用户名: 密码: 验证码:
压电喷墨印刷墨滴成形及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字印刷技术的快速发展,压电喷墨技术作为一种经济、耐用、高效的喷墨技术得到广泛应用。喷墨墨滴作为图像复制的基本单元,承担着图像组成、阶调再现以及颜色复制的基本功能,在印刷复制技术中有着重要的地位。喷墨墨滴的形成、墨滴在介质中的飞行轨迹、墨点在飞行过程中的形态变化,墨滴在承印物表面的干燥特性以及墨滴到达承印物后的状态,都是影响墨滴在印刷复制中的各种功能的基本因素。而压电喷墨技术作为数字喷墨技术的主要方式之一,其产生墨滴尺寸的大小以及尺寸的稳定性,墨滴产生过程中拖尾现象的出现以及由此产生的卫星墨滴,墨滴产生瞬间的速度,墨滴飞行过程中的动态表面张力等都将是数字压电喷墨技术的研究内容。简言之,喷墨过程的研究是为了实现喷墨过程的可控化,标准化和高速化。本论文立足于射流基础理论,通过建立数学模型,计算机模拟和实验研究对喷墨过程进行了系统研究,得出了有效模拟数字压电喷墨墨滴产生的数学模型。在墨滴产生的基础理论上对墨滴在移动承印物上的形态、墨滴飞行轨迹、墨滴干燥以及墨滴动态表面张力等问题进行了深入研究,取得了一定的成果。论文的主要工作和创新点包括:
     (1)对喷墨过程进行了理论建模,确定了模型的边界条件,并在设定的边界条件下对方程求解,得出了喷墨墨滴的理论参数值,然后通过Fluent软件在相同边界条件下对喷墨过程进行模拟,得出了与理论计算结果较为接近的模拟值,最后通过实验验证了数学模型在墨滴产生过程中能够有效模拟喷墨过程的结论。
     (2)建立了压电喷墨数学模型,分析了油墨表面张力、物理粘度、油墨压力等参数对墨滴状态的影响。详细讨论了表面张力在墨滴形成过程中的作用,尤其是在相同条件下,油墨表面张力与墨滴形成过程之间的关系。
     (3)深入研究了压电喷墨墨滴飞行轨迹。通过建立数学模型分析在水平和垂直状态下墨滴的飞行状态及飞行轨迹,最后通过实验验证了该方法的可行性。
     (4)针对正在研发阶段的卷筒料数字喷墨设备,本论文讨论了在承印物移动状态下墨点的定位特性该模型能够有效的判断在承印物移动状态下的喷墨质量。
     (5)对墨滴的快速干燥问题做了深入探讨,建立了基于烘干热风风速和温度的油墨干燥数学模型,为解决高速喷墨印刷干燥问题提供了理论依据,并在此基础上设计了一种高效的油墨烘干装置。
     (6)提出了一种基于墨滴轮廓拟合的表面张力计算方法,该方法是一种有效的获得油墨动态表面张力方法。
     最后,对本文的主要内容以及所取得的主要研究成果进行概括性总结,并对论文中存在的不足进行了分析探讨,为后续的研究工作提出了一些个人见解。
Along with the developing of digital printing technology, the piezoelectric ink-jet printing technology, as an economical, durable and high efficiency ink-jet technology, has been widely applied. The ink-jet droplet as the fundamental element of image reproduction, undertakes the basic function of image constituting, tone reproduction and color reproduction, it's one of the key points in printing reproduction. Many characteristics of ink-jet droplet affect printing reproduction quality, as for the generation of droplet, the flying orbit of the droplet in the medium, the transformation of the droplet during the flying process, the drying process of the droplet on the substrate and the configuration of the droplet on the substrate. As one of the primary digital printing technology, the piezoelectric ink-jet printing parameters will be the key points of research work on this area, for example, the droplet size and its stabilization, the generation of droplet tail and satellite droplet, the instantaneous flying velocity of droplet at the side of the nozzle, the dynamic surface tension of the droplet during the flying process. In one word, the aim of the researching work on piezoelectric ink-jet printing technology is achieving the standardization, controllable and high speed. This paper researching on the piezoelectric ink-jet printing process by modeling, software analog and experiment testing, and all these works are based on the jetting theory. From the process, an effective analog model for piezoelectric ink-jet printing has been found. Based on this model, many droplet characteristics has been researched, include the droplet geometry on substrate, the droplet flying orbit during jetting process, ink droplet drying and the dynamic surface tension of droplet. After all, the primary researching work and conclusion as follow:
     (1) Theoretic modeling of piezoelectric ink-jet printing process and definite its boundary condition, after that, solving the equation at the boundary condition. Analog the printing process under the right boundary condition by software, and the analog result equal to the solution of the equation. At last verifying the analog result by experiment.
     (2)In this thesis, we modeling the piezoelectric ink-jet printing process, analyzed the effectiveness of surface tension, viscosity and ink pressure to the geometry of the droplet, researching on the relationship on the surface tension and droplet formation, especially the surface tension and the droplet formation process.
     (3) The flying orbit of droplet has been researched by modeling and experiment, and after that, the vertical and horizontal flying orbit has been analyzed respectively. At last this method has been confirmed by experiment.
     (4) As web-feed ink-jet printing press be concerned, this paper researching on the position characteristics of ink droplet on moving substrate, so that we can make sure the printing quality under this printing condition.
     (5) Ink drying process has been analyzed, and based on the drying theory, the ink drying mathematical model has been found based on the drying temperature and air speed. This is the theory foundation of the ink drying for high speed ink-jet printing, meanwhile a high efficiency ink drying set has been developed.
     (6) Announced a surface tension calculation method based on the contour fitting, this method is effective to calculate the dynamic surface tension of the flying ink droplet.
     At last, conclude the researching work and record for this thesis, analyzed the defects of the researching process, meanwhile giving some advises for the future researching work in this area.
引文
[1]王运赣.微滴喷射自由成形[M].华中科技大学出版社,2009.
    [2]魏大忠.压电微滴喷射装置的设计[J].清华大学学报(自然科学版).2004,Vo1.(44):27-37.
    [3]Ho-young Kim. Microsensor development for the study of droplet spreading [D]. Massachusetts Institute of Technology,1996.
    [4]昊忠铉.压电式微液滴喷射数学模拟系统之开发与实验研究[D].国立成功大学,2004.
    [5]徐林峰.均匀液滴喷射微制造技术基础研究[D].西北工业大学,2005.
    [6]林聪镒.压电喷墨头流体动态行为之模拟研究[D].国立成功大学,2005.
    [7]吕建桦.挤压管式压电制动喷墨头之微液滴喷射行为动力分析研究[D].国立成功大学,2005.
    [8]Szczech JB, Megaridis CM, Gamota DR, Zhang J. Fine-line conductormanufacturing using drop-on-demand PZT printing technology[J]. IEEE Trans Electron Pack Manuf 2002,25(1):26-33.
    [9]Lee DY, Hwang ES, Yu TU, Kim YJ, Hwang J. Structuring of micro line conductor using electro-hydrodynamic printing of a silver nanoparticle suspension[J]. Appl Phys A 2006,82:671-4.
    [10]Park JW, Baek SG. Thermal behavior of direct-printed lines of silver nanoparticles[J]. Scripta Mater 2006,55:1139-42.
    [11]Bogy DB, Talke FE. Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices[J]. IBM J Res Develop 1984,28(3):314-21.
    [12]Shield TW, Bogy DB, Talke FE. Drop formation by DOD ink-jet nozzles:a comparison of experiment and numerical simulation[J]. IBM J Res Develop 1987,31(1):96-110.
    [13]Meinhart CD, Zhang H. The flow structure inside a microfabricated inkjet printhead[J]. Microelectromech Syst 2000,9(1):67-75.
    [14]Beulen B, Jong J, Reinten H, Berg M, Wijshoff H, Dongen R. Flows on the nozzle plate of an inkjet printhead[J]. Exp Fluids,2007,42:217-24.
    [15]Fromm JE. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM J Res Develop 1984,28(3):322-33.
    [16]Reis N, Ainsley C, Derby B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors[J]. J Appl Phys 2005,97:094903-1-3-6.
    [17]Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability[J]. Langmuir 2009,25(5):2629-35.
    [18]Chen AU, Basaran OA. A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production[J]. Phys Fluids 2002,14(1):1-4.
    [19]Dong H, Carr WW, Morris JF. An experimental study of drop-on-demand drop formation[J]. Phys Fluids 2006,16(2):1-16.
    [20]Sakai S. Dynamics of piezoelectric inkjet printing systems[J]. Proceedings of IS& T's NIP16 2000 international conference on digital printing technologies.2000:15-20.
    [21]Gan HY, Shan X, Eriksson T, Lok BK, Lam YC. Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation[J]. J Micromech Microeng 2009, 19:55-65.
    [22]Tsierkezos NG, Molinou IE. Thermodynamic properties of water+ethylene glycol at 283.15, 293.15,303.15, and 313.15 K[J]. J Chem Eng Data 1998,43:89-93.
    [23]Sun T, Teja AS. Density, viscosity, and thermal conductivity of aqueous ethylene, diethylene, and triethylene glycol mixtures between 290 K and 450 K[J]. J Chem Eng Data 2003,48:198-202.
    [24]Dijksman JF. Hydrodynamics of small tubular pumps[J]. J Fluid Mech 1984,139:173-91.
    [25]Wu H-C, Hwang W-S, Lin H-J. Development of a three-dimensional simulation system for micro-inkjet and its experimental verification[J]. Mater Sci Eng A 2004,373:268-78.
    [26]Link N, Semiat R. Ink drop motion in wide-format printers-Drop flow from drop-on-demand (DOD) printing heads[J]. Chem Eng Process 2008,48:68-83.
    [27]Wijshoff H. Drop formation mechanism in piezo-acoustic inkjet[J]. Proc Nanotech 2007,3:488-91.
    [28]L. William, M. Suresh. Application of Digital Imaging to Measure Print Quality[J]. Proceedings of I S& T's NIP 14 2000 international conference on digital printing technologies 1998:611-614.
    [29]R. Rasmussen, B. Mishra and M. Mongeon. Using Drum and Flatbed Scanners for Color Image Quality Measurements[J]. IS&T's 2000 PICS Conference Proceedings,2000:108-113.
    [30]Jiang Guiping et al. Objective Evaluation and Analysis of line Qualities in Digital Prints[J]. ICMT2010 Conference Proceedings,2010:1024-1031.
    [31]D. J. Forrest et al. Print Quality Analysis as a QC tool for Manufacturing Inkjet Print Heads. Proc[J]. IS&T's NIP14,1998:590-594.
    [32]M. K. Tse and A. H. Klein. Automated Print Quality Analysis in Inkjet Printing:Case Study Using Commercially Available Media. Proc[J]. IS&T's NIP14,1998:167-171.
    [33]B. Streckel, B. Steuernagel, E. Falkenhagen and E.Jung, Objective Print Quality Measurements Using a Scanner and a Digital Camera[J]. IS&T's 2003 PICS Conference Proceedings,2003:145-147.
    [34]Kobayashi H, Kanbe S, Seki S, Kigchi H, Kimura M, Yudasaka I, Miyashita S, Shimoda T, Towns CR, Burroughes JH, Friend RH. A novel RGB multicolour light-emitting polymer display[J]. Synthetic Metals,2000:111-112.
    [35]Cooley P, Wallace D, Antohe B. Applications of ink-jet printing technology to BioMEMS and micro5uidic systems[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers,2001:177-88.
    [36]Danzebrink R, Aegerter MA. Deposition of optical microlens arrays by ink-jet processes[J]. Thin Solid Films,2001,392:223-5.
    [37]Feng C, Yan Y, Zhang R. Comparison and analysis of continuously jetting and discretely jetting method used in rapid ice prototype forming[J]. Materials and Design,2002,23:77-81.
    [38]Thornell G, Klintberg L, Laurell T, Nilsson J, Johansson S. Desktopmicrofabrication-initial experiments with a piezoceramic[J]. Journal of Micromechanics and Microengineering,1999,9:434-437.
    [39]Slade CE, Evans JRG. Freeforming ceramics using a thermal jet printer[J]. Journal of Materials Science Letters,1998,17:1669-1671.
    [40]Windle J, Derby B. Inkjet printing of PZT aqueous ceramic suspensions[J]. Journal of Materials Science Letters,199,18:87-90.
    [41]Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen sca8olds with prede:ned internal morphology made by solid freeform fabrication[J]. Biomaterials 2003,24:1487-1497.
    [42]Fromm JE. Numerical calculation of the 5uid dynamics of drop-on-demand jets[J]. IBM Journal of Research and Development,1984,28(3):322-333.
    [43]Yeh JT. A VOF-FEM and coupled inkjet simulation[J]. Proceedings of ASME FEDSM,2001:1-5.
    [44]Wilkes ED, Phillips SD, Basaran OA. Computational and experimental analysis of dynamics of drop formation[J]. Physics of Fluids 1999,11(12):3577-3598.
    [45]Lee CH:Dropformation in a liquid jet[J]. IBM Journal of Research and Development 1974,364-369.
    [46]Adams RL, Roy J. A one-dimensional numerical model of a drop-on-demand ink jet[J]. Journal of Applied Mechanics,1986,53:193-197.
    [47]Shield TW, Bogy DB, Talke FE. A numerical comparison of one-dimensional 5uid jet models applied to drop-on-demand printing[J]. Journal of Computational Physics,1986,67:327-347.
    [48]Eggers J, Dupont TF. Drop formation in a one-dimensional approximation of the Navier-Stokes equation[J]. Journal of Fluid Mechanics,1994,262:205-221.
    [49]Chen PH, Peng HY, Liu HY, Chang SL, Wu TI, Cheng CH. Pressure response and droplet ejection of a piezoelectric inkjet printhead. International[J]. Journal of Mechanical Sciences,1999,41:235-248.
    [50]S. Lee, D. Byun, S. J. Han, S. U. Son, Y. Kim and H.S. Ko, Electrostatic Droplet Formation and Ejection of Colloid[J], Proc. of Micro-Nanomechatronics and Human Science,2004:249-254.
    [51]A Sou, K. Sasai and T. Nakajima, Numerical Simulation of Electrostatic Micro-Inkjet[J], Proc. of Microprocesses and Nanotechnology Conference,2004:26-27.
    [52]A Sou, K. Sasai and T. Nakajima, Interface Tracking Simulation of Ink Jet Formation by Electrostatic Force[J], Proc. Of ASME FEDSM'01,2001,10:1-6.
    [53]P. K. Notz and O. A. Basaran, Dynamics of Drop Formation in an Electric Field[J], Journal of Colloid and Interface Sciences,1999,213:218-237.
    [54]O. Lastow and W Balachandran, Numerical Simulation Of lectrohydrodynamics (EHD) Atomization[J], Journal of Electrostatics,2006,64 (12):850-859.
    [55]J. Zeng, D. Sobek and F. T. Korsmeyer, Electro-Hydrodynamic modeling of Electrospray Ionization:CAD for a μFluidic Device-Mass Spectrometer Interface[J], Proc. Of Transduers,2003,1(2): 1275-1278. [56] Y. Mizuyama, A Characteristic Finite Element Analysis with a Level Set Method for an Electrohydrodynamics[J]. Flow Transactions of Japan Society for Computational Engineering and Science, 2003,5:73-82.
    [57]K.S. Kwon, S.J. Shin, S.J. Kim, The opportunity of printing technology for display manufacturing process, in:Proceedings of Colloquium on Micro/nano[J]. Thermal Engineering,2005,8:17-19.
    [58]K.S. Kwon, W. Kim, A waveform design method for high speed inkjet printing based on self-sensing measurement[J], Sensors and Actuators A,2007.140:75-83.
    [59]T. Gohda, Y. Kobayashi, K. Okanao, S. Inoue, K. Okamoto, S. Hashimoto, E. Yamamoto, H. Morita, S. Mitsui, M. Koden. A 3.6-in 202-ppi full-colour AMPLED display fabricated by ink-jet method[P], USA:46834681.
    [60]H.S. Koo, M. Chen, P.C. Pan, L.T. Chou, F.M. Wu, S.J. Chang, T. Kawai, Fabrication and chromatic characteristics of the greenish LCD colourfilter layer with nano-particle ink using inkjet printing technique[J]. Displays,2006,27:124-129.
    [61]L.T. Creagh, M. McDonald, W. Letendre, Ink Jet Printhead as aprecision deposition tool in manufacturing FPDs[J], SEMICON China 2004, FPD Manufacturing Conference,2004,1:1325-1329.
    [62]D. Albertalli, Gen 7 FPD inkjet equipment-development status, SID 05 Digest.
    [63]D.B. Bogy, F.E. Talke, Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices[J]. IBM Journal of Research and Development,1984,28 (3):314-321.
    [64]L. Setti, A. Fraleoni-Morgera, B. Ballarin, A. Filippini, D. Frascaro, C. Piana. Anamperometric glucose biosensor prototype fabricated by thermal inkjet printing[J]. Biosens. Bioelectron,2005,20:2019-2026.
    [65]F-C. Chen, J-P. Lu, W-K. HuangUsing. Ink-jet printing and coffee ring effect to fabricate refractive microlens arrays[J]. IEEE Photon. Technol. Lett,2009,21 (10):648-650.
    [67]J. Bharathan, Y. Yang. Polymer electroluminescent devices processed by inkjet printing-Polymer light-emitting logo[J]. Appl. Phys. Lett,1998,72:2660-2662.
    [68]R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop, Phys. Rev. E 62 (2000):756-762.
    [69]D. Kim, S. Jeong, B.K. Park, J. Moon. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions[J]. Appl. Phys. Lett, 2006,98:264-271.
    [70]D.B. van Dam, Ch. Le Clerc. Experimental study of the impact of an ink-jet printed droplet on a solid substrate[J]. Phys. Fluids,2004,16 (9):3403-3414.
    [71]D. Soltman, V. Subramanian. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir,2008,24:582-589.
    [72]M. Ikegawa, H. Azuma. Droplet behaviors on substrates in thin-film formation using ink-jet printing[J]. JSME Int,2004,47 (3):490-496.
    [73]H. Hu, R.G. Larson. Analysis of the microfluid flow in an evaporation sessile droplet[J]. Langmuir,2005,21:3963-3971.
    [74]P.C. Dunieveld. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate[J]. Fluid Mech,2002,477:175-200.
    [75]L.W. Schwartz, R.R. Eley. Simulation of droplet motion on low-energy and heterogeneous surfaces[J]. Colloid Interf. Sci,1998,202:173-188.
    [76]N. Alleborn, H. Raszillier. Spreading and sorption of a droplet on a porous substrate[J]. Chem. Eng,2004,59:2071-2088.
    [77]D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley. Wetting and spreading[J], Rev. Mod. Phys, 2009,81:739-805.
    [78]H.P. Langtangen. Computational Partial Differential Equations. Numerical Methods and Diffpack Programming[M], second ed., Springer,2003.
    [79]J. Park, J. Moon. Control of colloidal particle deposit pattern with picoliter droplets ejected by ink-jet printing[J]. Langmuir,2006,22:3506-3513.
    [80]M. Ikegawa, H. Azuma. Droplet behaviours on substrates in thin-film formation using ink-jet printing[J]. JSME Int,2004, B 47 (3):490-496.
    [81]M. Pasandideh-Fahr, Y.M. Qiao, S. Chandra, J. Mostaghimi. Capillary effects during droplet impact on a solid surface[J]. Phys. Fluids,19996,8 (3):650-659.
    [82]J.de Jong, H. Reinten, M.vanden Berg, H. Wijshoff, M. Versluis, G.de Bruin. A. Prosperetti and D. Lohse[J]. J. Acoust. Soc.Am,2006,120(3):1257-1267.
    [83]M.B.Groot Wassink. Inkjet printhead performance enhancement by feedforward input design based on two-port modeling[D], PhD thesis, Delft,2007.
    [84]A.U. Chen. P.K. Notz and O.A. Basaran[J]. Phys. Rev. Lett,2002,88:174-501.
    [85]B. Beulen, J. de Jong, H. Reinten, M. van den Berg. Wijshoff, R. van Dongen and D. Lohse[J]. In Fluids,2007,42:217-235.
    [86]J. de Jong, R. Jeurissen, H. Borel, M. van den Berg, H. Wijshoff, A. Prosperetti, H. Reinten and D. Lohse[J]. Phys. of Fluids,2006,18(1):26-34.
    [87]J.de Jong, H. Reinten, M.vanden Berg, H. Wijshoff. Versluis, G.de Bruin, A. Prosperetti and D. Lohse[J], Acoust. Soc.Am,2006,120(3),1257-1264.
    [88]M.B.Groot Wassink. Inkjet printhead performance enhancement by feedforward input design based on two-port modeling[D]. PhD thesis,USA 2007.
    [89]A.U. Chen, P.K. Notz and O.A. Basaran[J]. Phys. Rev. Lett,2002,88:174-182.
    [90]B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, R. van Dongen and D. Lohse[J], In Fluids,2007,42:217-231.
    [91]J. de Jong, R. Jeurissen, H. Borel, M. van den Berg, H. Wijshoff, A. Prosperetti, H. Reinten and D. Lohse[J], Phys. of Fluids,2006 18(1):24-38.
    [92]Basheer,I. A. and Hajmeer, M. Artificial neural networks:fundamentals, computing, design, and application[J]. Micro. Meth.,2000,43:3-31.
    [93]Guo, D., Wang, Y. L. and Xia, J. T. et al. Investigation of BaTiO3 formulation:an artificial neural network method[J]. Eur. Ceram. Soc,2002,22:1867-1872.
    [94]Fang, K. T. Homogeneous Design and Homogeneous Design Tables[M]. Science Press, Beijing, 1994.
    [95]Navak, B. Superfast autoconfiguring artificial neural networks and their application to power systems[J]. Electr. Pow. Syst. Res,1995,35:11-16.
    [96]Garg, A. and Agrawal, D. C., Structural and electrical studies of CeO2 modified lead zirconate titanate ceramics[J]. Mater. Sci. Mater. El.,1999,10:649-652.
    [97]Kuo-Long Pan. Dynamics of droplet colllision and flame-front motion[D], Princeton University, 2004.
    [98]Ningli Liu. Numerical simulation of fluid flow and heat transfer in microchannels[D], Columbia University,2006.
    [99]ROSEN Mitchell. OHTA Noboru. Color Desktop Printer Technology [M]. London: Tylor&Francis Group,2006.
    [100]Heinzl J, Hertz C H. Advance Electronics and Electron Physics, Inkjet Printing[J].1985,65: 91-171.
    [101]L. P. Hue. Progress and Trends in Ink-jet Printing Technology, Journal of Imaging science and Technology[J],1998,42:.49-62.
    [102]Q. Liu, High Precision Solder Droplet Printing Technology and the State-of-the-Art[J], Journal of Materials Processing Technology,2001,115:271-283.
    [103]M. Grove, D. Hayes, R. Cox and D. Wallace. Color Flat Panel Manufacturing Using Ink Jet Technology[J], Proceeding of Display Works, San Jose,2006.
    [104]Briinahl, Jurgen, Grishin, Alex M. Piezoelectric shear mode inkjet actuator[J], Materials Research Society Symposium-Proceedings,2006,687:21-26.
    [105]Derby, B. Lee, D.H. Development of PZT suspensions for ceramic ink-jet printing[J]. Materials Research Society Symposium-Proceedings[J].2003,758:113-118.
    [106]Kim.Youngjae, Sim. Wonchul, Park. Changsung, The effects of driving waveform of piezoelectric industrial inkjet head for fine patterns, Proceedings of 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems[J],1st IEEE-NEMS,2006:826-831.
    [107]Brunahl,Jurgen. Piezoelectric shear mode drop-on-demand inkjet actuator[J], Sensors and Actuators, A:Physical,2002,101:371-382.
    [108]Wu,.Hsuan-Chung, Shan. Tzu-Ray. Study of micro-droplet behavior for a piezoelectric inkjet printing device using a single pulse voltage pattern[J], Materials Transactions,2004,45:1794-1801.
    [109]Kim. Hak Sung, Kang. Jin Sung. Inkjet printed electronics for multifunctional composite structure[J]. Composites Science and Technology,2009,69:1256-1264.
    [110]Wu. Hsuan-Chung, Shan. Tzu-Ray. Study of micro-droplet behavior for a piezoelectric inkjet printing device using a single pulse voltage pattern[J]. Materials Transactions,2004,45:1794-1801.
    [111]Gubbins KE, Moore JD. Molecular modeling of matter:impact and prospects in engineering[J]. Ind Eng Chem Res,2009,49(7):3026-3046.
    [112]Kadau K, Barber JL, Germann TC, Holian BL, Alder BJ. Atomistic methods in fluid simulation[J]. Philos T R Soc 1996:1547-1560.
    [113]Germann TC, Kadau K. Trillion-atom molecular dynamics becomes a reality[J]. J Mod Phys C, 2008,19(9):1315-1319.
    [114]Succi. S. The Lattice-Boltzmann equation for fluid dynamics and beyond[M]. Clarendon, Oxford,2001.
    [115]Verhaeghe F, Luo L-S, Blanpain B. Lattice Boltzmann modeling of microchannel flow in slip flow regime[J]. Comput Phys,2008,228(1):147-157.
    [116]Chen S, Doolen GD. Lattice Boltzmann method for fluid flows[J]. Annu Rev Fluid Mech 2002, 30:329-364.
    [117]Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991). Lattice Boltzmann model of immiscible fluids. Phys Rev,1991. A43(8):4320-4327
    [118]Shan XW, Chen HD (1993) Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Phys Rev E47,1993,3:1815-1819.
    [119]Swift MR, Orlandini E, Osborn WR, Yeomans JM. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Phys Rev E 1996.54(5):5041-5052
    [120]Luo LS, Girimaji SS. Theory of the lattice Boltzmann method:two-fluid model for binary mixtures[J]. Phys Rev E 20003,67(3):036302.
    [121]Cheng M, Hua J, Lou J. Simulation of bubble-bubble interaction using a lattice Boltzmann method[J]. Comput Fluids,2010,39(2):260-270.
    [122]Lishchuk SV, Care CM, Halliday I. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents[J]. Phys Rev 2003, E 67(3):036701.
    [123]Jia XL, McLaughlin JB, Kontomaris K. Lattice Boltzmann simulations of flows with fluid-fluid interfaces[J]. Asia-Pac J Chem Eng,2006,3(2):124-143.
    [124]Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases 1. Small amplitude processes in charged and neutral one-component systems[J]. Phys Rev,1984,94(3):511-525.
    [125]Luo LS, Girimaji SS. Theory of the lattice Boltzmann method:two-fluid model for binary mixtures[J]. Phys Rev E,2003,67(3):036302.
    [126]Pooley CM, Furtado K. Eliminating spurious velocities in the free-energy lattice Boltzmann method[J]. Phys Rev E,2008,77(4):046702.
    [127]Nourgaliev RR, Dinh TN, Theofanous TG, Joseph D. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications[J]. Multiphase Flow,2003,29(1):117-169.
    [128]Chao J, Mei R, Singh R, Shyy W. A filter-based, massconserving lattice Boltzmann method for immiscible multiphase flows[J]. Numer Methods Fluids,2011,66(5):622-647.
    [129]Bao J, Yuan P, Schaefer L. A mass conserving boundary condition for the lattice Boltzmann equation method[J]. Comput Phys,2008,227(18):8472-8487.
    [130]Stone HA, Kim S. Microfluidics:basic issues, applications, and challenges[J]. AIChE J 2001, 47(6):1250-1254.
    [131]Pozrikidis C. Interfacial dynamics for stokes flow[J]. Comput Phys,2001,169(2):250-301.
    [132]Sun DL, Tao WQ. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows[J]. Heat Mass Transf,2010,53(4):645-655.
    [133]Compere G, Marchandise E, Remacle J-F. Transient adaptivity applied to two-phase incompressible flows[J]. Comput Phys 2008,227(3):1923-1942.
    [134]Ginzburg I, Wittum G. Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants[J]. Comput Phys,2001,166(2):302-335.
    [135]Sussman M. A second order coupled level set and volume-offluid method for computing growth and collapse of vapor bubbles[J]. Comput Phys,2003,187(1):110-136
    [136]Ceniceros HD. The effects of surfactants on the formation and evolution of capillary waves[J]. Phys Fluids,2003,15(1):245-256.
    [137]Tryggvason G, Thomas S, Lu J, Aboulhasanzadeh B. Multiscale issues in DNS of multiphase flows[J]. Acta Math Sci,2010,30(2):551-562.
    [138]Davis RH, Schonberg JA, Rallison M. The lubrication force between two viscous drops[J]. Phys Fluids A,1989,1(1):77-81.
    [139]Saliterman S. Fundamentals of bioMEMS and medical microdevices. SPIE, Bellingham.2006.
    [140]Tomar G, Fuster D, Zaleski S, Popinet S. Multiscale simulations of primary atomization[J]. Comput Fluids,2010,39(10):1864-1874.
    [141]Chung TJ. Computational fluid dynamics. Cambridge University Press, Cambridge.2002.
    [142]Chatzikyriakou D, Walker SP, Hewitt GF, Narayanan C, Lakehal D. Comparison of measured and modelled droplet-hot wall interactions[J]. Appl Therm Eng,2009,29(7):1398-1405.
    [143]Marchandise E, Remacle J-F, Chevaugeon N. A quadraturefree discontinuous Galerkin method for the level set equation[J]. J Comput Phys,2006,212(1):338-357.
    [144]Muradoglu M. Axial dispersion in segmented gas-liquid flow:effects of alternating channel curvature[J]. Phys Fluids,2010,22(12):122106.
    [145]Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J Comput Phys,1981,39(1):201-225.
    [146]Hessel V, Angeli P, Gavriilidis A, Lowe H. Gas-liquid and gas-liquid-solid microstructured reactors:contacting principles and applications[J]. Ind Eng Chem Res,2005m 44(25):9750-9769.
    [147]Aota A, Mawatari K, Kitamori T. Parallel multiphase microflows:fundamental physics, stabilization methods and applications[J]. Lab Chip,2009,9(17):2470-2476.
    [148]Rannou G. Lattice-Boltzmann method and immiscible twophase flow, Master Thesis. Georgia Institute of Technology, Atlanta.2008.
    [149]Angeli P, Gavriilidis A. Hydrodynamics of Taylor flow in small channels:a review. P I[J]. Mech Eng C-J Mec,2008,222(5):737-751.
    [150]Gupta A, Murshed SMS, Kumar R. Droplet formation and stability of flows in a microfluidic T-junction[J]. Appl Phys Lett,2009,94(16):164107.
    [151]Ndinisa NV, Wiley DE, Fletcher DF (2005) Computational fluid dynamics simulations of Taylor bubbles in tubular membranes-model validation and application to laminar flow systems[J]. Chem Eng 2005,83:40-49.
    [152]Zhao B, Moore JS, Beebe DJ. Surface-directed liquid flow inside microchannels[J]. Science,20001,291 (5506):1023-1026.
    [153]Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Phys Rev Lett,2003,90(14):144505.
    [154]Wolf FG, dos Santos LOE, Philippi PC. Capillary rise between parallel plates under dynamic conditions[J]. J Colloid Interf Sci,2010,344(1):171-179.
    [155]Kandlikar SG. Scale effects on flow boiling heat transfer in micro-channels:a fundamental perspective[J]. Int J Therm Sci,2010,49(7):1073-1085.
    [156]Mukherjee A. Contribution of thin-film evaporation during flow boiling inside microchannels[J]. Int J Therm Sci,2009,48(11):2025-2035.
    [157]Lee W, Son G. Bubble dynamics and heat transfer during nucleate boiling in a microchannel[J]. Numer Heat Tr A-App,2008,153(10):1074-1090.
    [158]Son G, Dhir VK (1998) Numerical simulation of film boiling near critical pressures with a level set method[J]. J Heat Transf,1998,120(1):183-192.
    [159]Fair RB. Digital microfluidics:is a true lab-on-a-chip possible[J]. Microfluid Nanofluid,2007, 3(3):245-281.
    [160]Jousse F, Farr R, Link DR, Fuerstman MJ, Garstecki P. Bifurcation of droplet flows within capillaries[J]. Phys Rev,2006, E74(3):036311.
    [161]Sessoms DA, Belloul M, Engl W, Roche M, Courbin L, Panizza P. Droplet motion in microfluidic networks:Hydrodynamic interactions and pressure-drop measurements[J]. Phys Rev,2009, E80(1):016317.
    [162]Gleichmann N, Malsch D, Kielpinski M, Rossak W, Mayer G, Henkel T. Toolkit for computational fluidic simulation and interactive parametrization of segmented flow based fluidic networks[J]. Chem Eng J,2008,135:S210-S218.
    [163]J. W. Gibbs. The Collected Works (M), Longmans & Green and Company, New York,1928.
    [164]R. C. Tolman. The superficial density of matter at a liquid-vapor boundary [J]. J Chem Phys. 1949,17:118-127.
    [165]C. T. Chen, C. C. Chieng. Self-formation and release of arbitrary-curvatured structures utilizing droplet deposition and structured surface [J]. Journal of Micromechanics and Microengineering,2008, 18:88-96.
    [166]M. Mareschal, M. Baus, R. Lovett. Local pressure in a cylindrical liquid-vapor interface:a simulation study [J]. Journal of Chemical Physics,1997,106:645-657.
    [167]H. Qiu, H. Zhu. An algorithm of degenerative vertebral contour detection in 3D space [J]. Journal of Computational Information Systems,2012,8:1765-1773.
    [168]K. C. Fan, J. Y. Chen. Precision in situ volume measurement of micro droplets [J]. J. Opt. A: Pure Appl,2009,11:12-20.
    [169]T. V. Bykov, X.C. Zeng. Statistical mechanics of surface tension and tolman length of dipolar fluids [J]. J Phys Chem B,2001,105:11586-11594.
    [170]Martin Wo"rner. Numerical modeling of multiphase flows in microfluidics and micro process engineering:a review of methods and applications[J]. Microfluid Nanofluid,2012,12:841-886.
    [171]D. Bonn, J. Eggers, J. Indekeu, J. Meunier. Rolley E Wetting and spreading[J]. Rev Mod Phys, 2009,81:739-805.
    [172]] K. Koga, X. C. Zeng. Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor2liquid coexistence [J]. J Chem Phys,1999,110:3466-3471.
    [173]W. Y. Liu, X. M. Sun, L. Wang, Trademark contour extraction based on improved snake model [J]. Journal of Computational Information Systems,2009,5:1253-1260.
    [174]G. Pestka, M. Bylicki, J.Karwowski. Application of the complex-coordinate rotation to the relativistic Hylleraas-CI method:A case study [J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2006,39:2979-2987.
    [175]颜梅.新型水性油墨的研究[D].西安:西安理工大学,2006.
    [176]陈荣夫.中国的绿色印刷[J].海德堡媒体技术,2006,VOL(1):15-53.
    [177]廖少华.水性油墨废水处理技术的研究[D].杨凌.西北农林科技大学,2008.
    [178]崔春芳.水性油墨工业的发展趋势[J].中国防伪报道,2008,VOL(4):3646.
    [179]凌云星,马禾.塑料薄膜凹版水性印刷油墨:中国,0057929.3[P].2010-08-04.
    [180]Worthan A G. Emissions From Office Equipment[P]. USA:ASAE St. Joseph MI,1967.
    [181]孙加振,魏先福.影响塑料水性凹印油墨干燥性因素的研究[J].包装工程,2010:VOL(31),No.17:118-120.
    [182]John Doe, Recent Progress in Digital Halftoning Ⅱ[J]. IS&T, Springfield, VA,1999,1:173.
    [183]M. Smith, Digital Imagin[J]. Jour. Imaging. Sci. and Technol,1998,42:112-118.
    [184]X.E. Jones, An Inexpensive Micro-Goniophotometry[J]. You Can Build, Proc. PICS,1998,1: 179-187.
    [185]Herman Wijshoff, Manupulating Drop in Piezo Acoustic Ink Jet[J]. IS&T, Digital printing and technology,2006,1:83-93.
    [186]Paul F.Reboa, John R.moffatt, William R.Knight. inkjet ink having Improved Directionality by Controlling Surface Tension and Wetting Properies[P]. P.US. US20020145653A1.2002,
    [187]D. C. Vadillo, T. R. Tuladhar, A. C. Mulji, M. R. Mackley. The Rheological Characterization of Linear Viscoelasticity for Inkjet Fluids Using Piezo-axial Vvibrator and Torsion resonator Rheometers[J]. Journal of Rheology,2010,54:4-11.
    [188]Meng H. Lean, Vittorio R.Castelli,Joannes N.M.dejong, A.Williams, Inkjet Printing Having Improved Ink Droplet Placement[P], P.US. US006079814,2006.
    [189]Isao Suzuki, Masashi Shimosato, Hiroshi. Print Head and Manufacturing Method Thereof. P.US, US006592206B1,2006.
    [190]Park, B. J, Park, B. O, Ryu, B. H., Choi, Y. M., Kwon, K. S, Choi, H. J. Rheological Properties of Ag Suspended Fluid for Inkjet Printing[J]. Journal of Applied Physics,2010,10:108-116.
    [191]Francis P.Giordano, Lawrence Kuhn, Ramon Kuhn, Chen-Hsiung Lee. Ink Jet Printing Head[P]. P.US, US004188635,2004.
    [192]Anderson, J.D. Fundamentals of Aerodynamics. McGraw-Hill, NewYork,1991.
    [193]Brown, R.B., Sidahmed, M.M.. Simulation of spray dispersal and deposition from a forestry airblast sprayer—part Ⅱ:droplet trajectory model[J]. Transactions of ASAE,2001,44 (1):11-17.
    [194]Buehner, W.L., Hill, J.D., Williams, T.H.,Woods, J.W. Application of ink-jet technology to a word processing output printer[J]. IBM Journal of Research and Development,1997,21:2-9.
    [195]Coulson, J.M., Richardson, J.F., Backhurst, J.R., Harker, J.H. Chemical Engineering, Pergamon Press, Oxford,1978.
    [196]Faeth, G.M. Current status of droplet and liquid combustion[J]. Progress in Energy and Combustion Science,1997,3:191-224.
    [197]Fromm, J.E. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM Journal of Research Development,1984,28:323-333.
    [198]Kaye, G.W.C., Laby, T.H. Tables of Physical and Chemical Constants.16th ed. Longman, Essex. Lee, E.R.. CRC Press, Boca Raton,1995.
    [199]Mohebi, M.M., Evans, J.R.G. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics[J]. Journal of Combinatorial Chemistry,2002,4:267-274.
    [200]Mohebi, M.M., Evans, J.R.G. Combinatorial ink-jet printer for ceramics:calibration[J]. Journal of the American Ceramic Society,2002,86 (10),1654-1661.
    [201]Mott, M., Song, J.H., Evans, J.R.G. Microengineering of ceramics by direct ink-jet printing[J]. Journal of the American Ceramic Society,1999,82 (7):1653-1658.
    [202]Mundo, C., Sommerfeld, M., Tropea, C. Droplet-wall collisions—experimental studies of the deformation and breakup process. International[J]. Journal of Multiphase Flow,2004,21:151-173.
    [203]Pimbley, W.T., Lee, H.C. Satellite droplet formation in a liquid jet[J]. IBM Journal of Research and Development,1997,1:21-30.
    [204]Reynolds, A.J. Turbulent Flows in Engineering. Wiley, London,1974.
    [205]Roberson, J.A., Crowe, C.T. Engineering Fluid Mechanics, Sixthed. Wiley, New York,1997.
    [206]Seerden, K.A.M., Reis, N., Evans, J.R.G., Grant, P.S., Halloran, J.W., Derby, B. Ink-jet printing of wax-based alumina suspensions[J]. Journal of the American Ceramic Society,2001,84 (11):2514-2520.
    [207]Stow, C.D., Hadfield, M.G. An experimental investigation of liquid flow resulting from the impact of a water droplet with an unyielding dry surface[J]. Proceedings of the Royal Society London A 1981,373:419-441.
    [208]White, F.M. Fluid Mechanics. McGraw-Hill, New York,1999.
    [209]Wright, M.J., Evans, J.R.G. Ceramic deposition using an electromagnetic jet printer station[J]. Journal of Materials Science Letters,1999,18:99-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700