用户名: 密码: 验证码:
高温三轴应力下花岗岩蠕变—渗透—热破裂规律与地热开采研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是世界各国十分关注的热点问题,是关系到国家安全的重大战略问题。高温岩体地热是19世纪70年代才提出并开始试验开发的,在美、日、英、法等国得到了较好的发展,被认为是几乎用之不竭的绿色的能源。高温岩体地热能主要蕴藏在花岗岩类岩体中,围绕着高温岩体地热开采一系列工程与技术难题,急需揭示高温三维应力条件下花岗岩体的蠕变、渗流、热破裂等一系列基本规律,为设计与制订高温岩体地热开采的技术方案提供指导,综合已有的各类成果,以中国西藏羊八井地热深部高温岩体地热开采为例,研究经济高效的开采方案,对中国和世界高温岩体地热开采无疑具有重要意义。
     采用中国矿业大学的“20MN高温高压岩体三轴试验机”,对ΦD200mm×400mm大尺寸花岗岩试件在高温下的蠕变特征进行了试验研究,温度高达600℃,轴向应力最高达175MPa。围压最高达175MPa。本文详细介绍了三维应力作用下,花岗岩在高温条件下的蠕变试验方法和结果,结合理论与试验结果分析,发现了花岗岩在300℃时轴压94MPa围压75MPa时花岗岩经历蠕变的第一阶段和第二阶段,蠕变变形逐渐停滞,呈现明显的稳态蠕变的特征;在400℃,轴压125MPa围压100MPa时,呈现明显的非稳态蠕变特征。试验还揭示了花岗岩的蠕变性随温度和应力的升高而增强,蠕变性态转变的温度门槛值在300℃到400℃之间。
     通过对实验数据的分析,发现高温三维应力条件下平均主应力引发鲁灰花岗岩发生蠕变变形,提出了考虑平均主应力应力作用时稳态蠕变率的本构方程,得到了鲁灰花岗岩蠕变本构方程的参数A.、A2、△Q、m、n。研究还发现静水应力下的蠕变和差应力下的蠕变曲线特征相同,同样可以划分为初始蠕变阶段,稳态蠕变阶段和加速蠕变阶段三个阶段,在300-400℃之间存在一个门槛值,当温度达到这个门槛值后,在静水应力作用下,鲁灰花岗岩蠕变曲线的初始蠕变阶段消失。鲁灰花岗岩的蠕变变形是温度,差应力和平均主应力应力的函数,温度、差应力和平均主应力应力的升高都会加速鲁灰花岗岩的蠕变变形。研究发现:(1)三维应力条件下鲁灰花岗岩300℃,500℃的轴向蠕变和300℃,500℃,600℃的体积蠕变变形均可划分为:瞬态蠕变阶段、稳态蠕变阶段和加速蠕变阶段。(2)高温三维应力条件下,鲁灰花岗岩试样的体积、长度和半径随蠕变时间的增加出现增长,这是因为热破裂引起岩石的内部产生了大量的微裂纹,同时还发现试样的侧向比轴向变形增长的速度快。(3)以试验结果为依据将平均主应力应力引发体积蠕变,差应力引发轴向蠕变作为三维应力状态下黏弹塑性问题的假设,导出三维应力条件下Burgers体模型体积蠕变的本构方程。(4)通过对蠕变曲线的分析发现,可以用Burgers体模型来模拟鲁灰花岗岩300℃,500℃的轴向蠕变和300℃,500℃,600℃的体积蠕变,并且求出模型的参数。
     在花岗岩蠕变——渗流实验的同时,还实时测试花岗岩样在热破裂作用下的渗流规律,实验揭示了:(1)在三维应力的条件下,花岗岩发生了热破裂。在热破裂升温过程中,花岗岩样的渗透率随温度的升高而表现为正指数增大的规律。(2)在热破裂作用的初期,花岗岩样渗透率随温度的增加而缓慢增加。在热破裂作用的后期,花岗岩样渗透率随温度的升高而急剧升高直至达到渗透率峰值。(3)在整个热破裂升温的过程中,各花岗岩样的渗透率随温度的升高而不断增加,渗透率变化率随温度的升高而不断加速。(4)在静水应力和热破裂作用下,花岗岩样渗透率峰值和初始值的比值最高可达93倍,渗透率的变化率最高达3.5×10-07d/℃,热破裂作用极大地增强了花岗岩的渗透特性。
     上述实验同时,还采用美国物理声学公司24通道声发射仪对蠕变实验期间的声发射数据进行了采集。实验得到了高温三维应力条件下,岩样在蠕变变形期间的声发射规律如下:在瞬态蠕变变形阶段此时声发射信号较强,随时间的延长声发射信号强度稍稍减弱。在岩样的稳态蠕变变形阶段,岩样的变形以粘塑性变形为主,声发射信号进入平静期。在稳态蠕变变形阶段的后期,岩样内部重新开始产生裂纹,声发射信号各参数越来越强。在岩样的加速蠕变变形阶段,声发射各参数的强度越来越大并最终达到峰值。在高温三维应力条件下,岩样声发射的能量事件比、事件计数率、振铃计数率、振幅计数率和能量计数率各参数之间具有较好的相似性。
     详细研究了中国西藏羊八井地区的高温岩体地热田形成的大陆动力学环境,念青唐古拉山南坡、当雄羊八井盆地的构造特征、地应力大小与方向,5-15km深部的高温熔融岩体结构、高温岩体热盆的温度场分布和热能资源量。羊八井高温岩体地热田可开发的高温岩体地热资源量达5.4×108万千瓦/年,是中国巨大的潜在的绿色能源。研究提出了利用高温熔融区附近的断层剪切滑移带作为人工储留层,沿断层倾斜方向的低处布置垂直注水井与高出布置倾斜生产井的羊八井高温岩体地热开采方案。深入分析了考虑地层应力作用的热流交换区:的渗流场特征、人工储留层特征,进行了工程实施与投资概算分析,该人工储留层的围岩体积量3×1011m3,是英国Cornwall高温岩体地热开采试验工程采用水压致裂建造的人工储留层体积量的360倍。由一口注水井和两口生产井组成的一套高温岩体地热开采系统,可建造一座1000万千瓦的电站,发电100年以上,具有极好的经济与社会效益。
Energy is the world's hot issues related to national security, is the important strategic problem. Geothemal of Hot Dry rock is put forward in the1970s to the development and testing, in America, Japan, Britain, France and other countries has been a good development, considered almost inexhaustible green energy. geothermal of HDR appear. the granitoids are in rock mass, around a series of engineering and technology exploiting geothermal heat, need reveals3D granite rock stress condition of creep, seepage, and thermal cracking and so on, a series of basic rule for design and make geothermal mining technique scheme provides guidance, integrated with the existing results of China's Tibet occurred in the deep geothermal heat rock geothermal mining, for example, the study of economic efficiency mining scheme of China and the world, high rock geothermal mining of great significance.
     By making use of the20MN servo-controlled triaxial rock testing machine with high temperature and high pressure of china university of mining and technology, we have carried out experimental study on creep property of large size granite specimens of Φ200mm×400mm under high temperature with temperature up to600℃and axial and lateral stress up to175MPa.. This article describes creep test methods and results of granite under a three-dimensional stress and high temperature. Combining theory with analysis of test results, we discover granite experiences the first and second phases of creep at300℃, axial stress of94MPa and lateral stress of75MPa.At the same time the creep deformation of granite shows clearly the characteristics of the steady-state creep and gradually stops. But at400℃, axial stress of94MPa and lateral stress of75MPa the deformation shows obvious characteristics of the non-steady-state creep. The research reveals Creep property of granite increased with the increasing of temperature and stress. There is an threshold of temperature about transition from steady-state creep at300℃to the non-steady-state creep at400℃
     Through analysis of experimental data,the paper discovered that hydrostatic stress can cause creep formulation of lu gray granite and we proposed constitutive equation of stable-state creep rate taking into consideration for hydrostatic stress and acquiered creep constitutive equation parameters of lu gray granite A1、 A2、△Q、m、n. We also discoverer that the creep property caused by hydrostatic strss is the same as those cased by differential stress in lu gray granite. It also can be divided into three stages transient creep, stable-state creep and accelerating creep. There is a temperature threshold value between300℃and400℃. The primary creep deformation disappeared under hydrostatic stress and temperature threshold value in lu gray granite. The creep formulation of lu gray granite is a function of temperature, differential stress and hydrostatic stress. All the higher temperature, differential stress and hydrostatic strss can accerlerate creep formulation of lu gray granite.(1) under three dimensional stress, axial creep deformation at300℃and500℃and volumetric creep deformation at300℃,500℃and600℃of lu gray granite shows three stages:primary creep stage, stable-state creep stage and accelerating creep stage.(2) Under high temperature and3-d stress, volume、length and radius of lu gray granite increased with the creep time because of fissure caused by thermal cracking in rock. We also discovered lateral deformation is more rapid than axial deformation at the same time.(3) It's the basical hypothesis of viscosity-elastic-plastic problem under three dimensional stress that differential stress causes axial creep, hydrostatic stress causes volumetric creep deformation at the basis of experimental data and we proposed volumetric creep constitutive equation of Burgers model under three dimensional stress.(4) Through the analysis of creep curve, it's proper to simulate axial creep at300℃and500℃and volumetric creep at300℃,500℃and600℃with Burgers model and calculate model parameters.
     This research reveals:(1) under three dimensional stress, there is thermal cracking phenomenon about all granites. We discover the seepage law of intact granite rock sample that permeability is exponential growth function of temperature through the process of thermal cracking.(2) The permeability of granite has a slow growth through initial stage of TCA, a rapid growth through late stage of TCA and up to permeability climax in the final with the temperature rising up.(3) The permeability and its rate of granite have a continuous growth through whole stage of TCA with increasing temperature.(4)The ratio of permeability climax value to initial value is up to93and permeability rate is up to3.5x10-07d/℃.TCA has a important role in enhancing permeability of granite.
     We adopted acoustic emission apparatus made by American Physical Acoustics Corporation to collect data during creep experimental period. We acquired acoustic emission law of rock sample creep deformation experiment under high temperature and3D stress. Among transient creep stage, acoustic emission signal is very strong and decreases with time. Among stable creep stage, rock sample is mainly dominated viscoplastic deformation and acoustic emission signal goes into quiet period. Because of heterogeneity of granite, stress concentrated on force skeleton formed by hard mineral with stress adjustment and redistribution. At the late stable creep stage, the inner of rock sample resumed fracturing. All parameters of acoustic emission signal become increasing. Among accelerating creep stage, All parameters of acoustic emission signal also become increasing and finally reached peak value. Because rock mass is general composed of various minerals and contains joints and fracture discontinuous structure surface, it is inevitable heterogeneous. It is heterogeneity that causes above acoustic emission phenomenon. Under high temperature and3D stress, it still needs more experiment to research whether there are the same acoustic emission phenomenon about homogeneous or close to homogeneous rock sample. Under high temperature and3-d stress, there are good similarity among all acoustic emission parameters event counts rate, ringdown counts rate, energy counts rate, amplitude counts rate and energy-event's ratio.
     This paper analyzed that HDR geothermal field of Tibet formed continental dynamics environment, South slope of Tanggula Mountain, DangXiong Yangbajing basin the tectonic characteristics, in-site stress size and orientation,8-18km deep rock mass structure of melt rock mass, temperature field distribution and heat resources. the research and put forward to mining scheme of HDR geothermal, seepage analysis of the heat exchange area, artificial reservoir features, project implementation and investment analysis.Proposed sliding zone as artificial reservoir, decorate a injection Wells and production Wells with technical solutions,so get a artificial reservoir volume3x1011m3, it is360times than artificial reservoir of Cornwall British for HDR Geothemal mining. This plan, a set of geothermal extraction, can build a system of10million kilowatts, power station for100 years. HDR geothermal resources of5.4×108MKW.a of Yangbajing region is China's huge HDR geothermal resources temperature.
引文
[1]Geothermal Research Program Annual Reports [R]. Idaho National Laboratory, 2008:P34-67.
    [2]Lynn Mclarty. The U. S. Geothermal Industry_ Three Decades of Growth [R]. Idaho National Laboratory,2007:1-67.
    [3]Geothermal Research Program Annual Reports [R]. Idaho National Laboratory, 2009:14-27.
    [4]Liou T S. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems[PH. D]. Department of Civil and Environmental Engineering, University of California, Berkeley,1999.
    [5]Smith M C, Aamodt R L, Potter R M, et al. Man-made geothermal reservoirs[R]. Los Alamos Scientific Lab., N. Mex. (USA),1975.
    [6]Smith M C. Progress of the LASL dry hot rock geothermal energy project[M]. 1974
    [7]Smith M C. Dry hot rock systems[M].1975:10.
    [8]Smith M C. Future of hot dry rock geothermal energy systems[M].1979:13.
    [9]Smith M C. Progress of the US Hot-Dry-Rock Program[M].1982:26.
    [10]Smith M C, Aamodt R L, Potter R M, et al. Progress of the LASL dry hot rock geothermal energy project[M].1975.
    [11]Smith M C. Hot dry rock pilot project[M].1980:5.
    [12]Smith M C. The furnace in the basement:Part 1, The early days of the Hot Dry Rock Geothermal Energy Program,1970-1973[R].1995.
    [13]Tayebali A A, Goodrich J L, Sousa J B, et al. Relationships between modified asphalt binders rheology and binder-aggregate mixture permanent deformation response[C]. Seattle, WA, USA:Publ by Assoc of Asphalt Paving Technologists, St. Paul, MN, USA,1991.
    [14]Paulsen R J, Smith C F,0 R D, et al. Development and evaluation of an ultrasonic ground water seepage meter[J]. Ground Water.2001,39(6):904-911
    [15]Margolin L G, Smith B W. Criterion for quasibrittle crack growth [C]. Evanston, IL, USA:Soc of Mining Engineers of AIME, New York, NY, USA,1984.
    [16]Brown D W, Smith M C, Potter R M. New method for extracting energy from ''dry''geothermal reservoirs[R].1972.
    [17]Aamodt R L, Smith M C. Induction and growth of fractures in hot rock: artificial geothermal reservoirs[R].1972.
    [18]马莫V.,花岗岩与花岗岩问题[M].袁廷佐译.北京:地质出版社.1979.
    [19]王瑞凤,赵阳升,胡耀青.高温岩体地热开发的固流热耦合三维数值模拟[J].太原理工大学学报.2002,33(03):275-280.
    [20]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004.
    [21]王瑞凤.高温岩体地热开发的固流热多场耦合与数值仿真[D].太原理工大学硕士学位论文,2002.
    [22]左建平.温度-应力共同作用下砂岩破坏的细观机制与强度特征[D].中国矿业大 学大学博士学位论文,2006.
    [23]张渊.高温三轴应力条件下岩石热破裂机理与实验研究[D].中国矿业大学大学博士学位论文,2006.
    [24]张宁.高温三轴应力条件下花岗岩热破裂机理的实验与应用的研究[R].太原理工大学,2008.
    [25]Hudson J A, Stephansson 0, Andersson J, et al. Coupled T-H-Missues relating to radioactive waste repository design and performance[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38(1):143-161.
    [26]天沼惊,阪田贞弘主编.《放射性废物处理处置的研究发展》翻译小组译[M].放射性废物处理处置的研究开发.中国环境科学出版社,1988.
    [27]Rutqvist J, Borgesson L, Chijimatsu M, et al. Coupled thermo-hydro-mechanical analysis of a heater test infractured rock and bentonite at Kamaishi Mine-comparison of field results to predictions of four finite elementcodes[J]. International Journal of Rock Mechanics & Mining Sciences, 2001,38 (1):129-142.
    [28]王驹,陈伟明.杨春和,殷建华,Daemen J J K.盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262-265.
    [29]William J B. A potential High-level Nuclear Waste Repository at Yucca Mountain, Nevada, USA[J]. International Society For Rock Mechanics News Journal, 1999,6(1):44-49.
    [30]郭永海,王驹,金远新.世界高放废物地质处置库选址研究概况及国内进展[J].地学前缘,2001,8(2):327-332.
    [31]Stephansson 0. Rock Mechanics Research for Radioactive Waste Disposal in Sweden [J]. International Societyfor Rock Mechanics News Journal, 1999,6(1):18-26.
    [32]Stephansson 0(Guest editor). International Journal of Rock Mechanics and Mining Sciences, Special Issue:DECOVALEX I,1995,35(3):389-535.
    [33]Stephansson 0(Guest editor). International Journal of Rock Mechanics and Mining Sciences, Special Issue :DECOVALEX II,2001,38(1):1-161.
    [34]Stephansson O, Hudson J A, Jing L (eds). Int Conf on Coupled T-H-M-C Processes in Geosystems:GeoProc2003(DECOVALEX) Stockholm,2003,147-152.
    [35]www.DECOVALEX. com
    [36]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91~99.
    [37]Johnson, B. and A. F. Gangi, Thermal cracking of nonuniformly heated, thick-walled hollow cylinders of westerly granite. U.S. Symposium on Rock Mechanics,1980:197-206.
    [38]Johnson, Hutnak M. Measuring conductive heat flow[J]. Sea Technology, 1998,39(2):23-27.
    [39]Johnson B. Mechanical and transport properties of rocks at high temperatures and pressures. Task Ⅱ. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report[R].1985.
    [40]Johnson B. Mechanical and transport properties of rocks at high temperatures and pressures. Task I. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Technical progress report No.3,1 March 1982-30 October 1982[R].1982.
    [41]Johnson B. Modification of fracture surfaces by dissolution. Part II[R]. 1983.
    [42]Pollack H N, Hurter S J, Johnson. Heat Flow from the Earth's Interior: Analysis of the Global Data Set[J]. Rev. Geophys.,31(3):13.
    [43]Johnson. Tracer Test Analysis of the Klamath Falls Geothermal Resource: A Comparison of Models[J].1984.
    [44]Wang H F. Poroelasticity of rock[R].1992.
    [45]Wang H. Thermal stress microfracturing of crystalline and sedimentary rock. Final report, September 16,1987--September 15,1991 [R].1995.
    [46]Wang H F, Blair S C, Berge P A. Estimating changes in rock permeability due to thermal-mechanical effects[R].1997.
    [47]Simmons, G. and H. W. Cooper (1978). Thermal cycling cracks in three igneous rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 15 (4):145-148.
    [48]Richter D, Simmons G. THERMAL EXPANSION BEHAVIOR OF IGNEOUS ROCKS. [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(10):403-411.
    [49]Homand-Etienne, F and Honpert, R. Thermally induced micro cracking in granites:characterization and analysis, Int J Rock Mech Min Sci &Geomech Abstr, 1989,26(2):124-134.
    [50]Bruner, W. M. (1979). Crack growth and the thermoelastic behavior of rockS. Journal of Geophysical Research 84 (B10):5578-5590.
    [51]Murphy, H. D. (1979). Thermal stress cracking and the enhancement of heat extraction from fractured geothermal reservoirs. Geothermal Energy 7 (3):22-29.
    [52]Johnston, D. H. and M. N. Toksoz (1980). Thermal cracking and amplitude dependent attenuation. Journal of Geophysical Research 85 (B2):937-942.
    [53]Lo, K. Y. and R. S. Wai (1982). Thermal expansion, diffusivity, and cracking of rock cores from darlington, ontario. Canadian Geotechnical Journal 19 (2):154-166.
    [54]Brown, T. A. and F. E. Heuze (1979). New system for high temperature triaxial creep testing of rocks. U.S. Symposium on Rock Mechanics:51-58.
    [55]MartinRJII; BoydPJ (1995). Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project:66.
    [56]Prame N.. High-temperature transient creep in olivine rocks. Tectonophysics The Adolphe Nicolas Volume,1997,279 (1-4):93-111.
    [57]Miura K, Okui Y, Horii H.Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system. Mechanics of Materials,2003,35(3-6):587-601.
    [58]Kinoshita N, Inada Y. Effects of high temperature on strength, deformation, thermal properties and creep of rocks. Journal of the Society of Materials Science, Japan,2006,55 (5):489-494.
    [59]Dwivedi R D, Goel R K, Prasad V V, et all. Thermo-mechanical properties of Indian and other granites. International Journal of Rock Mechanics and Mining Sciences,2008,45(3):303-315.
    [60]Trice, R. and N. Warren (1977). Preliminary study on the correlation of acoustic velocity and permeability in two granodiorites from the LASL Fenton Hill deep borehole, GT-2, near the Valles Caldera, New Mexico:Size:Pages:26.
    [61]Potter, J. M. (1978). Experimental permeability studies at elevated temperature and pressure of granitic rocks:109.
    [62]Somerton, W. H. & Gupta, V. S. Role of fluxing agents in thermal alteration of sandstones, Journal of Petroleum Technology,1965,35(4):1039-1046.
    [63]Heard, H. C. Thermal expansion and inferred permeability of climax quartz monzonite to 300℃ and 27.6MPa, Int J Rock Mech Min Sci & Geomech Abstr 1980,17:289-296.
    [64]M. Darot, T. Recuschle, Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite. International Journal of Rock Mechanics & Mining Sciences 37,2000:1019-1026
    [65]J. KEMENY, a comparison of eight method for measuring grain and boundary cracking in heated quartzite samples, Int J rock mech and min sci,1998, 35(45):506-507
    [66]P. Campbell, The use of high speed image and stress analysis for the evaluation of tensile based breakage tests, Minerals Engineering,2001,14(8): 911-915
    [67]A. A. Aldahan, Alteration and mass transfer in cataclasites and mylonites in 6.6 km of granitic crust at the Siljan impact structure, central Sweden, Contributions to Mineralogy and Petrology,1990,105(6):662-676.
    [68]伏拉罗维奇.高温高压下岩石和矿物物理性质的研究.地震出版社.1982.6
    [69]M. P. LUONG, Breakage Resistance of a Granite Using New Testing Devices, Int. J. Rock Mech. Min. Sci.1998,35(4/5):621-622.
    [70]Tapponnier. P, Brace, W. F., Development of Stress-induced Microcracks Westerly Granite, Int, J.Rock Mech. Min. Sci.,1976,13,103-102.
    [71]B. Menendez, C. Dacid and M. Darot, A Study of the Crack Network in Thermally and Mechanically Cracked Granite Samples using Confocal Scanning Laser Microscopy, phys. Chem. Earth,1999,24(7):627-632.
    [72]E. GAMBOA, A. ATRENS, Stress corrosion cracking fracture mechanisms in rock bolts, Journal of Materials Science,2003,38:3813-3829.
    [73]Wang H. F., Bonner P. J., Carlson S.R.,et al,Thermal stress cracking in granite, J. geophy. Res.1989,94 (B2):1745-1758
    [74]FriedmanM; handinJ. Strength and ductility of four dry igneous rocks at low pressures and temperatures to partial melting[R],1979.
    [75]Susanta, Kumar, Samanta, development of micro-scale joints in Volcanic rocks under thermal stress, Earth Planet Sci,2001,110(3):119-203.
    [76]Thomas, Schwab R, Kauther R A, et al. A Hoek-Brown criterion with intrinsic material strength factorization[J]. International Journal of Rock Mechanics and Mining Sciences.2008,45(2):210-222
    [77]E. Sellers, A comparative investigation of micro-flaw models for the simulation of brittle fracture in rock, Computational Mechanics,1997,20(1-2): 164-169.
    [78]Tan X. C, Application of a splitting fracture model to the simulation of rock indentation subsurface fractures, International Journal of Numerical and Analytical Methods in Geomechanics,1997:1-13.
    [79]Chunlin Li, The stress-strain behaviour of rock material related to fracture under compression, Engineering Geology,1998:293-302.
    [80]S. Grasberger, G. Meschke, Ahygro-Thermal-Poro-plastic damage model for durability analyses and concrete structures,2000, European congress on Computational Method in Applied Sciences and Engineering.
    [81]Geraud Y, Mazerolle F, Raynaud S. Comparison between connected and overall porosity of thermally stressed granites[J]. Journal of Structural Geology.1992, 14(8-9):981-990.
    [82]Fredrich J T, Wong Teng-Fong. Micromechanics of thermally induced cracking in three crustal rocks [J]. Journal of geophysical research, 1986,91(B12):12743-12764.
    [83]Cooper H W, Simmons Gene. The effect of cracks on the thermal expansion of rocks [J]. Earth and Planetary Science Letters,1977,36.
    [84]Simmons Genne, Cooper H W. Thermal cycling cracks in three igneous rocks [J]. Int. J. Rock Mech. Min. &Geomech. Abstract,1978,15:144-148.
    [85]Etinenne F Homand, Houpert R. Thermally induced microcracking in granites: Characterization and analysis[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr., 1989,26(2):124-134.
    [86]胜山邦久编著.声发射(AE)技术的应用[M].冯夏庭译.冶金工业出版社,1996.
    [87]陈颙,吴晓东,张福勤.岩石热开裂的实验研究[J].科学通报,1999,4(8):880-883.
    [88]Lockner, D. A., J. B. Walsh, et al.,. Changes in seismic velocity and attenuation during deformation of granite[M]. United States,1975.
    [89]Lockner, D., D. Bartz, et al.,. Changes in permeability during flow of water through granite subjected to a temperature gradient[M].1980.
    [90]Lockner, D., J. D. Byerlee,. Hydrofracture in weber sandstone at high confining pressure, differential stress[M]. United States,1974.
    [91]Lockner, D., J. D. Byerlee,. Hydrofracture in Weber sandstone at high confining pressure, differential stress[M]. United States,1978.
    [92]Lockner D A, Byerlee J D. Strength measurements of The Geysers reservoir rock[M]. 1980:353-356.
    [93]Lockner D, Bartz D, Byerlee J. Changes in permeability during flow of water through granite subjected to a temperature gradient[M]. 1978:50-53.
    [94]Moore, D. E., C. A. Morrow, et al. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing[M]. United States.,1978
    [95]Moore, D. E., C. A. Morrow, et al. Changes in permeability and fluid chemistry of the Topopah Spring Member of the Paintbrush tuff (Nevada Test Site) when held in a temperature gradient:summary of results. [M],1980.
    [96]Moore, D. E., C. A. Morrow, et al.. Permeability and fluid chemistry studies of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site Part Ⅱ. [M],1982.
    [97]Moore, Christenson B W, Allis R G, et al. The mineralogical consequences and behavior of descending acid-sulfate waters:An example from the Karaha Telaga Bodas geothermal system, Indonesia[J]. Canadian Mineralogist.2004, 42(5):1483-1499.
    [98]Morrow, C. A., J. D. Byerlee. A note on the frictional strength of laumontite from Cajon Pass, California. United States.
    [99]Morrow C A, Lockner D A. Permeability differences between surface-derived and deep drillhole core samples [J]. Geophysical Research Letters.1994,21 (19): 2151.
    [100]Morrow C A, Byerlee J D. A note on the frictional strength of laumontite from Cajon Pass, California[M]. United States,1991:211-214.
    [101]张渊,曲方,赵阳升.岩石热破裂的声发射现象[J].岩土工程学报.2006,28(01):73-78.
    [102]张渊,赵阳升,万志军等.不同温度条件下孔隙压力对长石细砂岩渗透率影响试验研究[J].岩石力学与工程学报.2008,27(01):53-60.
    [103]张渊,万志军,赵阳升.细砂岩热破裂规律的细观实验研究[J].辽宁工程技术大学学报.2007,26(04):529-534.
    [104]张渊, 张贤,赵阳升. 砂岩的热破裂过程[J]. 地球物理学报2005,48(03):656-661.
    [105]赵阳升,万志军,张渊,等.20MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报.2008,27(01):1-10.
    [106]赵阳升,孟巧荣,康天合.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报.2008,27(01):28-36.
    [107]寇绍全.热开裂损伤对花岗岩变形及破坏特性的影响[J].力学学报,1987,19(06):550-555.
    [108]寇绍全,0 A.微裂隙和花岗岩的抗拉强度[J].力学学报.1987,19(04):366-372
    [109]Yang C H, Daemen J J. Temperature effects on creep of tuff and its time-dependent damage analysis. International Journal of Rock Mechanics and Mining Sciences,1997,34 (3-4):383-384.
    [110]杨春和,梅涛,王贵宾等.甘肃北山芨芨采石场岩体节理特征研究[J].岩石力学与工程学报.2007,26(S2):3849-3855.
    [111]杨春和,王贵宾,王驹等.甘肃北山预选区岩体力学与渗流特性研究[J].岩石力学与工程学报.2006,25(04):825-830.
    [112]刘泉声.许锡昌,高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332-335.
    [113]刘泉声.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(04):408-412
    [114]刘泉声,陈刚.花岗岩时-温等效原理的进一步验证[J].岩石力学与工程学报.2003(10).
    [115]刘泉声,王崇革.岩石时-温等效原理的理论与实验研究——第一部分:岩石时-温等效原理的热力学基础[J].岩石力学与工程学报,2002,20(02):112-118.
    [116]刘泉声,许锡昌,山口勉,等.岩石时-温等效原理的理论与实验研究——第二部分:岩石时-温等效原理主曲线与移位因子[J].岩石力学与工程学报.2002,20(03):110-118
    [117]刘泉声,许锡昌,山口勉,等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(05):715-719.
    [118]陈颙.于小红.岩石样品变形时的声发射[J].地球物理学报,1984,27(4):392-401.
    [119]周克群.楚泽涵.张元中等.岩石热开裂与检测方法研究.岩石力学与工程学报,2000,19(4):412-416.
    [120]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(03):332-338.
    [121]许锡昌.花岗岩热损伤特性研究[J].岩土力学,2003,24(S2):188-194.
    [122]康健.随机非均质热弹性力学模型与岩石热破裂门槛值的数值实验研究[J].岩石力学与工程学报,2004,25(14).
    [123]康健.高温下岩石力学性质的数值试验研究[J].辽宁工程技术大学学报,2005,26(05)
    [124]康健.随机介质固热耦合数学模型与岩石热破裂数值实验[D].博士学位论文,2004.
    [125]康健,赵明鹏,赵阳升.高温下花岗岩热物理特性数值试验研究[J].太原理工大学学报,2004(04).
    [126]康健,赵明鹏,赵阳升.随机非均质热弹性力学模型与岩石热破裂门槛值的数值试验研究[J].岩石力学与工程学报,2004(14).
    [127]康健,赵明鹏,赵阳升等.非均质细胞元随机分布对高温岩石介质中裂纹扩展影响的数值试验研究[J].岩石力学与工程学报,2004(S2).
    [128]康健,赵明鹏,梁冰.高温下岩石力学性质的数值试验研究[J].辽宁工程技术大学学报,2005(05).
    [129]康健,赵明鹏,梁冰.随机固-热耦合模型与岩石热破裂数值试验研究[J].岩土力学,2005(01).
    [130]康健.随机介质固热耦合数学模型与岩石热破裂数值实验[J].岩石力学与工程学报.,2005(08).
    [131]康健,赵明鹏,赵阳升等.随机介质固热耦合模型与高温岩体地热开发人工储留层二次破裂数值模拟[J].岩石力学与工程学报.,2005(06).
    [132]康健,赵阳升,赵峥嵘等.随机介质热弹性平面轴对称问题的解析解[J].岩土力学.,2006(10).
    [133]康健,赵阳升,董晓梅.岩体介质的随机固流热耦合模型[J].岩土力学,2007(S1).
    [134]康健,毕秀国,刘超.非均质随机分布对岩石热破裂影响的数值试验[J].岩土力学,2008(S1).
    [135]赵阳升,杨栋,冯增朝等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008(07).
    [136]赵阳升,文再明,冯增朝.岩体裂隙面数量的三维分形分布仿真理论与技术[J].岩石力学与工程学报,2005(06).
    [137]赵阳升,冯增朝,文再明.煤体瓦斯愈渗机理与研究方法[J].煤炭学报,2004(03).
    [138]赵阳升,胡耀青,赵宝虎等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003(01).
    [139]左建平,周宏伟,谢和平,等,温度和应力耦合作用下砂岩破坏的细观试验研究[J].岩土力学,2008(06).
    [140]鞠杨,左建平,刘红彬等.不连续变形分析及其在采矿和土木工程中的应用[J].国际学术动态,2008(01).
    [141]左建平,周宏伟,谢和平.不同温度影响下砂岩的断裂特性研究[J].工程力学,2008(05).
    [142]王怀文,周宏伟,谢和平等.扫描电镜下断口表面的三维重建及分形维数的测量[J].实验力学,2008(02).
    [143]左建平,谢和平,周宏伟等.温度-拉应力共同作用下砂岩破坏的断口形貌[J].岩石力学与工程学报,2007(12).
    [144]左建平,谢和平,周宏伟等.温度影响下煤层顶板砂岩的破坏机制及塑性特性[J].中国科学(E辑:技术科学),2007(11).
    [145]左建平,谢和平,周宏伟等.不同温度作用下砂岩热开裂的实验研究[J].地球物理学报,2007(04).
    [146]左建平,谢和平,周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报,2005(16).
    [147]谢和平,等,分形几何与岩石断裂,力学学报,1993,21(5):613-618
    [148]李洪涛,左建平,李辉.Hoek-Brown强度准则的断裂力学理论研究[J].岩土工程学报,2004(02).
    [149]谢和平,高峰,周宏伟等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003(04)
    [150]吴晓东,席长丰,王国强.煤层气井复杂水力压裂裂缝模型研究[J].天然气工业,2006(12).
    [151]吴晓东,刘均荣.岩石热开裂影响因素分析[J].石油钻探技术,2003(05).
    [152]吴晓东,刘均荣,秦积舜.热处理对岩石波速及孔渗的影响[J].石油大学学报(自然科学版),2003(04).
    [153]吴晓东.岩石热开裂的实验研究[D].中国科学院地质与地球物理所博士学位论文,2000.
    [154]王金勋,吴晓东,杨普华等.孔隙网络模型法计算气液体系吸吮过程相对渗透率[J].天然气工业,2003(03).
    [155]王金勋,吴晓东,潘新伟.孔隙网络模型法计算水相滞留对气体渗流的影响[J].石油勘探与开发,2003(05).
    [156]刘均荣,吴晓东.岩石热增渗机理初探[J].石油钻采工艺,2003(05).
    [157]刘均荣,秦积舜,吴晓东.温度对岩石渗透率影响的实验研究[J].石油大学学报(自然科学版),2001(04).
    [158]刘均荣,吴晓东.热处理岩石微观实验研究[J].西南石油大学学报(自然科学版),2008(04).
    [159]Shuqing Zhang, Microcrack growth and healing in deformed calcite aggregates[J], Tectonophysics,2001(335):17-36.
    [160]席道瑛,陈普刚.应力或热疲劳对花岗岩凯塞效应的影响[J].地震地质.1995,17 (2):162-166.
    [161]席道瑛,杜贇,薛彦伟等.岩石非线性细观响应中温度对岩石力学性能的影响[J].岩石力学与工程学报,2007(S1).
    [162]席道瑛,唐杰,陶月赞等.岩石的微细缺陷对外载响应概率的实验与模拟[J].中国科学技术大学学报,2007(08).
    [163]席道瑛,徐松林,李廷等.岩石中微细观结构对外力和温度响应的概率研究[J].岩石力学与工程学报,2007(01).
    [164]席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003(11).
    [165]席道瑛,刘小燕,张程远.由宏观滞回曲线分析岩石的微细观损伤[J].岩石力学与工程学报,2003(02).
    [166]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应[J].地球物理学报,2002(01).
    [167]王颖轶.高温作用下大理岩应力-应变全过程的试验研究[J].岩石力学与工程学报,2002,S1.
    [168]黄炳香.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,S2.
    [169]林睦曾.岩石受热后的强度,变形破坏特性的微观研究[J].岩土力学,1990,4.
    [170]张静华,王靖涛,赵爱国,1987.高温下花岗岩断裂特性的研究[J],8(4),11-16.
    [171]张晶瑶等.高温条件下岩石结构特征的研究[J].东北大学学报(自然科学版),1996,17(1):5-9.
    [172]中国岩石力学与工程委员会,第一届高温高压岩石力学学术讨论会论文集,1981
    [173]谢鸿森.周文戈.赵志丹等.高温高压条件下岩石弹性波速测量[J].地学前缘,19985(4):329-337.
    [174]高平.刘若新.绿泥石片岩和斜长角闪岩在高温高压下的物理力学性质及其应用[J].地震地质,1994,16(1)
    [175]石昆法.吴璐苹.储层条件下岩石样品电性参数测定及规律[J].地球物理学报,1995,38,(增刊)
    [176]李世愚.刘晓红.刘绮亮.和雪松.1999年度中俄合作岩石破裂实验研究[C].中国地震局地球物理研究所论篆,2000.
    [177]李纪汉.第一届高温高压岩石力学会议论文集[C].1998
    [178]姜崇喜.谢强.大理岩细观破坏行为的实时观察与分析[J].西南交通大学学报,1999.3,34(1).
    [179]凌建明.压缩荷载条件下岩石细观损伤特征的研究[J].同济大学学报,1993(2).
    [180]凌建明.孙均.应变空间表述的岩体损伤本构关系[J].同济大学学报:自然科学版,1994,2.
    [181]尚嘉兰.岩石细观损伤破坏的观测研究[J].实验力学,1999,3.
    [182]王泽云.岩石微结构与微裂纹的损伤演化特征[J].岩石力学与工程学报,2004,5,23(10).
    [183]赵永红.受压岩石中裂纹发育过程及分维变化特征[J].科学通报,1995,4,40(7).
    [184]赵永红.岩石微破裂发育的扫描电镜即时研究[J].岩石力学与工程学报,1992,11(3).
    [185]赵永红.岩石细观破裂的实验观测研究及其对认识地震活动性的启示[J].地球物理学报,1995.05.
    [186]赵永红.细砂岩裂纹周围变形破坏过程及应变场分布[J].岩土力学,2004.06.
    [187]葛修润.任建喜.岩石细观损伤扩展规律的CT实时试验[J].中国科学E辑,2000,2.
    [188]葛修润.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001.02.
    [189]李晓军.路基填土单轴受压细观结构CT监测分析[J].岩土工程学报,2000.02.
    [190]刘兴华.郑颖人.岩石损伤的CT实验观测[J].贵州工业大学学报,1997,1.
    [191]谢卫红.岩石的高温热效应:细观实验与理论分析,2004,7.
    [192]王宝庭.基于刚体一弹簧模型的混凝土微裂纹行为模拟[J].工程力学,1999.02.
    [193]王宝庭.基于刚体弹簧元法的全级配混凝土本构特性模拟[J].河海大学学报(自然科学版),2000.01.
    [194]黄明利.岩石多裂纹相互作用破坏机制的研究[D].沈阳:东北大学(博士论文),2000.
    [195]黄明利.唐春安,朱万成,岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):124-127
    [196]卢海星.黄醒春.弹性体裂纹扩展的数值模拟[J].上海交通大学学报,2001,35(4):634-637.
    [197]杨天鸿.唐春安,非均质性对岩石水压致裂过程的影响[J].岩土工程学报,2002,24(6):456-460.
    [198]杨天鸿.岩石破裂与渗流耦合过程细观力学模型[J].固体力学学报.2005.03
    [199]杨天鸿.非均匀岩石破裂过程渗透率演化规律研究[J].岩石力学与工程学报.2004.05
    [200]唐春安.傅宇方.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J].复合材料学报,1999,10,16(4).
    [201]唐春安.岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟[J].地震,2001,2.
    [202]唐春安.岩石破裂过程中的灾变[M].煤炭工业出版社,1993.
    [203]唐春安.岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    [204]唐春安.岩石破裂过程数值试验[D].沈阳:东北工学院(博士论文),1988.
    [205]唐春安.刘红元.秦四清等.非均匀性对宏观岩石介质中裂纹扩展模式的影响[J].地球物理学报,2003,43(1):116-121.
    [206]彭一江等.碾压混凝土细观结构力学性能的数值模拟[J].水利学报,2001,6.
    [207]彭一江.碾压混凝土层面抗剪强度的细观数值研究[J].中国安全科学学报.2004.03
    [208]万志军,赵阳升,康建荣.高温岩体地热资源模拟与预测方法[J].岩石力学与工程学报,2005,24(6):945-949.
    [209]李斌凯,马海州,谭红兵.测井技术的应用及其在科学钻探研究中的意义[J].地球物理学进展,2007,22(5):1493-501.
    [210]傅容珊,王毅,黄建华,常筱华,查显杰,戴志阳.黏滞分层地幔中密度异常驱动对流模型的研究[J].地球物理学报,2005,48(4):824-833.
    [211]张国民,马宏生,王辉,王新岭.中国大陆活动地块边界带与强震活动[J]地球物理学报,2005,48(3):602-610.
    [212]陈祖安,伍向阳.三轴应力下岩石蠕变扩容的微裂纹扩展模型[J].地球物理学报,1994,37(增于1):156-160.
    [213]任爱华,新研制的800T高温高压伺服三轴流变仪,地球物理学报,1988,31(2):9
    [214]石泽全,周枚青,800MPa高温高压三轴室设计研究,地球物理学报,1990,33(2):202-207
    [215]Tan T. K., Kang W. F., The development and current state of rock mechanics in China,5Th Cong. Int. Soc. Rock mech. melbourne,1983.251
    [216]赵阳升,万志军,张渊,等.20MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报,2008,27(01):1-8.
    [217]David C, Menendez B, Darot M. Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite[J]. Int. J Rock Mech. and Min.Sci.,1999,36(4):433-448
    [218]Bauer S T. Semibrittle deformation of granite at upper crustal conditions (fracture, polyphase, high-temperature) [Ph. D. thesis]. United States -- Texas: Texas A&M University,1984
    [219]陈宗基,石泽全,于智海,等。用8000KN多功能三轴仪测量脆性岩石的扩容、蠕变及松弛[J].岩石力学与工程学报,1989,8(02):97-118.
    [220]Carter N L. Mechanical and transport properties of rocks at high temperatures and pressures. Task I. The physical nature of fracturing at depth. Final report[M]
    [221]Hansen F R. Semibrittle creep of selected crustal rocks at 1000 mpa[D]. United States -- Texas:Texas A&M University,1982.
    [222]周维垣.高等岩石力学[M].北京:水利电力出版社.1990.
    [223]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [224]周德培.流变力学原理及其在岩土工程中的应用[M].西南交通大学出版社,1995.
    [225]尹祥础.固体力学[M]. 北京:地震出版社,1985.Yin XiangChu. Solid Mechanics[M]. Beinjing:Earthquake Press,1985
    [226]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报(自然科学版),1997(02),25(2):1-7.
    [227]王子潮,唐卢俊一郎.CaTiO32钙钛矿的晶体结构相变、高温流变及及其下地幔地球动力学意义[J].地球物理学报,1995,38(6):718-728
    [228]国家自然科学基金委员会工程与材料科学部.矿产资源科学与工程[M].北京:科学出版社,2006.
    [229]Webster G. A., Cox A. P. D, Dorn J. E. A relationship between transient and steady state creep at elevated temperature [J]. Met Sci J,1969(3),221-225.
    [230]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,陈宗基讲座,2007(06),26(6):1081-1106
    [231]孙钧,汪炳鉴,地下结构有限元解析,上海,同济大学出版社,1985
    [232]席道瑛.花岗岩中矿物相变的物性特征[J].矿物学报,1994(03),14(3):223-228.
    [233]Aamodt R L, Smith M C. Induction and growth of fractures in hot rock: artificial geothermal reservoirs[R]. Los Alamos Scientific Laboratory Report, 1972.
    [234]Mou C. Thermal impact on host rock of geologic repository; Final report [R]. South Carolina State Coll., Orangeburg, SC report (United States),1986.
    [235]Creed R J, Laney P T. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries[R]. Idaho National Engineering and Environmental Laboratory Report,2002.
    [236]Min K B, Rutqvist J, Tsang C F, et al. Thermally induced mechanical and permeability changes around a nuclear waste repository--a far-field study based on equivalent properties determined by a discrete approach, Research results from the Decovalex III & Benchpar projects[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(5-6):765-780
    [237]陈波,李宁,禚瑞花.多孔介质的变形场-渗流场-温度场耦合有限元分析[J].岩石力学与工程学报,2001,20(4):467-472.
    [238]赵阳升,王瑞凤,胡耀青,等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,21(12):1751-1755.
    [239]陈卫忠,谭贤君,伍国军,等.非饱和岩石温度-渗流-应力耦合模型研究[J].岩石力学与工程学报,2007(12),26(12):2395-2404.
    [240]刘建军,冯夏庭.我国油藏渗流-温度-应力耦合的研究进展[J].岩土力学,2003,24(增2):645-650.
    [241]Jones C, Keaney G, Meredith P G, et al. Acoustic emission and fluid permeability measurements on thermally cracked rocks [J]. Physics and Chemistry of The Earth Solid Earth,1997,22(1-2):13-17.
    [242]Sageev A, Gobran B D, Brigham W E, et al. The Effect of Temperature on the Absolute Permeability to Distilled Water of Unconsolidated Sand Cores[C]. Conference:Proceedings, Sixth Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, California, December,1980:16-18.
    [243]Aruna M. The Effects of Temperature and Pressure on Absolute Permeability of sandstones[D]. United States -- California:Stanford University,1978.
    [244]杜守继,刘华,陈浩华等.高温后花岗岩密度及波动特性的试验研究[J].上海交通大学学报,2003(12).
    [245]杜守继,刘华,职洪涛等高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004(14).
    [246]杜守继,马明,陈浩华等.花岗岩经历不同高温后纵波波速分析[J].岩石力学与工程学报,2003(11).
    [247]陈颙.声发射技术在岩石力学研究中的应用[J].地球物理学报,1977,20(4):312-323.
    [248]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85
    [249]Blake W. Microseismic applications for mining——a practical guide[R]. U. S.:Bureau of Mines,1982.
    [250]吕培苓,吴开统,焦远碧,等.岩石蠕变过程中声发射活动的实验研究[J].地震学报,1991,13(1):104-114.
    [251]赵恩来,王恩元.岩土破坏过程声发射特征的实验研究[J].防灾减灾工程学报,2006,26(3):316-320.
    [252]曹树刚,刘延保,张立强,等.突出煤体单轴压缩和蠕变状态下的声发射对比试验[J].煤炭学报,2007,32(12):1264-1269.
    [253]赵阿兴.岩石蠕变破坏实验研究及其对地震预报的意义[J].地震地质.1992,14(1):89-96.
    [254]梅长林,范金城.数据分析方法[M].北京:高等教育出版社,2006
    [255]Dave Duchane,1994, status of the United status hot dry rock technology development program, Geothermal Technology,19(1&2):12-30.
    [256]Dave Duchane,1990, Hot Dry Rock:A realistic energy option, geothermal resources council bulletin(3):83-88.
    [257]Nedo. Report on the status of geothermal energy research in japan(1980-1989), geothermal resources council bullrtin,1991:103.
    [258]Kuriyagawa M., Tenma N., Development of hot dry rocktechnology at hijiori test site:program for a long time circulation test, Geothermics,1999,28(4/5): 627-636
    [259]ZHAO Wenjin, WU Zhenhan,SHI Danian, et al,2008, Comprehensive Deep Profiling of Tibetan Plateau in the INDEPTH Project, ACTA GEOSCIENTICA SIN ICA, 29 (3):3282342.
    [260]万志军,赵阳升,康建荣,高温岩体地热资源模拟与预测方法,岩石力学与工程学报,2005,6:6-12
    [261]WU Zhenhan, Patrickj. Barosh, ZHAO Xun, et al.. Miocene tectonic evolution from dextral2slip thrusting to extension in the Nyainqentanglha region of the Tibetan Plateau [J]. Acta Geologica Sinica,2007,81 (3):365-384.
    [262]张春山,吴满路,廖春庭等,西藏羊八井—康马地区现今地应力测量结果与应力状态分析。地球物理学报,2007,50(2):517-522。
    [263]赵阳升著,多孔介质多场耦合作用及其工程响应,2010,北京,科学出版社
    [264]Brown D. W. Hot dry rock reservoir engineering[J], geothermal resources council bullrtin,1990, (3),89-93.
    [265]Brown D. W. updata on the long-term flow testing program[J], geothermal resources council bullrtin,1992, (3),157-161.
    [266]tester J.W. testimony on hot dry rock geothermal energy[J]. geothermal resources council bullrtin,1992, (5),137-147.
    [267]R. H. Parker,1989, Hot Dry Rock geothermal energy, England, pergamon press.
    [268]Marechal J. C., Perrcochet P., tacher L. Long-term simulations of thermal and hydraulic characterstics in mountain, mass of the mont blance case study Franch and Italian Alps[J],hydrogeology J,1999, (7):341-354.
    [269]Pierce K G. An estimate of the cost of electicity production from hot dry rock[J], geothermal resources council bullrtin,1993, (9),197-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700