用户名: 密码: 验证码:
矿用电机车的永磁同步电机控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的矿用电机车大都采用直流串励电动机作为牵引电机,控制采用串电阻调速或斩波调速,少部分电机车采用三相异步电动机作为牵引电机,控制采用变频调速控制,以上系统具有结构简单、便于操作、初期投入低等优点,在国内矿用电机车中得到广泛的应用。随着矿山企业对安全高效、环保和节能提出更高的要求,采用高新技术替代传统技术显得尤为迫切。利用永磁同步电动机作为牵引电机的控制方案,具有结构简单、效率高、安全性能好、系统可靠等优点,在矿山牵引行业具有广阔的应用前景。
     本文针对矿用电机车牵引的要求以及使用频繁、环境恶劣等特点,以无传感器永磁同步电动机的牵引控制系统作为研究对象,围绕矿用机车牵引实践中存在的关键问题,研究相关控制方法并应用于无传感器永磁同步电动机的调速装置,通过大量的工业现场实践工作,使得牵引系统达到了工程应用的要求。本文研究注重理论和实践相结合,紧扣矿用电机车控制的实际问题,研究工作主要包括以下几个方面:
     1、无传感器永磁同步电动机需要准确地获取转子位置和转速信息,本文研究和探讨了一种较为简便易行的方案,即基于锁相环(PLL)原理的转子位置估计器。进一步地,本文鉴于三相交流电机数学模型的共性,提出将原先广泛应用于异步电机的静态补偿电压模型(SCVM)方案应用于永磁同步电机的转子位置估计方法。结果表明采用这种转子位置和转速估计的永磁同步电机无传感器矢量控制系统表现出较好的动静态性能。
     2、对于如何实现在电动机低速甚至零速条件下仍然能够对转速和转矩实现有效控制,本文研究了两种基于高频信号注入的内置式永磁同步电机(IPMSM)无传感器低速控制方法,即高频脉振电压注入法和高频旋转电压注入法。这两种控制方法都是采用额外注入高频电压信号的方式,通过对电机高频电流响应进行适当的信号处理后提取出用于转子位置和转速估计的偏差信号,所设计的高频注入仿真模型能够实现电机低速甚至零速状态的稳定有效运行,仿真和实际应用结果表明两种方法对电机转子位置和转速都具有良好的跟踪效果。
     3、针对永磁电动机调速装置相对封闭,散热性能差的实际问题,论文提出采用降低开关频率的永磁同步电机复矢量控制方法。通过建立永磁同步电机无传感器矢量控制模型,对不同调节器性能的评估分析表明,采用直接设计法的离散复矢量电流控制器具有较强的鲁棒性,其性能表现最优。通过应用该方法,使得调速装置在实际应用过程中降低了发热量,有效解决了设备应用过程中因温升过高而频繁保护的问题,提高了系统的可靠性。
     4、无传感器永磁同步电动机初始位置检测的准确性直接决定着电动机的启动特性,论文探讨了基于高频脉振电压注入和高频旋转电压注入的内置式永磁同步电机的两种转子初始位置检测方法,能够在电机的电流响应中得到准确的转子初始位置,仿真和实际应用表明所设计的初始位置仿真模型的有效性和可行性,解决了无传感器条件下内置式永磁同步电动机转子初始位置检测这一关键问题。
     5、通过大量的牵引试验和现场工程应用表明,以高性能数字信号处理器为硬件核心,设计满足逆变器控制和电机车控制的调速器控制电路,将如何获取转子位置和转速信息、如何实现转速和转矩控制、如何降低功率器件开关频率等关键控制技术应用于调速装置中,有效解决了电机车采用无传感器永磁同步电动机控制的相关关键问题。工程应用表明,电机车的系统结构更加合理,防爆性能可靠,具有电制动功能,启动平滑,刹车距离短;无论驱动过程还是制动过程,均为无级调速,机械冲击小,极大降低了机械磨损,维护工作量大大降低;同时机车的续航里程大大提高,提高了机车的使用效率。总之,采用永磁同步电动机及其控制系统的矿用电机车具有安全、高效、节能等优点。
Traditional mining electric locomotive mostly adopted DC series excitationmotor as the traction motor which uses serial-resistance speed governing or chopperregulator. A small part of electric locomotives adopted three-phase asynchronousmotor as the traction motor which was frequency control of motor speed. The abovesystems, which had advantages of simple structure and operation, low initialinvestment, have been widely used in domestic mining electric locomotive. Withhigh demands for safety, efficiency, environmental protection and energy savingproposed by mining enterprises, it is particularly urgent to replace traditionaltechnology with high-technology. The control scheme of using permanent magnetsynchronous motor as the traction motor has many advantages such as simplestructure, high efficiency, good safety performance and reliable system, etc. In thefuture this kind of motor will has a broad prospect in mining industry.
     In view of the demand of mine electric locomotive traction and thecharacteristic of frequent use and bad environment, etc, traction control system ofsensor-less permanent magnet synchronous motor is considered as research object inthe dissertation. Key practical problems in mine locomotive traction are analysed,related control method is studied and applied to the speed control device of thesensor-less permanent magnet synchronous motor. Through massive practical work,the traction system can match the demand of engineering application. The studytakes into account both theory and practice, aims at practical problems in mineelectric locomotive control, and the main research works include the followingaspects:
     1、It is essential to obtain the information of rotor position and speed forsensor-less permanent magnet synchronous motor. A simple solution, that is rotorposition estimator based on the principle of phase lock loop (PLL), is proposed inthis dissertation. Furthermore, in view of generality of the mathematical model of three-phase ac motor. the dissertation originally proposed that static compensationvoltage model (SCVM) scheme which has been widely used in asynchronous motorsis applied to the position estimation method of permanent magnet synchronousmotor rotor. Result indicates that sensor-less permanent magnet synchronous motorvector control system using the rotor position and speed estimation showed gooddynamic and static performance.
     2、Aimed at effective control of motor speed and torque at low speed and zerospeed, two kinds of interior permanent magnet synchronous motor (IPMSM)sensor-less control methods at low speed, based on high frequency signal injection,are studied in the dissertation, namely high frequency pulse vibration voltageinjection method and high frequency rotating voltage injection method. Both controlmethod use extra high frequency voltage signal injection method. The error signal ofthe rotor position and speed estimation is extracted by proper signal processing fromthe motor high frequency current response. The design of high frequency injectionsimulation model can achieve stable and effective operation of the motor at lowspeed and zero speed. Simulation and actual application results show that the twomethods have good tracking effect to the motor rotor position and speed.
     3、According to the actual problems that permanent magnet motor drive devicehas poor heat dissipation, a new method, reducing the switch frequency ofpermanent magnet synchronous motor complex vector control,is proposed in thedissertation. Through the establishment of permanent magnet synchronous motorsensor-less vector control model, analysis of different controller performanceassessment shows that discrete vector current controller using the direct designmethod has strong robustness and optimal performance. Thus, the speed regulationdevice reduces the calorific value in the process of practical application. Theproblem of frequent protection caused by high temperature is solved and the systemis more reliable.
     4、The accuracy of the initial position detection of sensor-less permanent magnet synchronous motor decides directly the motor starting characteristics. It isdiscussed in the dissertation that two initial position detect methods of built-inpermanent magnet synchronous motor’s rotor based on both high frequency pulsevibration voltage injection and high frequency rotating voltage injection. The rotorinitial position can be got accurately in current response of motor. The simulationand actual application shows that the simulation model for the initial position iseffective and feasible. Thus, a critical problem that interior permanent magnetsynchronous motor rotor initial position detection under the sensor-less condition issolved.
     5、Under a lot of traction tests and field application, governor control circuit isdesigned to satisfy inverter control and electric locomotive control of highperformance digital signal processor. Key solutions used in the speed control devicesuch as how to obtain the rotor position and speed information, how to realize thespeed and torque control and how to reduce the switching frequency of powerdevices, are proposed to solve key problems about control. The engineeringapplication shows that electric locomotive system structure is more reasonable andhas reliable explosion-proof performance, electric braking function, smooth start andshort braking distance. Whether in driving process or braking process, it is step-lessspeed regulation and has small mechanical shock. The mechanical wear andmaintenance workload is reduced greatly. The mileage and service efficiency of thelocomotive are improved greatly at the same time. In short, permanent magnetsynchronous motor and its control system used in mine electric locomotives have theadvantages of safety, high efficiency and energy saving, etc.
引文
【1】.侯利民.永磁同步电机传动系统的几类非线性控制策略研究及其调速系统的实现[D].沈阳:东北大学博士学位论文,2010
    【2】. M. Preindl, E. Schaltz. Sensorless model predictive direct current control using novelsecond-order PLL observer for PMSM drive systems[J]. IEEE Transactions on IndustrialElectronics,2011,58(9):4087-4095
    【3】.尚喆.永磁同步电动机磁场定向控制的研究[D].杭州:浙江大学博士学位论文,2007
    【4】.杨建飞.永磁同步电机直接转矩控制系统若干关键问题研究[D].南京:南京航空航天大学博士学位论文,2011
    【5】. L. Zhong, M. F. Rahman, Y. W. Hu, et al. Analysis of direct torque control inpermanent magnet synchronous motor drives[J], IEEE Transaction on Power Electronics,1997,12(3):528-535
    【6】.贾洪平. PMSM DTC无传感器运行及传感器集成研究[D].杭州:浙江大学博士学位论文,2006
    【7】.史宇超,孙凯,黄立培,等.内埋式永磁同步电机宽调速范围运行控制策略[J].清华大学学报(自然科学版),2012,52(11):1565-1570
    【8】.周扬忠,毛洁.基于有效磁链概念的永磁同步电动机新型定子磁链滑模观测器[J].中国电机工程学报,2013,32(11):152-158
    【9】.谷善茂,何凤有,谭国俊,等.永磁同步电动机无传感器控制技术现状与发展[J].电工技术学报,2009,24(11):14-20
    【10】. K. Hyunbae, M. C. Harke, R. D. Lorenz. Sensorless control of interiorpermanent-magnet machine drives with zero-phase lag position estimation[J]. IEEETransactions on Industry Applications,2003,39(6):1726-1733
    【11】.李永东,朱昊.永磁同步电机无速度传感器控制综述[J].电气传动,2009,39(9):3-10
    【12】. L. Harnefors, M. Jansson, R. Ottersten, et al. Unified sensorless vector control ofsynchronous and induction motors[J]. IEEE Transactions on Industry Electronics,2003,50(1):153-160
    【13】. L. Harnefors, H. Nee. A General Algorithm for Speed and Position Estimation of ACMotors[J]. IEEE Transactions on Industry Electronics,2000,47(1):77-83
    【14】.纪历,徐龙祥.基于假定旋转坐标的高速永磁同步电机无传感器控制[J].电工技术学报,2012,27(11):55-60
    【15】.刘晨程.基于MRAS的永磁同步电机控制系统的研究与实现[D].成都:电子科技大学硕士学位论文,2012
    【16】.戴永亮,孙力,张晓光,等.永磁同步电动机无传感器控制技术综述[J].伺服控制,2011(4):23-25
    【17】. G D Andreescu. Position and speed sensorless control of PMSM drives based onadaptive observer [C].//Proc. EPE.1999,99:1-10
    【18】. B Nahid-Mobarakeh, F Meibody-Tabar, F M Sargos. Mechanical sensorless control ofPMSM with online estimation of stator resistance[J]. IEEE Transactions on IndustryApplications,2004,40(2):457-471
    【19】. Zheng Zedong, Li Yongdong, F. Maurice. High performance PMSM control systembased on extended Kalman filter[J]. Transactions of China Electrotechnical Society,2007,22(10):18-23
    【20】. A. Piippo, M. Hinkkanen, J. Luomi. Analysis of an adaptive observer for sensorlesscontrol of interior permanent magnet synchronous motors[J]. IEEE Transactions onIndustrial Electronics,2008,55(2):570-576
    【21】. M. Hinkkanen, T. Tuovinen, L. Harnefors, et al. A combined position andstator-resistance observer for salient PMSM drives: design and stability analysis[J]. IEEETransactions on Power Electronics,2012,27(2):601-609
    【22】. T. Tuovinen, M. Hinkkanen, L. Harnefors. Comparison of a reduced-order observerand a full-order observer for sensorless synchronous motor drives[J]. IEEE Transactions onIndustry Applications,2012,48(6):1959-1966
    【23】.陈广辉,曾敏,魏良红.无位置传感器永磁同步电动机矢量控制系统综述[J].微特电机,2011,12
    【24】.尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J].中国电机工程学报,2007,27(3):23-27
    【25】.盛义发,刘升学,喻寿益,等.城轨牵引内置式永磁同步电机转速及转子位置检测[J].电机与控制学报,2012,16(7):34-39
    【26】.鲁文其,胡育文,杜栩杨,等.永磁同步电机新型滑模观测器无传感器矢量控制调速系统[J].中国电机工程学报,2010,30(33):78-83
    【27】.李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35
    【28】. H. Chaoui, P. Sicard. Adaptive Lyapunov-based neural network sensorless control ofpermanent magnet synchronous machines[J]. Neural Compute&Applica,2011(20):717-727
    【29】. P L Jansen, R D Lorenz. Transducerless position and velocity estimation in inductionand salient AC machines[J]. Industry Applications, IEEE Transactions on,1995,31(2):240-247
    【30】.刘毅,贺益康,秦峰等.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J].中国电机工程学报,2005,25(7):121-126
    【31】. Shih-ChinYang, Takahiro Suzuki, Robert D. Lorenz. Surface-Permanent-MagnetSynchronous Machine Design for Saliency-Tracking Self-Sensing Position Estimation atZero and Low Speeds[J]. IEEE Transactions on Industry Applications,2011,47(5):2103-2115
    【32】. Ji Hoon Jang, Jung Ik Ha, Motomichi Ohto. Analysis of Permanent-Magnet Machinefor Sensor-less Control Based on High-Frequency Signal Injection[J]. IEEE Transactions onIndustry Applications,2004,40(6):1595–1603
    【33】. J.L.Chen, S.K.Tseng, T.H.Liu. Implementation of high performance sensor-lessinterior permanent magnet synchronous motor control systems using a high-frequencyinjection technique[J]. IET Electric Power Applications,2012,6(8):533-544
    【34】. Seog Joo Kang,.Tang Mok Kim,Seung Ki Sul.Position Sensorless Control ofSynchronous Reluctance Motor Using High Frequency Current Injection [J]. IEEETransactions on Energy Conversion,1999,14(4):1271-1275
    【35】. LAS. Ribeior, MW. Degner, F.Briz, RD. Loernz. Comparison of carrier singal voltageand current injection for the estimation of flux angle or rotor position[C]. IEEE-IASConference Record, St. Louis,1998:452-459
    【36】. Jung Ik Ha, Seung Ki Sul. Sensor-less Field-Orientation Control of an InductionMachine by High-Frequency Signal Injection[J]. IEEE Transactions on IndustryApplications,1999,35(1):45-51
    【37】. Gaolin Wang, Rongfeng Yang, and Dianguo Xu. DSP-Based Control of SensorlessIPMSM Drives for Wide-Speed-Range Operation[J].IEEE Transactions on IndustryElectronic,2013,60(2):720-727
    【38】. Antti Piippo, Marko Hinkkanen, Jorma Luomi. Analysis of an Adaptive Observer forSensor-less Control of Interior Permanent Magnet Synchronous Motors[J]. IEEETransactions on Industry Electronic,2008,55(2):570-576
    【39】. Gheorghe-Daniel Andreescu, Cristian Ilie Pitic, Frede Blaabjerg. Combined FluxObserver With Signal Injection Enhancement for Wide Speed Range Sensor-less DirectTorque Control of IPMSM Drives[J]. IEEE Transactions on Energy Conversion,2008,23(2):393-401
    【40】.王子辉,叶云岳.反电势算法的永磁同步电机无位置传感器自启动过程[J].电机与控制学报,2011,15(10):36-42
    【41】.朱烷秋,成秋良.无起动绕组永磁同步电机初始定位及起动策略[J].中国电机工程学报,2008,28(9):61-65
    【42】.韦鲲,金辛海.表面式永磁同步电机初始转子位置估计技术[J].中国电机工程学报,2006,26(22):104-109
    【43】.王高林,杨荣峰,于泳,等.内置式永磁同步电机转子初始位置估计方法[J].电机与控制学报,2010,14(6):56-60
    【44】. Yu-seok Jeong,Robert D. Lorenz,Thomas M. Jahns. Initial Rotor Position Estimationof an Interior Permanent-Magnet Synchronous Machine Using Carrier-Frequency InjectionMethods[J]. IEEE Transactions on Industry Applications,2005,41(1):38-45
    【45】.刘颖,周波,李帅,等.转子磁钢表贴式永磁同步电机转子初始位置检测[J].中国电机工程学报,2011,31(18):48-54
    【46】.王宏佳,杨明,牛里,等.永磁交流伺服系统电流环带宽扩展研究[J].中国电机工程学报,2010,30(12):56-62
    【47】.郭希铮,游小杰,王晓丹.永磁同步电机电流调节器动态特性改进方法分析[J].电力自动化设备,2011,31(6):39-44
    【48】.伍小杰,袁庆庆,符晓,等.基于复矢量调节器的低开关频率同步电机控制[J].中国电机工程学报,2012,32(3):124-129
    【49】.周志刚.一种感应电机的解耦控制方法[J].中国电机工程学报,2003,23(2):121-125
    【50】.朱元,王双全,吴志红,等.车用永磁同步电机偏差解耦控制系统高速性能的研究[J].汽车工程,2012,34(8):756-762
    【51】. Qi Liying, Wang Chenchen, Zhou Minglei, et al. Design and Analysis of a DecouplingCurrent Controller for Induction Machine[C].2012IEEE7th International PowerElectronics and Motion Control Conference, Harbin, China,2393-2397
    【52】.唐小琦,白玉成,陈吉红.永磁同步电机高性能电流解耦控制的研究[J].电气传动,2009,39(10):18-22
    【53】. L. Harnefer, H. P. Nee, Model-based current control of AC machines using the internalmodel control methods[J].IEEE Transactions on Industry Applications,1998,34(1):133-141
    【54】.周华伟,温旭辉,赵峰,等.基于内模的永磁同步电机滑模电流解耦控制[J].中国电机工程学报,2012,32(15):91-99
    【55】. H. T. Moon, H. S. Kim, M. J. Youn. A discrete-time predictive current control forPMSM[J]. IEEE Transactions on Power Electronics,2003,18(1):464-472
    【56】.牛里,杨明,刘可述,等.永磁同步电机电流预测控制算法[J].中国电机工程学报,2012,32(6):131-137
    【57】.王高林,杨荣峰,李刚,等.基于高频信号注入的IPMSM无位置传感器控制策略[J].电工技术学报,2012,27(11):62-68
    【58】.王高林,张国强,贵献国,等.永磁同步电机无位置传感器混合控制策略[J].中国电机工程学报,2012,32(24):103-109
    【59】.秦峰.基于电力电子系统集成概念的PMSM无传感器控制研究[D].浙江大学博士学位论文,2006
    【60】.苏健勇,李铁才,杨贵杰.基于四阶混合滑模观测器的永磁同步电机无位置传感器控制[J].中国电机工程学报,2009,29(24):98-103
    【61】.祝晓辉,李颖晖,陈亚滨.基于非线性状态观测器的永磁同步电动机无位置传感器矢量控制[J].电工技术学报,2010,25(1):50-57
    【62】. Yan Ruzhong, Li Beizhi, Zhou Fu. Sensorless control of PMSM based on parameteroptimized-MRAS speed observer[C]. Proceedings of the IEEE International Conference onAutomation and Logistics,2008:1573-1578
    【63】.宋文祥,尹赟,曹大鹏.感应电机静态补偿电压模型及其稳定性分析[J].中国电机工程学报,2012,32(24):117-125
    【64】. Young S K, Sang K K, et al. MRAS based sensorless control of permanent magnetsynchronous motor[C]. IEEE SICE Annual Conference, Fukui, Japan,2003
    【65】.齐放,邓智泉,仇志坚等.一种永磁同步电机无速度传感器的矢量控制[J].电工技术学报,2010,20(10):30-41
    【66】.吴春华,陈国呈,孙承波.基于滑模观测器的无传感器永磁同步电机矢量控制系统[J].电工电能新技术,2006,25(2):1-3
    【67】.刘颖,周波,方斯琛.基于新型扰动观测器的永磁同步电机滑模控制[J].中国电机工程学报,2010,30(9):80-85
    【68】. Silverio Bolognani, Luca Tubiana, Mauro Zigliotto. Extended kalman filter tuning insensorless PMSM drives[J]. IEEE Transactions on Industry Applications,2003,39(6):1741-1747
    【69】. M. J. Corley, and R. D. Lorenz, Rotor Position and Velocity Estimation for aSalient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds[J].IEEE. Transactions on Industry Applications,1998,34(4):784-789
    【70】. Ji-Hoon Jang, Jung-Ik Ha, et al.Analysis of Permanent-Magnet Machine forSensorless Control Based on High-Frequency Signal Injection[J]. IEEE. Transactionson Industry Applications,2004,40(6):1595-1604
    【71】.刘颖,周波,冯瑛.永磁同步电机低速无传感器控制及位置估计误差补偿[J].电工技术学报,2012,27(11):38-45
    【72】. Yoon Y D, Sul S K, Morimoto S, et al. High bandwidth sensorless algorithm for ACmachines based on square-wave type voltage injection[J]. IEEE Transactions onIndustry Applications,2011,47(3):1361-1370
    【73】.万山明,吴芳,黄声华.永磁同步电机的数字化电流控制环分析[J].华中科技大学学报(自然科学版),2007,35(5):48-51
    【74】.祝晓辉,李颖晖,付明明,等.永磁同步电机电流调节器动态特性分析及改进设计[J].电工电能新技术,2007,26(4):26-30
    【75】. K. K. Huh, R. D. Lorenz, Discrete-time domain modeling and design for AC machinecurrent regulation [C]. Industry Applications Conference,2007,2066–2073
    【76】. F. Briz, M. W. Degner, R. D. Lorenz. Analysis and design of current regulators usingcomplex vectors[J]. IEEE Transactions on Industry Applications,2000,36(3):817-825
    【77】. J. Holtz, J. Quan, J. Pontt, et al. Design of fast and robust current regulators forhigh-power drives based on complex state variables[J]. IEEE Transactions on IndustryApplications,2004,40(5):1388-1397
    【78】.杨立永,田安民.交流电机离散电流调节器的设计[J].电力电子技术,2011,45(5):62-64
    【79】. H. Kim, M. W. Degner, J. M. Guerrero, et.al. Discrete-Time Current Regulator Designfor AC Machine Drives [J].2010,46(4):1425-1435
    【80】.韦克康,周明磊,郑琼林,等.基于复矢量的异步电机电流环数字控制[J].电工技术学报,2011,26(8):88-94
    【81】.徐丽娜.数字控制——建模与分析、设计与实现[M].北京:科学出版社,2006
    【82】.王晓明,王玲.电动机的DSP控制TI公司DSP应用[M].北京:北京航空航天大学出版社,2004
    【83】.梁艳,李永东.无传感器永磁同步电机矢量控制中转子初始位置的估算方法[J].电工技术杂志,2003,22(2):10-13
    【84】.万山明,吴芳,黄声华.基于高频电压信号注入的永磁同步电机转子初始位置估计[J].中国电机工程学报,2008,28(33):82-86
    【85】.王高林,杨荣峰,于泳等.内置式永磁同步电机无位置传感器控制[J].中国电机工程学报,2010,30(30):93-98
    【86】.张晓娟,变频调速在矿用蓄电池电机车上的应用研究[D].安徽理工大学硕士学位论文,2006
    【87】.许嘉旻,三相逆变器的PWM控制研究[D].同济大学硕士学位论文,2007
    【88】.李新民,用DSP实现永磁同步电机的预测控制与矢量控制[D].西安理工大学硕士学位论文,2003
    【89】.陈力,基于高频注入法永磁同步电机无传感器矢量控制的研究[D].天津大学硕士学位论文,2009
    【90】.刘毅,基于高频注入的永磁同步电动机无传感器运行研究[D].浙江大学硕士学位论文,2005
    【91】.鲁文其,永磁同步电机工程伺服系统若干关键技术研究[D].南京航空航天大学硕士学位论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700