D, Cunliffe L K, Bullett K J, et al. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems [J]. Polymer Degradation and Stability, 2007,92(6):1101-1114.
    [22]Chigwada G, Jash P, Jiang D D, et al. Fire retardancy of vinyl ester nanocomposites:synergy with phosphorus-based fire retardants [J]. Polymer Degradation and Stability,2005,89 (1): 85-100.
    [23]Wu Q, Qu B J. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene [J]. Polymer Degradation and Stability,2001,74 (2):255-261.
    [24]Xie F, Wang Y Z, Yang B, et al. A novel intumescent flame-retardant polyethylene system [J]. Macromolecular Materials and Engineering,2006,291 (3):247-253.
    [25]Bozi J, Czegeny Z, M6szaros E, et al. Thermal decomposition of flame retarded polycarbonates [J]. Journal of Analytical and Applied Pyrolysis,2007,79 (1-2):337-345.
    [26]李小建.氧化剂与炭化剂改性膨胀阻燃低密度聚乙烯的阻燃性能研究[D].苏州大学.2006.
    [27]张增光,贵大勇,刘吉平.硅系阻燃剂的研究进展[J].阻燃材料与技术,2007,5(5):10-14.
    [28]Zong R W, Hu Y, Liu N, et al. Evaluation of the thermal degradation of PC/ABS/ montmorillonite nanocomposites [J]. Polymers for Advanced Technologies,2005,16 (10): 725-731.
    [29]McNeil I C, Musarrat H. Thermal analysis of blends of low density polyethylene, poly(ethyl acrylate) and ethylene ethyl acrylate copolymer with polydimethysioxane [J]. Polymer Degradation and Stability,1995,50 (3):285-295.
    [30]Li Q, Jiang P K, Wei P. Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon [J]. Polymer Engineering and Science,2006,46 (3): 344-350.
    [31]Li Q, Jiang P K, Su Z P, et al. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene [J]. Journal of Applied Polymer Science,2005,96 (3):854-860.
    [32]Shu W J, Ho J C, Perng L H. Studies of silicon-containing maleimide polymers:1. Synthesis and characteristics of model compounds [J]. European Polymer Journal,2005,41 (1):149-156.
    [33]Masatoshi lji, Serizawa S. Silicone derivatives as new flame retardants for aromaic thermoplastics used in electronic devices [J]. Polymers for Advanced Technologies,1998,9 (10-11):593-600.
    [34]Mercado L A, Galia M, Reina J A. Silicon-containing flame retardant epoxy resins:synthesis, characterization and properties [J]. Polymer Degradation and Stability,2006,91 (11):2588-2594.
    [35]Masatoshi lji, Serezawa S, Kiuchi Y. New environmentally conscious flame-retarding plastics for electronics products [C]. Environmentally Conscious Design and Inverse Manufacturing,1999. Proceedings. EcoDesign'99:First International Symposium On. IEEE,1999:245-249.
    [36]Hayashida K, Ohtani H, Tsuge S, et al. Flame retarding mechanism of polycarbonate containing trifunctional phenylsilicone additive studied by analytical pyrolysis techniques [J]. Polymer Bulletin,2002,48 (6):483-490.
    [37]Hayashida K, Tsuge S, Ohtani H. Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography [J]. Polymer,2003,44 (19):5611-5616.
    [38]Zong R W, Hu Y, Wang S F, et al. Thermogravimetric evaluation of PC/ABS/montmorillonite nanocomposite [J]. Polymer Degradation and Stability,2004,83 (3): 423-428.
    [39]Wang S F, Hu Y, Wang Z Z, et al. Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites [J]. Polymer Degradation and Stability, 2003,80(1):157-161.
    [40]刘盘阁,官同华,王月欣,等.蒙脱土结构特性及在聚合物基纳米复合材料中的应用[J].塑料科技,2004,(3):40-45.
    [41]Seo K, Kim J, Bae J Y. Towards the development of thermally latent novolac-based char formers for ABS resins [J]. Polymer Degradation and Stability,2006,91 (7):1513-1521.
    [42]Camino G, Lomakin S M, Lageard M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms [J]. Polymer,2002,43 (7):2011-2015.
    [43]张顺,吴宁晶,李美江.有机硅阻燃剂的研究进展[J].高分子通报,2010,(12):72-77.
    [44]周安安.有机硅阻燃剂协同阻燃作用的研究进展[J].有机硅材料,2005,19(6):28-31.
    [45]王永强,牛正发.含硅阻燃剂的新进展[J].塑料工业,2003,31(2):9-12.
    [46]贾修伟,刘治国.硅系阻燃剂研究进展[J].化学进展,2003,22(8):818-822.
    [47]Camino G, Lomakin S M, Lazzari M. Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects [J]. Polymer,2001,42 (6):2395-2402.
    [48]张增光,贵大勇.聚硅氧烷阻燃剂的研究进展[J].塑料,2007,36(4):85-89.
    [49]王鸿雁,袁好杰,穆念孔.细颗粒氧化铝在阻燃材料领域的应用[J].有色设备,2005,(4):13-14.
    [50]Liu B, Zhang Y, Wan C Y, et al. Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker [J]. Polymer Bulletin,2007,58 (4):747-755.
    [51]四季春,郑水林,路迈西,等.超细活性无机复合阻燃填料在PVC中的应用研究[J].中国塑料,2005,19(1):83-85.
    [52]崔小明.我国环保型无机阻燃剂的研究开发新进展[J].塑料制造,2010,(9):81-85.
    [53]白梅.塑料中无机阻燃剂的研究进展[J].精细与专用化学品,2011,19(11):23-26.
    [54].王增加,李辅安,李翠云.阻燃高分子复合材料的研究进展[J].化工新型材料,2004,32(10):11-13.
    [55]孔祥建,赵建青.苯氧基环三磷腈对聚乙烯性能的影响[J].塑料工业,201 1,39(7):68-71.
    [56]Bose S, Mukherjee M, Das C K, et al. Effect of polyphosphazene elastomer on the compatibility and properties of PES/TLCP composites [J]. Polymer Composite,2010,31 (3): 543-552.
    [57]Jun Y J, Min J H, Ji D E, et al. A micellar prodrug of paclitaxel conjugated to cyclotriphosphazene [J]. Bioorganic and Medicinal Chemistry Letters,2008,18 (24):6410-6413.
    [58]Bao R, Pan M, Qiu J J, et al. Synthesis and characterization of six-arm star-shaped liquid crystalline cyclotriphosphazenes [J]. Chinese Chemical Letters,2010,21 (6):682-685.
    [59]刘朋军,张连华.聚磷腈功能材料研究进展[J].化学研究与应用,2001,13(1):33-38.
    [60]Sennett M S. Hagnauer G L, Singler R E, et al. Kinetic and mechanism of the boron trichloride-catalyzed thermal ring-opening polymerization of hexachlorocyclotriphosphazene in 1,2,4-trichlorobenzene solution [J]. Macromolecules,1986,19 (4):959-964.
    [61]刘元.氟代烷氧基取代聚膦腈类高性能弹性体的基础性研究[D].北京化]:大学.2007.
    [62]冯亚彬.固体火箭发动机衬层用聚磷腈的合成与性能研究[D].北京化工大学.2009.
    [63]贡长生,广生鲁,童丽娜.聚磷腈的合成和应用研究进展[J].现代化工,1991,(6):24-28.
    [64]张亚峰.聚磷腈-硅酯及其复合物耐高温、不燃性的研究[D].华南理1:大学.2000.
    [65]李振,詹才茂,秦金贵.聚磷腈高分子[J].功能高分子材料,2000,6(2):240-246.
    [66]吴勇.环二磷腈含氧衍生物的合成及其对环氧树脂的阻燃研究[D].河南工业大学.2011.
    [67]于赛男.聚膦腈材料阻燃PC/ABS的研究[D].上海交通大学.2011.
    [68]程倩.聚磷腈的合成及其表征[D].河北大学.2009.
    [69]李冬,王吉贵.聚磷腈材料及其在固体火箭发动机绝热层中的应用探讨[J].化学推进剂与高分子材料,2008,6(2):20-23.
    [70]Kumar D, Fohlen G M, Parker J A. Fire-and heat-resistant laminating resins based on maleimido-substituted aromatic cyclotriphosphazenes [J]. Macromolecules,1983,16 (8): 1250-1257.
    [71]Kumar D, Fohlen G M, Parker J A. High-strength fire-and heat-resistant imide resins containing cyclotriphosphazene and hexafluoroisopropylidene groups [J]. Journal of Polymer Science:Polymer Chemistry Edition,1984,22 (4):927-943.
    [72]叶龙健,钱立军.具有磷杂菲和磷腈双效官能团的阻燃助剂的合成及其阻燃环氧树脂[J].中国阻燃,2011,(5):2-4.
    [73]Reed C S, Taylor J P, Guigley K S, et al. Polyurethane/poly [bis (carboxylatophenoxy) phosphazene] blends and their potential as flame-retardant materials [J]. Journal of Polymer Science Engineering,2000,40 (2):465-472.
    [74]Kim C, Allcock H R. Liquid crystalline poly (organophosphazene) [J]. Macromoiecules, 1987,20(7):1726-1727.
    [75]Singler R E, Willingham R A, Lenz R W, et al. Liquid crystalline side-chain phosphazenes [J]. Macromolecules,1987,20(7):1727-1728.
    [76]Allcock H R, Kim C. Liquid crystalline phosphazenes. High polymeric and cyclic trimeric systems with aromatic azo side groups [J]. Macromolecules,1989,22 (6):2596-2602.
    [77]金杰,柏雪晴,高竹林,等.三聚磷腈咪唑盐离子液晶的合成及其性能研究[J].云南大学学报(自然科学版),2009,31(6):625-628.
    [78]Allcock H R, Dembek A A, Kim C, et al. Second-order nonlinear optical poly (organophosphazenes):synthesis and nonlinear optical characterization [J]. Macromolecules,1991, 24(5):1000-1010.
    [79]Allcock H R, Cameron C G, Skloss T W, et al. Molecular motion of phosphazene-bound nonlinear optical chromophores [J]. Macromolecules,1996,29 (1):233-238.
    [80]Allcock H R, Ravikiran R, Olshavsky M A. Synthesis and characterization of hindered polyphosphazenes via functionalized intermediates:exploratory models for electro-optical materials [J]. Macromolecules,1998,31 (16):5206-5214.
    [81]Allcock H R, Kim C. Photochromic polyphosphazenes with spiropyran units [J]. Macromolecules,1991,24 (10):2846-2851.
    [82]Fushimi T, Allcock H R. Cyclotriphosphazenes with sulfur-containing side groups:refractive index and optical dispersion [J]. Dalton Transactions,2009, (14):2477-2481.
    [83]Qiu L Y, Zhu K J. Design of a core-shelled polymer cylinder for potential programmable drug delivery [J]. International Journal of Pharmaceutics,2001,219(1):151-160.
    [84]Jun Y J, Jadhav V B, Min J H, et al. Stable and efficient delivery of docetaxel by micelle-encapsulation using a tripodal cyclotriphosphazene amphiphile [J]. International Journal of Pharmaceutics,2012,422 (1):374-380.
    [85]林益军,刘志玲,代永强,等.直链淀粉交联氨基酸酯取代聚膦腈杂化材料的制备[J].高等学校化学学报,2009,5(30):1040-1045.
    [86]Kim J I, Kim B, Chun C J, et al. MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection [J]. Biomaterials,2012,33 (19):4836-4842.
    [87]Weikel A L, Cho S Y, Morozowich N L, et al. Hydrolysable polylactide-polyphosphazene block copolymers for biomedical applications:synthesis, character ization, and composites with poly (lactic-co-glycolic acid) [J]. Polymer Chemistry,2010,1 (9):1459-1466.
    [88]蔡绒,毛吉富,曹晓艳,等.静电纺丝聚膦腈/明胶复合纤维支架的生物矿化行为[J].中国组织工程研究,2012,16(3):449-454.
    [89]Oredein-McCoy O, Krogman N R, Weikel A L, et al. Novel factor-loaded polyphosphazene matrices:potential for driving angiogenesis [J]. Journal of Microencapsulation,2009,26 (6): 544-555.
    [90]Peach M S, James R, Toti U S, et al. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering:in vitro evaluation with human mesenchymal stem cells [J]. Biomedical Materials,2012,7 (4):045016.
    [91]周秋丽,韩玉,陆茵.聚[(2-(2-氯乙氧基)乙氧基)x(三氟乙氧基)2x]磷腈合成和气体分离性能研究[J].高分子学报,2009,7(7):645-650.
    [92]Yang Z J, Zhang W Y, Li J D, et al. Polyphosphazene membrane for desulfurization: selecting poly [bis(trifluoroethoxy)phosphazene] for pervaporative removal of thiophene [J]. Separation and Purification Technology,2012, (93):15-24.
    [93]Bose S, Mukherjee M, Das C K, et al. Effect of polyphosphazene elastomer on the compatibility and properties of PES/TLCP composites [J]. Polymer Composite,2010,31 (3): 543-552.
    [94]Zhang X Y, Dai Q Y, Huang X B, et al. Synthesis and characterization of novel magnetic Fe3O4/polyphosphazene nanofibers [J]. Solid State Sciences,2009,11(11):1861-1865.
    [95]Greish Y E, Sturgeon J L, Singh A, et al. Formation and properties of composites comprised of calcium-deficient hydroxyapatites and ethyl alanate polyphosphazenes [J]. Journal of Materials Science:Materials in Medicine,2008,19 (9):3153-3160.
    [96]Blonsky P M, Shriver D F, Austin P, et al. Polyphosphazene solid electrolytes [J]. Journal of the American Chemical Society,1984,106 (22):6854-6855.
    [97]Kaskhedikar N, Paulsdorf J, Burjanadze M, et al. Polyphosphazene based composite polymer electrolytes [J]. Solid State Ionics,2006,177 (26):2699-2704.
    [98]周树华,向万春,方世璧,等.纳米复合全固态聚膦腈电解质[J].高分子学报,2008,8(8):805-812.
    [99]Zhang J W, Huang X B, Fu J W, et al. Novel PEO- based composite solid polymer electrolytes incorporated with active inorganic-organic hybrid polyphosphazene microspheres [J]. Materials Chemistry and Physics,2010,121 (3):511-518.
    [100]Modestia M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes [J]. Polymer Degradation and Stability,2005,87 (2): 287-292.
    [101]高维全,唐淑娟,孙德,等.羟基环三磷腈衍生物阻燃剂的合成和性能研究[J].山东纺织科技,2008,(2):49-52.
    [102]Liu R, Wang X D. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin [J]. Polymer Degradation and Stability,2009, 94 (4):617-624.
    [103]Qian L J, Ye L J, Qiu Y, et al. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin [J]. Polymer,2011,52 (24):5486-5493.
    [104]Liu F F, Wei H, Huang X B, et al. Preparation and properties of novel inherent flame-retardant cyclotriphosphazene-containing epoxy resins [J]. Journal of Macromolecular Science Part B:Physics,2010,49 (5):1002-1011.
    [105]Tao K, Li J, Xu L, et al. A novel phosphazene cyclomatrix network polymer:design, synthesis and application in flame retardant polylactide [J]. Polymer Degradation and Stability, 2011,96(7):1248-1254.
    [106]时虎,胡源,赵华伟.磷腈阻燃剂的合成及在聚乙烯阻燃中的应用[J].消防技术与产品信息,2001,(9):25-28.
    [107]孙德,高维全,李然,等.新型无卤阻燃剂六苯胺基环三磷腈的合成[J].中国氯碱,2007,12(12):9-10.
    [108]杨明山,刘阳,李林楷,等.六苯胺环三磷腈的制备及其对大规模集成电路封装用环氧模塑料的无卤阻燃[J].塑料工业,2009,37(8):61-65.
    [109]姚淑焕,徐建军,叶光斗.苯胺基环磷腈的合成及PVA阻燃纤维的制备[J].高分子材料科学与工程,2009,25(7):13-16.
    [110]Levchik S V, Camino G, Luda M P, et al. Thermal decomposition of cyclotriphosphazenes. I. Alkyl-aminoaryl ethers [J]. Journal of Applied Polymer Science,1998,67 (3):461-472.
    [111]Levchik S V, Camino G, Luda M P. Epoxy resins cured with aminophenyl methylphosphine oxide-Ⅱ. Mechanism of thermal decomposition [J]. Polymer Degradation and Stability,1998,60 (1):169-183.
    [112]Kuan J F, Lin K F. Synthesis of hexa-allylamino-cyclotriphosphazene as a reactive fire retardant for unsaturated polyesters [J]. Journal of Applied Polymer Science,2004,91 (2): 697-702.
    [113]Lim H, Chang J Y. Thermally stable and flame retardant low dielectric polymers based on cyclotriphosphazenes [J]. Journal of Materials Chemistry,2010,20 (4):749-754.
    [114]林锐彬,李战雄,赵言,等.环三磷腈丙烯酸酯合成及其在棉织物阻燃整理中的应用[J].印染助剂,2010,27(4):25-28.
    [115]元东海,刘洪乐,黄杰,等.环保型阻燃丙烯酸酯压敏胶的制备与性能研究[J].中国胶粘剂,2012,21(4):33-36.
    [116]元东海,唐安斌,黄杰,等.含烯丙基六苯氧基环三磷腈的合成及其在阻燃丙烯酸酯树脂中的应用[J].应用化学,2012,29(9):1090-1092.
    [117]唐安斌,黄杰,邵亚婷,等.六苯氧基环三磷腈的合成及其在层压板中的阻燃应用[J].应用化学,2010,27(4):404-408.
    [118]徐建中,杜卫义,王春征,等.六苯氧基环三磷腈阻燃PC/ABS合金及其热解研究[J].中国塑料,2011,25(12):21-25.
    [119]肖啸,甘孝贤,刘庆,等.六(4-醛基苯氧基)环三磷腈的合成、表征及其热性能研究[J].化学推进剂与高分子材料,2011,9(5):72-75.
    [120]邴柏春,李斌,贾贺,等.六对羧基苯氧基环三磷腈的合成及其热性能[J].应用化学,2009,26(7):753-756.
    [121]陈胜,郑庆康,叶光斗,等.烷氧基环三磷腈共混改性阻燃粘胶纤维阻燃机理研究[J].四川大学学报(工程科学版),2006,38(2):109-113.
    [122]Ferda H, Mahmut D, Serkan Y, et al. The synthesis, spectroscopic and thermal properties of phenoxycyclotriphosphazenyl-substituted phthalocyanines [J]. Dyes and Pigments,2008,79 (1): 14-23.
    [123]沈梅.氯化聚乙烯橡胶(CM)硫化、补强、阻燃体系的研究及应用[D].青岛科技大学.2005.
    [124]田计青.无卤阻燃改性聚乙烯的研究[D].中北大学.2007.
    [125]占曲.无卤阻燃聚乳酸的制备及其火灾危险性分析[D].西南交通.2010.
    [126]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005.
    [127]于永忠.阻燃材料手册[M].北京:群众出版社,1991.
    [128J Bednas M E, Day M, Ho K, et al. Combustion and pyrolysis of poly (ethylene terephthalate). I. The role of flame retardants on products of pyrolysis [J]. Journal of Applied Polymer Science, 1981,26(1):277-289.
    [129]Cooney J D, Day M, Wiles D M. Thermal degradation of poly (ethylene terephthalate):a kinetic analysis of thermogravimetric data [J]. Journal of Applied Polymer Science,1983,28 (9): 2887-2902.
    [130]Vijayakumar C T, Ponnusamy E, Balakrishnan T, et al. Thermal and pyrolysis studies of copolyesters [J]. Journal of Polymer Science:Polymer Chemistry Edition,1982,20 (9): 2715-2725.
    [131]Chang P H, Wilkie C A. A mechanism for flame retardation of poly (ethylene terephthalate) [J]. Journal of Applied Polymer Science,1989,38 (12):2245-2252.
    [132]Edge M, Allen N S, Wiles R, et al. Identification of luminescent species contributing to the yellowing of poly (ethylene terephthalate) on degradation [J]. Polymer,1995,36 (2):227-234.
    [133]江海红,周亨近,张晖.纤维用PET的燃烧及阻燃机理研究[J].北京化工大学学报,1998,25(4):47-53.
    [134]El-Gouri M, E1-Bachiri A, Hegazi S E, et al. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin [J]. Polymer Degradation and Stability,2009,94 (11):2101-2106.
    [135]周向阳,贾德民,严志云.聚酯纤维阻燃技术研究进展[J].合成材料老化与应用,2011,40(1):37-41.
    [136]Yokoshima T, Kitamura T. Reinforced flame-retardant polyester resin composition [P]. U.S. Pat5,326,806 (1994).
    [137]Wang Y Z, Chen X T, Tang X D, et al. A new approach for the simultaneous improvement of fire retardancy, tensile strength and melt dripping of poly (ethylene terephthalate) [J]. Journal of Materials Chemistry,2003,13 (6):1248-1249.
    [138]Ban D M, Wang Y Z, Yang B, et al. A novel non-dripping oligomeric flame retardant for polyethylene terephthalate [J]. European Polymer Journal,2004,40 (8):1909-1913.
    [139]Swoboda B, Buonomo S, Leroy E, et al. Fire retardant poly (ethylene terephthalate)/ polycarbonate/triphenyl phosphite blends [J]. Polymer Degradation and Stability,2008,93 (5): 910-917.
    [140]Zhao C S, Huang F L, Xiong W C, et al. A novel halogen-free flame retardant for glass-fiber-reinforced poly (ethylene terephthalate) [J]. Polymer Degradation and Stability,2008,93 (6): 1188-1193.
    [141]李昌垒,陈建勇,郭玉海,等.涤纶纤维的抗熔滴性能研究[J].浙江理工大学学报,2010,27(003):368-371.
    [142]Wang L S, Wang X L, Yan G L. Synthesis, characterisation and flame retardance behaviour of poly (ethylene terephthalate) copolymer containing triaryl phosphine oxide [J]. Polymer Degradation and Stability,2000,69 (1):127-130.
    [143]赵弘.侧基含磷阻燃共聚酯的研究[D].四川大学.2003.
    [144]Jing X K, Ge X G, Xiang X, et al. A novel phosphorus-containing copolyester with low melting temperature and high flame retardancy [J]. Polymer International,2009,58 (10): 1202-1208.
    [145]Wang J S, Zhao H B, Ge X G, et al. Novel flame-retardant and antidripping branched polyesters prepared via phosphorus-containing ionic monomer as end-capping agent [J]. Industrial and Engineering Chemistry Research,2010,49 (9):4190-4196.
    [146]Qu M H, Wang Y Z, Wang C, et al. A novel method for preparing poly (ethylene terephthalate)/BaSO4 nanocomposites [J]. European Polymer Journal,2005,41 (11):2569-2574.
    [147]纪全,张静,王孝龙,等.阻燃聚酯/蒙脱土纳米复合材料的制备及燃烧性能[J].高分子材料科学与工程,2008,24(6):148-151.
    [148]Ji Q, Wang X L, Zhang Y H, et al. Characterization of poly (ethylene terephthalate)/SiO2 nanocomposites prepared by sol-gel method [J]. Composites Part A:Applied Science and Manufacturing,2009,40 (6):878-882.
    [149]Wang D Y, Liu X Q, Wang J S, et al. Preparation and characterisation of a novel fire retardant PET/a-zirconium phosphate nanocomposite [J]. Polymer Degradation and Stability, 2009,94 (4):544-549.
    [150]张强,黄年华.新型有机磷酸酯对涤纶织物的阻燃和抗熔滴研究[J].武汉科技学院学报,2007,(2):29-32.
    [151]Maruyama K, Motoshige R. Flame retardant thermoplastic resin composition [P]. European Patent EP 0728811 (2003).
    [152]Matsumoto K, Koyama T, Ono Y, et al. Flame retardant thermoplastic resin composition [P], U.S. Pat 6,174,943(2001).
    [153]周晓辉.一种新型含磷硅阻燃剂的合成及在聚酯中的应用[D].北京服装学院.2009.
    [154]Qian L L, Zhi J G, Tong B, et al. Synthesis and characterization of main-chain liquid crystalline copolyesters containing phosphaphenanthrene side-groups [J]. Polymer,2009,50 (20): 4813-4820.
    [155]Ge X G, Wang D Y, Wang Y Z, et al. A novel phosphorus-containing copolyester/montmorilloite nanocomposites with improved flame retardancy [J]. European Polymer Journal,2007,43 (7):2882-2890.
    [156]曲铭海,葛欣国,王玉忠,等.侧基含磷阻燃共聚PET/BaSO4纳米复合材料的合成与性能研究[J].四川大学学报(自然科学版),2006,43(2):408-413.
    [157]丁佩佩,张灯青,蔡再生.膨胀型阻燃剂阻燃涤纶性能研究[J].印染助剂,2010.27(8):24-28.
    [158]Chen D Q, Wang Y Z, Hu X P, et al. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly (ethylene terephthalate) fabrics [J]. Polymer Degradation and Stability,2005,88 (2):349-356.
    [159]郝建钢,张维溪.耐熔滴涤纶、丙纶的制造方法[P].CN 185833.
    [1]陈胜,郑庆康.环状磷腈阻燃剂的研究进展[J].纺织导报,2004,5(5):92-96.
    [2]Allen C W. The use of phosphazenes as fire resistant materials [J]. Journal of Fire Sciences, 1993,11 (4):320-328.
    [3]王春征.磷腈衍生物合成及其在阻燃中的应用[D].河北大学.2007.
    [4]Mathew D, Nair C P R, Ninan K N. Phosphazene-triazine cyclomatrix network polymers: some aspects of synthesis, thermal and flame-retardant characteristics [J]. Polymer International, 2000,49 (1):48-56.
    [5]Tao K, Li J, Xu L, et al. A novel phosphazene cyclomatrix network polymer:design, synthesis and application in flame retardant polylactide [J]. Polymer Degradation and Stability,2011,96 (7): 1248-1254.
    [6]Shin Y J, Ham Y R, Kim S H. Application of cyclophosphazene derivatives as flame retardants for ABS [J]. Journal of Industrial and Engineering Chemistry,2010,16 (3):364-367.
    [7]Zhang T, Cai Q, Wu D Z, et al. Phosphazene cyclomatrix network polymers:some aspects of the synthesis, characterization, and flame retardant mechanisms of polymer [J]. Journal of Applied Polymer Science,2005,95 (4):880-889.
    [8]杨荫堂.纺织品的阻燃即阻燃剂[J].印染,1992,18(3):51-56.
    [9]Chandrasekhar V, Andanvan G T S, Nagendran S, et al. Cyclophosphazene hydrazides as scaffolds for multi-ferrocenyl assemblies:synthesis, structure, and electrochemistry [J]. Organometallics,2003,22 (5):976-986.
    [10]Allcock H R, Hartle T J, Taylor J P, et al. Organic polymers with cyclophosphazene side groups:influence of the phosphazene on physical properties and thermolysis [J]. Macromolecules, 2001,34 (12):3896-3904.
    [11]Xu J W, Toh C L, Ke K L, et al. Thermally stable blue-light-emitting hybrid organic-inorganic polymers derived from cyclotriphosphazene [J]. Macromolecules,2008,41 (24): 9624-9636.
    [12]Kumar D, Fohlen G M, Parker J A, et al. Maleimido substituted aromatic cyclotriphosphazenes [P]. U.S. Pat 4,550,177 (1985).
    [13]Jaeger R D, Gleria M. Poly (organophosphazene)s and related compounds:synthesis, proper ties and applications [J]. Progress in Polymer Science,1998,23 (2):179-276.
    [14]Kumar D, Gupta A D. Aromatic cycloliner phosphazene polyimides based on a novel bis-spiro-substituted cyclotriphosphazene diamine [J]. Macromoleculars,1995,28 (18):6323-6329.
    [15]Kumar D, Gupta A D. Novel processable aromatic thermoplastic polyimides:films, adhesives, moldings, and graphite composites [J]. Polymers for Advanced Technologies,1992,3(1):1-7.
    [16]Kumar D, Gupta A D. Aromatic polyimides based on a novel diamine containing bis-spiro substituted cyclotriphosphazene [J]. Polymeric Preprints,1995,36 (11):247-248.
    [17]Kumar D, Fohlen G M, Parker J A. High-strength fire-and heat-resistant imide resins containing cyclotriphosphazene and hexafluoroisopropylidene groups [J]. Journal of Polymer Science:Polymer Chemistry Edition,1984,22 (4):927-943.
    [18]Zhang T, Cai Q, Wu D Z, et al. Phosphazene cyclomatrix network polymers:some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer [J]. Journal of Applied Polymer Science,2005,95 (4):880-889.
    [19]Kober E, Lederle H, Ottmann G. Reactions of phosphonitrilic chloride with p-nitrophenol [J]. Inorganic Chemistry,1966,5 (12):2239-2240.
    [20]Allcock H R, Austin P E. Schiff base coupling of cyclic and high-polymeric phosphazenes to aldehydes and amines:chemotherapeutic models [J]. Macromolecules,1981,14 (6):1616-1622.
    [21]Allcock H R, Austin P E, Rakowsky T F. Diazo coupling reactions with poly (organophos phazenes) [J]. Macromolecules,1981,14(6):1622-1625.
    [22]Reeves S D, Allcock H R. Synthesis and micellar characterization of an amphilic diblock copolyphosphazene [J]. Macromolecules,2001,34 (2):269-274.
    [23]Kumar D, Fohlen G M, Parker J A. The curing of epoxy resins with aminophenoxy cyclotriphosphazenes [J]. Journal of Polymer Science Part A:Polymer Chemistry,1986,24 (10): 2415-2424.
    [24]Kumbhar P S, Sanchez-Valente J, Millet J M M, et al. Mg-Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate [J]. Journal of Catalysis,2000,191 (2):467-473.
    [25]Kumarraja M, Pitchumani K. Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites [J]. Applied Catalysis A:General,2004,265 (2):135-139.
    [26]孟令芝,何永炳.有机波谱分析[M].湖北:武汉大学出版社,2001.
    [27]宁永成.有机化合物结构鉴定与有机波谱学(第二版)[M].北京:科学出版社,2002.
    [28]谢晶曦.红外光谱在有机化合和药物化学中的应用[M].北京:科学出版社,1987.
    [1]贝聿泷,徐炽.聚酯纤维手册(第二版)[M].北京:纺织工业出版社,1990.
    [2]Zhu X S, Pan Q Q, Xu H S, et al. Effects of coal and ammonium polyphosphate on thermal degradation and flame retardancy of polyethylene terephthalate [J]. Journal of Polymer Research, 2010,17 (5):621-629.
    [3]El-Gouri M, El-Bachiri A, Hegazi S E, et al. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin [J]. Polymer Degradation and Stability,2009,94 (11):2101-2106.
    [4]周向阳,贾德民,严志云.聚酯纤维阻燃技术研究进展[J].合成材料老化与应用,2011,40(1):37-41.
    [5]张军.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005.
    [6]Zohdy M H, Sahar S M, Hassana M S, et al. Thermal behaviour stability of polyester and cotton/polyester graft copolymers obtained by direct radiation grafting of individual and mixed vinyl monomers [J]. Polymer Degradation and Stability,1999,63 (2):187-193.
    [7]薛恩钰,曾敏修.阻燃科学及应用[M].北京:国防工业出版社,1988.
    [8]Wu W D, Yang C Q. Comparison of different reactive organophosphorus flame retardant agents for cotton:Part I. The bonding of the flame retardant agents to cotton [J]. Polymer Degradation and Stability,2006,91(11):2541-2548.
    [9]Van den Eede N, Dirtu A C, Neels H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust [J]. Environment International,2011,37 (2):454-461.
    [10]De Wit CA, Herzke D, Vorkamp K. Brominated flame retardants in the arctic environment-trends and new candidates [J]. Science of the Total Environment,2010,408 (15): 2885-2918.
    [11]Ali N, Harrad S, Goosey E, et al. "Novel" brominated flame retardants in Belgian and UK indoor dust:implications for human exposure [J]. Chemosphere,2011,83 (10):1360-1365.
    [12]Covaci A, Harrad S, Abdallah M A, et al. Novel brominated flame retardants:a review of their analysis, environmental fate and behaviour [J]. Environment International,2011,37 (2): 532-556.
    [13]Horacek H, Grabner R. Advantages of flame retardants based on nitrogen compounds [J]. Polymer Degradation and Stability,1996,54 (2-3):205-215.
    [14]Kaynak C, Isitman N A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide [J]. Polymer Degradation and Stability,2011,96 (6):798-807.
    [15]Atkinson P A, Haines P J, Skinner G A. Inorganic tin compounds as flame retardants and smoke suppressants for polyester thermosets [J]. Thermochimica Acta,2000,360 (I):29-40.
    [16]Dogan M, Yilmaz A, Bayramh E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites [J]. Polymer Degradation and Stability,2010,95 (12):2584-2588.
    [17]Carosio F, Laufer G, Alongi J, et al. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric [J]. Polymer Degradation and Stability,2011,96 (5):745-750.
    [18]Hull T R, Witkowski A, Hollingbery L. Fire retardant action of mineral fillers [J]. Polymer Degradation and Stability,2011,96 (8):1462-1469.
    [19]Chen X S, Yu Z Z, Liu W, et al. Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene [J]. Polymer Degradation and Stability, 2009,94(9):1520-1525.
    [20]Du B X, Guo Z H, Song P A, et al. Flame retardant mechanism of organo-bentonite in polypropylene [J]. Applied Clay Science,2009,45 (3):178-184.
    [21]Becker C M, Gabbardo A D, Fernando W, et al. Mechanical and flame-retardant properties of epoxy/Mg-Al LDH composites [J]. Composites, Part A:Applied Science and Manufacturing, 2011,42(2):196-202.
    [22]张强.新型侧基含磷阻燃共聚酯的合成、表征及阻燃机理研究[D].武汉科技学院.2007.
    [23]薛听秋,孙克平,丁小俊.纯涤纶针织品阻燃整理工艺探讨[J]印染助剂,1986,3(7):20-24.
    [24]宋键,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001.
    [25]舒万艮,熊联明,刘又年.微胶囊红磷阻燃剂的研究进展[J].中国塑料,2002,16(1):12-14.
    [26]欧育湘.阻燃高分子材料[M].北京:国防工业出版社,2001.
    [27]陈曦,于钦学,任文娥,等.聚酯的热分析与热分解动力学的研究[J].绝缘材料,2009,42(3):52-55.
    [28]Tesoro G C, Meiser C H. Some effects of chemical composition on the flammability behavior of textiles [J]. Textile Research Journal,1970,40 (5):430-436.
    [29]Zhang J J, Ji Q, Zhang P, et al. Thermal stability and flame-retardancy mechanism of poly (ethylene terephthalate)/boehmite nanocomposites [J]. Polymer Degradation and Stability,2010, 95(7):1211-1218.
    [30]Dzieciol M, Trzeszczynski J. Volatile products of poly (ethylene terephthalate) thermal degradation in nitrogen atmosphere [J]. Journal of Applied Polymer Science,2000,77 (9): 1894-1901.
    [31]Zhang T, Cai Q, Wu D Z, et al. Phosphazene cyclomatrix network polymers:some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer [J]. Journal of Applied Polymer Science,2005,95 (4):880-889.
    [32]邴柏春.六对甲酰胺乙酸甲酯苯氧基环三磷腈的合成与性能[D].东北林业大学.2009.
    [33]江海红.阻燃PET及其纤维的燃烧性能-燃烧机理-群子参数之间关系的研究[D].北京化工大学.2000.
    [34]王玉忠,王大诚.聚苯基膦酸二苯砜酯对PET凝聚相阻燃作用的研究[J].高分子学报,1996,(4):439-445.
    [35]胡荣祖.热分析动力学[M].北京:科学出版社,2008.
    [36]林木森,蒋剑春.杨木屑热解过程及动力学研究[J].太阳能学报,2008,29(9):1135-1138.
    [37]郝卫辉.PPS纤维热动力学特性及其用于掺炭纤维脱除烟气中零价汞的研究[D].东华大学.2011.
    [1]Shen H, Wang Y H, Mai K C. Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites of magnesium hydroxide filled polypropylene composites [J]. Thermochim Acta,2009:483 (1):36-40.
    [2]Wang Y H, Shen H, Li G, et al. Effect of interfacial interaction on the crystallization and mechanical properties of PP/nano-CaCO3 composites modified by compatibilizers [J]. Journal of Applied Polymer Science,2009,113 (3):1584-1592.
    [3]Wang K Y, Chen Y M. Microstructures and mechanical properties of poly (trimethylene terephthalate)/maleic anhydride grafted poly (ethylene-octene)/polypropylene blends [J]. Journal of Macromolecular Science, Part B:Physics,2010,50 (1):164-171.
    [4]Lai S M, Chen W C, Zhu X S. Melt mixed compatibilized polypropylene/clay nanocomposites.Ⅱ. Dispersion vs. thermal properties, optical transmittance and fracture behaviors [J]. Journal of Composite Materials,2011,45 (25):2613-2631.
    [5]Chiu H T, Hsiao Y K. Impact-modified poly (ethylene terephthalate)/polyehtylene-octene copolymer elastomer blends [J]. Journal of Polymer Research,2005,12 (5):355-359.
    [6]Chiu H T, Hsiao Y K. Compatibilization of poly (ethylene terephthalate)/polypropylene blends with maleic anhydride grafted polyethylene-octene elastomer [J]. Journal of Polymer Research, 2006,13 (2):153-160.
    [7]Zong Y, Cheng Y F, Dai G. The relationship between rheological behavior and toughening mechanism of toughened poly (ethylene terephthalate) [J]. Journal of Composite Materials,2008, 42(16):1571-1585.
    [8]Martel B. Charring processes in thermoplastic polymers:effect of condensed phase oxidation on the formation of chars in pure polymers [J]. Journal of Applied Polymer Science,1988,35 (5): 1213-1226.
    [9]Liu H M, Wang W, Xu X. Thermal stability and flame retardancy of PET/magnesium salt composites [J]. Polymer Degradation and Stability,2010,95 (9):1466-1470.
    [1]袁开军,江治,李疏芬,等.聚氨酯的阻燃机理研究进展[J].高分子材料科学与工程,2006,22(5):1-4.
    [2]常海,王吉贵,甘孝贤.国外含磷系、卤素系阻燃聚氨酯材料的研究进展[J].火炸药学报,2004,27(2):56-59.
    [3]刘斌,杨小燕.聚氨酯材料的阻燃与防火[J].江苏化工,2003,31(6):54-56.
    [4]欧育湘,李秉海,赵毅,等.聚氨酯/改性蒙脱十纳米复合材料的热稳定性及阻燃性[J].聚氨酯工业,2006,(6):6-9.
    [5]Duquesne S, Delobel R, Le Bras M, et al. A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane [J]. Polymer Degradation and Stability,2002,77 (2):333-344.
    [6]Ye L, Meng X Y, Ji X, et al. Synthesis and characterization of expandable graphite-poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams [J]. Polymer Degradation and Stability,2009,94 (6):971-979.
    [7]Pinto U A, Visconte L L Y, Reis Nunes R C. Mechanical properties of thermoplastic polyurethane elastomers with mica and aluminum trihydrate [J]. European Polymer Journal,2001, 37 (9):1935-1937.
    [8]Modesti M, Zanella L, Lorenzetti A, et al. Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes [J]. Polymer Degradation and Stability,2005,87 (2): 287-292.
    [9]Nair P R, Nair C P, Francis D J. Phosphazene-modified polyurethanes:synthesis, mechanical and thermal characteristics [J]. European Polymer Journal,1996,32 (12):1415-1420.
    [10]Dez I, Henry N, De Jaeger R. New heat-resistant polyurethanes prepared from hydroxylated cyclotriphosphazenes [J]. Polymer Degradation and Stability,1999,64 (3):433-437.
    [11]Dez I, Levalois-Mitjaville J, Grutzmacher H, et al. Synthesis of chiral cyclotriphosphazenes and their use in cyclolinear polymers [J]. European Journal of Inorganic Chemistry,1999,1999 (10):1673-1684.
    [12]Reed C S, Taylor J P, Guigley K S, et al. Polyurethane/poly [bis (carboxylatophenoxy) phosphazene] blends and their potential as flame-retardant materials [J]. Polymer Engineering and Science,2000,40 (2):465-472.
    [13]Huang W K, Chen K J, Yeh J T, et al. Curing and combustion properties of a PU-coating system with UV-reactive phosphazene [J]. Journal of Applied Polymer Science,2002,85 (9): 1980-1991.
    [14]Dez I, De Jaeger R. Synthesis of polyurethane/polyethylene grafted polymers using cyclotriphosphazene as a coupling agent [J]. Journal of Applied Polymer Science,2003,89 (7): 1925-1934.
    [15]Yuan C Y, Chen S Y, Tsai C H, et al. Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes:synthesis and properties [J]. Polymers for Advanced Technologies,2005,16 (5):393-399.
    [16]Huang T K, Wang Y C, Hsieh K H, et al. Molecular-level dispersion of phosphazene-clay hybrids in polyurethane and synergistic influences on thermal and UV resistance [J]. Polymer, 2012,53 (19):4060-4068.
    [17]胡源,胡进良,范维澄,等.含羟基环三磷腈衍生物的合成及其对聚氨酯的阻燃改性[J].火灾科学,1996,5(2):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700